1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_NUMTRAITS_H 11 #define EIGEN_NUMTRAITS_H 12 13 namespace Eigen { 14 15 namespace internal { 16 17 // default implementation of digits10(), based on numeric_limits if specialized, 18 // 0 for integer types, and log10(epsilon()) otherwise. 19 template< typename T, 20 bool use_numeric_limits = std::numeric_limits<T>::is_specialized, 21 bool is_integer = NumTraits<T>::IsInteger> 22 struct default_digits10_impl 23 { rundefault_digits10_impl24 static int run() { return std::numeric_limits<T>::digits10; } 25 }; 26 27 template<typename T> 28 struct default_digits10_impl<T,false,false> // Floating point 29 { 30 static int run() { 31 using std::log10; 32 using std::ceil; 33 typedef typename NumTraits<T>::Real Real; 34 return int(ceil(-log10(NumTraits<Real>::epsilon()))); 35 } 36 }; 37 38 template<typename T> 39 struct default_digits10_impl<T,false,true> // Integer 40 { 41 static int run() { return 0; } 42 }; 43 44 } // end namespace internal 45 46 /** \class NumTraits 47 * \ingroup Core_Module 48 * 49 * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. 50 * 51 * \tparam T the numeric type at hand 52 * 53 * This class stores enums, typedefs and static methods giving information about a numeric type. 54 * 55 * The provided data consists of: 56 * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, 57 * then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real 58 * is a typedef to \a U. 59 * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, 60 * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives 61 * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to 62 * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is 63 * only intended as a helper for code that needs to explicitly promote types. 64 * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U. 65 * Of course, this type must be fully compatible with \a T. In doubt, just use \a T here. 66 * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what 67 * this means, just use \a T here. 68 * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex 69 * type, and to 0 otherwise. 70 * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, 71 * and to \c 0 otherwise. 72 * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed 73 * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers. 74 * Stay vague here. No need to do architecture-specific stuff. 75 * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. 76 * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must 77 * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. 78 * \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>, 79 * it returns a \a Real instead of a \a T. 80 * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default 81 * value by the fuzzy comparison operators. 82 * \li highest() and lowest() functions returning the highest and lowest possible values respectively. 83 * \li digits10() function returning the number of decimal digits that can be represented without change. This is 84 * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a> 85 * which is used as the default implementation if specialized. 86 */ 87 88 template<typename T> struct GenericNumTraits 89 { 90 enum { 91 IsInteger = std::numeric_limits<T>::is_integer, 92 IsSigned = std::numeric_limits<T>::is_signed, 93 IsComplex = 0, 94 RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1, 95 ReadCost = 1, 96 AddCost = 1, 97 MulCost = 1 98 }; 99 100 typedef T Real; 101 typedef typename internal::conditional< 102 IsInteger, 103 typename internal::conditional<sizeof(T)<=2, float, double>::type, 104 T 105 >::type NonInteger; 106 typedef T Nested; 107 typedef T Literal; 108 109 EIGEN_DEVICE_FUNC 110 static inline Real epsilon() 111 { 112 return numext::numeric_limits<T>::epsilon(); 113 } 114 115 EIGEN_DEVICE_FUNC 116 static inline int digits10() 117 { 118 return internal::default_digits10_impl<T>::run(); 119 } 120 121 EIGEN_DEVICE_FUNC 122 static inline Real dummy_precision() 123 { 124 // make sure to override this for floating-point types 125 return Real(0); 126 } 127 128 129 EIGEN_DEVICE_FUNC 130 static inline T highest() { 131 return (numext::numeric_limits<T>::max)(); 132 } 133 134 EIGEN_DEVICE_FUNC 135 static inline T lowest() { 136 return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)()); 137 } 138 139 EIGEN_DEVICE_FUNC 140 static inline T infinity() { 141 return numext::numeric_limits<T>::infinity(); 142 } 143 144 EIGEN_DEVICE_FUNC 145 static inline T quiet_NaN() { 146 return numext::numeric_limits<T>::quiet_NaN(); 147 } 148 }; 149 150 template<typename T> struct NumTraits : GenericNumTraits<T> 151 {}; 152 153 template<> struct NumTraits<float> 154 : GenericNumTraits<float> 155 { 156 EIGEN_DEVICE_FUNC 157 static inline float dummy_precision() { return 1e-5f; } 158 }; 159 160 template<> struct NumTraits<double> : GenericNumTraits<double> 161 { 162 EIGEN_DEVICE_FUNC 163 static inline double dummy_precision() { return 1e-12; } 164 }; 165 166 template<> struct NumTraits<long double> 167 : GenericNumTraits<long double> 168 { 169 static inline long double dummy_precision() { return 1e-15l; } 170 }; 171 172 template<typename _Real> struct NumTraits<std::complex<_Real> > 173 : GenericNumTraits<std::complex<_Real> > 174 { 175 typedef _Real Real; 176 typedef typename NumTraits<_Real>::Literal Literal; 177 enum { 178 IsComplex = 1, 179 RequireInitialization = NumTraits<_Real>::RequireInitialization, 180 ReadCost = 2 * NumTraits<_Real>::ReadCost, 181 AddCost = 2 * NumTraits<Real>::AddCost, 182 MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost 183 }; 184 185 EIGEN_DEVICE_FUNC 186 static inline Real epsilon() { return NumTraits<Real>::epsilon(); } 187 EIGEN_DEVICE_FUNC 188 static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); } 189 EIGEN_DEVICE_FUNC 190 static inline int digits10() { return NumTraits<Real>::digits10(); } 191 }; 192 193 template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> 194 struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > 195 { 196 typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType; 197 typedef typename NumTraits<Scalar>::Real RealScalar; 198 typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real; 199 typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar; 200 typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger; 201 typedef ArrayType & Nested; 202 typedef typename NumTraits<Scalar>::Literal Literal; 203 204 enum { 205 IsComplex = NumTraits<Scalar>::IsComplex, 206 IsInteger = NumTraits<Scalar>::IsInteger, 207 IsSigned = NumTraits<Scalar>::IsSigned, 208 RequireInitialization = 1, 209 ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost, 210 AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost, 211 MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost 212 }; 213 214 EIGEN_DEVICE_FUNC 215 static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); } 216 EIGEN_DEVICE_FUNC 217 static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); } 218 219 static inline int digits10() { return NumTraits<Scalar>::digits10(); } 220 }; 221 222 template<> struct NumTraits<std::string> 223 : GenericNumTraits<std::string> 224 { 225 enum { 226 RequireInitialization = 1, 227 ReadCost = HugeCost, 228 AddCost = HugeCost, 229 MulCost = HugeCost 230 }; 231 232 static inline int digits10() { return 0; } 233 234 private: 235 static inline std::string epsilon(); 236 static inline std::string dummy_precision(); 237 static inline std::string lowest(); 238 static inline std::string highest(); 239 static inline std::string infinity(); 240 static inline std::string quiet_NaN(); 241 }; 242 243 // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE. 244 template<> struct NumTraits<void> {}; 245 246 } // end namespace Eigen 247 248 #endif // EIGEN_NUMTRAITS_H 249