1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
5 // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_MATHFUNCTIONSIMPL_H
12 #define EIGEN_MATHFUNCTIONSIMPL_H
13
14 namespace Eigen {
15
16 namespace internal {
17
18 /** \internal \returns the hyperbolic tan of \a a (coeff-wise)
19 Doesn't do anything fancy, just a 13/6-degree rational interpolant which
20 is accurate up to a couple of ulp in the range [-9, 9], outside of which
21 the tanh(x) = +/-1.
22
23 This implementation works on both scalars and packets.
24 */
25 template<typename T>
generic_fast_tanh_float(const T & a_x)26 T generic_fast_tanh_float(const T& a_x)
27 {
28 // Clamp the inputs to the range [-9, 9] since anything outside
29 // this range is +/-1.0f in single-precision.
30 const T plus_9 = pset1<T>(9.f);
31 const T minus_9 = pset1<T>(-9.f);
32 // NOTE GCC prior to 6.3 might improperly optimize this max/min
33 // step such that if a_x is nan, x will be either 9 or -9,
34 // and tanh will return 1 or -1 instead of nan.
35 // This is supposed to be fixed in gcc6.3,
36 // see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
37 const T x = pmax(minus_9,pmin(plus_9,a_x));
38 // The monomial coefficients of the numerator polynomial (odd).
39 const T alpha_1 = pset1<T>(4.89352455891786e-03f);
40 const T alpha_3 = pset1<T>(6.37261928875436e-04f);
41 const T alpha_5 = pset1<T>(1.48572235717979e-05f);
42 const T alpha_7 = pset1<T>(5.12229709037114e-08f);
43 const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
44 const T alpha_11 = pset1<T>(2.00018790482477e-13f);
45 const T alpha_13 = pset1<T>(-2.76076847742355e-16f);
46
47 // The monomial coefficients of the denominator polynomial (even).
48 const T beta_0 = pset1<T>(4.89352518554385e-03f);
49 const T beta_2 = pset1<T>(2.26843463243900e-03f);
50 const T beta_4 = pset1<T>(1.18534705686654e-04f);
51 const T beta_6 = pset1<T>(1.19825839466702e-06f);
52
53 // Since the polynomials are odd/even, we need x^2.
54 const T x2 = pmul(x, x);
55
56 // Evaluate the numerator polynomial p.
57 T p = pmadd(x2, alpha_13, alpha_11);
58 p = pmadd(x2, p, alpha_9);
59 p = pmadd(x2, p, alpha_7);
60 p = pmadd(x2, p, alpha_5);
61 p = pmadd(x2, p, alpha_3);
62 p = pmadd(x2, p, alpha_1);
63 p = pmul(x, p);
64
65 // Evaluate the denominator polynomial p.
66 T q = pmadd(x2, beta_6, beta_4);
67 q = pmadd(x2, q, beta_2);
68 q = pmadd(x2, q, beta_0);
69
70 // Divide the numerator by the denominator.
71 return pdiv(p, q);
72 }
73
74 } // end namespace internal
75
76 } // end namespace Eigen
77
78 #endif // EIGEN_MATHFUNCTIONSIMPL_H
79