• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_QUATERNION_H
12 #define EIGEN_QUATERNION_H
13 namespace Eigen {
14 
15 
16 /***************************************************************************
17 * Definition of QuaternionBase<Derived>
18 * The implementation is at the end of the file
19 ***************************************************************************/
20 
21 namespace internal {
22 template<typename Other,
23          int OtherRows=Other::RowsAtCompileTime,
24          int OtherCols=Other::ColsAtCompileTime>
25 struct quaternionbase_assign_impl;
26 }
27 
28 /** \geometry_module \ingroup Geometry_Module
29   * \class QuaternionBase
30   * \brief Base class for quaternion expressions
31   * \tparam Derived derived type (CRTP)
32   * \sa class Quaternion
33   */
34 template<class Derived>
35 class QuaternionBase : public RotationBase<Derived, 3>
36 {
37  public:
38   typedef RotationBase<Derived, 3> Base;
39 
40   using Base::operator*;
41   using Base::derived;
42 
43   typedef typename internal::traits<Derived>::Scalar Scalar;
44   typedef typename NumTraits<Scalar>::Real RealScalar;
45   typedef typename internal::traits<Derived>::Coefficients Coefficients;
46   enum {
47     Flags = Eigen::internal::traits<Derived>::Flags
48   };
49 
50  // typedef typename Matrix<Scalar,4,1> Coefficients;
51   /** the type of a 3D vector */
52   typedef Matrix<Scalar,3,1> Vector3;
53   /** the equivalent rotation matrix type */
54   typedef Matrix<Scalar,3,3> Matrix3;
55   /** the equivalent angle-axis type */
56   typedef AngleAxis<Scalar> AngleAxisType;
57 
58 
59 
60   /** \returns the \c x coefficient */
x()61   EIGEN_DEVICE_FUNC inline Scalar x() const { return this->derived().coeffs().coeff(0); }
62   /** \returns the \c y coefficient */
y()63   EIGEN_DEVICE_FUNC inline Scalar y() const { return this->derived().coeffs().coeff(1); }
64   /** \returns the \c z coefficient */
z()65   EIGEN_DEVICE_FUNC inline Scalar z() const { return this->derived().coeffs().coeff(2); }
66   /** \returns the \c w coefficient */
w()67   EIGEN_DEVICE_FUNC inline Scalar w() const { return this->derived().coeffs().coeff(3); }
68 
69   /** \returns a reference to the \c x coefficient */
x()70   EIGEN_DEVICE_FUNC inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
71   /** \returns a reference to the \c y coefficient */
y()72   EIGEN_DEVICE_FUNC inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
73   /** \returns a reference to the \c z coefficient */
z()74   EIGEN_DEVICE_FUNC inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
75   /** \returns a reference to the \c w coefficient */
w()76   EIGEN_DEVICE_FUNC inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
77 
78   /** \returns a read-only vector expression of the imaginary part (x,y,z) */
vec()79   EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
80 
81   /** \returns a vector expression of the imaginary part (x,y,z) */
vec()82   EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
83 
84   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
coeffs()85   EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
86 
87   /** \returns a vector expression of the coefficients (x,y,z,w) */
coeffs()88   EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
89 
90   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
91   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
92 
93 // disabled this copy operator as it is giving very strange compilation errors when compiling
94 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
95 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
96 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
97 //  Derived& operator=(const QuaternionBase& other)
98 //  { return operator=<Derived>(other); }
99 
100   EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
101   template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
102 
103   /** \returns a quaternion representing an identity rotation
104     * \sa MatrixBase::Identity()
105     */
Identity()106   EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
107 
108   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
109     */
setIdentity()110   EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
111 
112   /** \returns the squared norm of the quaternion's coefficients
113     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
114     */
squaredNorm()115   EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
116 
117   /** \returns the norm of the quaternion's coefficients
118     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
119     */
norm()120   EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
121 
122   /** Normalizes the quaternion \c *this
123     * \sa normalized(), MatrixBase::normalize() */
normalize()124   EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
125   /** \returns a normalized copy of \c *this
126     * \sa normalize(), MatrixBase::normalized() */
normalized()127   EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
128 
129     /** \returns the dot product of \c *this and \a other
130     * Geometrically speaking, the dot product of two unit quaternions
131     * corresponds to the cosine of half the angle between the two rotations.
132     * \sa angularDistance()
133     */
dot(const QuaternionBase<OtherDerived> & other)134   template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
135 
136   template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
137 
138   /** \returns an equivalent 3x3 rotation matrix */
139   EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
140 
141   /** \returns the quaternion which transform \a a into \a b through a rotation */
142   template<typename Derived1, typename Derived2>
143   EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
144 
145   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
146   template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
147 
148   /** \returns the quaternion describing the inverse rotation */
149   EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
150 
151   /** \returns the conjugated quaternion */
152   EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
153 
154   template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
155 
156   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
157     * determined by \a prec.
158     *
159     * \sa MatrixBase::isApprox() */
160   template<class OtherDerived>
161   EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
162   { return coeffs().isApprox(other.coeffs(), prec); }
163 
164   /** return the result vector of \a v through the rotation*/
165   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
166 
167   /** \returns \c *this with scalar type casted to \a NewScalarType
168     *
169     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
170     * then this function smartly returns a const reference to \c *this.
171     */
172   template<typename NewScalarType>
cast()173   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
174   {
175     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
176   }
177 
178 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
179 # include EIGEN_QUATERNIONBASE_PLUGIN
180 #endif
181 };
182 
183 /***************************************************************************
184 * Definition/implementation of Quaternion<Scalar>
185 ***************************************************************************/
186 
187 /** \geometry_module \ingroup Geometry_Module
188   *
189   * \class Quaternion
190   *
191   * \brief The quaternion class used to represent 3D orientations and rotations
192   *
193   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
194   * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
195   *
196   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
197   * orientations and rotations of objects in three dimensions. Compared to other representations
198   * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
199   * \li \b compact storage (4 scalars)
200   * \li \b efficient to compose (28 flops),
201   * \li \b stable spherical interpolation
202   *
203   * The following two typedefs are provided for convenience:
204   * \li \c Quaternionf for \c float
205   * \li \c Quaterniond for \c double
206   *
207   * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
208   *
209   * \sa  class AngleAxis, class Transform
210   */
211 
212 namespace internal {
213 template<typename _Scalar,int _Options>
214 struct traits<Quaternion<_Scalar,_Options> >
215 {
216   typedef Quaternion<_Scalar,_Options> PlainObject;
217   typedef _Scalar Scalar;
218   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
219   enum{
220     Alignment = internal::traits<Coefficients>::Alignment,
221     Flags = LvalueBit
222   };
223 };
224 }
225 
226 template<typename _Scalar, int _Options>
227 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
228 {
229 public:
230   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
231   enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
232 
233   typedef _Scalar Scalar;
234 
235   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
236   using Base::operator*=;
237 
238   typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
239   typedef typename Base::AngleAxisType AngleAxisType;
240 
241   /** Default constructor leaving the quaternion uninitialized. */
242   EIGEN_DEVICE_FUNC inline Quaternion() {}
243 
244   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
245     * its four coefficients \a w, \a x, \a y and \a z.
246     *
247     * \warning Note the order of the arguments: the real \a w coefficient first,
248     * while internally the coefficients are stored in the following order:
249     * [\c x, \c y, \c z, \c w]
250     */
251   EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
252 
253   /** Constructs and initialize a quaternion from the array data */
254   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
255 
256   /** Copy constructor */
257   template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
258 
259   /** Constructs and initializes a quaternion from the angle-axis \a aa */
260   EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
261 
262   /** Constructs and initializes a quaternion from either:
263     *  - a rotation matrix expression,
264     *  - a 4D vector expression representing quaternion coefficients.
265     */
266   template<typename Derived>
267   EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
268 
269   /** Explicit copy constructor with scalar conversion */
270   template<typename OtherScalar, int OtherOptions>
271   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
272   { m_coeffs = other.coeffs().template cast<Scalar>(); }
273 
274   EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
275 
276   template<typename Derived1, typename Derived2>
277   EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
278 
279   EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
280   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
281 
282   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
283 
284 #ifdef EIGEN_QUATERNION_PLUGIN
285 # include EIGEN_QUATERNION_PLUGIN
286 #endif
287 
288 protected:
289   Coefficients m_coeffs;
290 
291 #ifndef EIGEN_PARSED_BY_DOXYGEN
292     static EIGEN_STRONG_INLINE void _check_template_params()
293     {
294       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
295         INVALID_MATRIX_TEMPLATE_PARAMETERS)
296     }
297 #endif
298 };
299 
300 /** \ingroup Geometry_Module
301   * single precision quaternion type */
302 typedef Quaternion<float> Quaternionf;
303 /** \ingroup Geometry_Module
304   * double precision quaternion type */
305 typedef Quaternion<double> Quaterniond;
306 
307 /***************************************************************************
308 * Specialization of Map<Quaternion<Scalar>>
309 ***************************************************************************/
310 
311 namespace internal {
312   template<typename _Scalar, int _Options>
313   struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
314   {
315     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
316   };
317 }
318 
319 namespace internal {
320   template<typename _Scalar, int _Options>
321   struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
322   {
323     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
324     typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
325     enum {
326       Flags = TraitsBase::Flags & ~LvalueBit
327     };
328   };
329 }
330 
331 /** \ingroup Geometry_Module
332   * \brief Quaternion expression mapping a constant memory buffer
333   *
334   * \tparam _Scalar the type of the Quaternion coefficients
335   * \tparam _Options see class Map
336   *
337   * This is a specialization of class Map for Quaternion. This class allows to view
338   * a 4 scalar memory buffer as an Eigen's Quaternion object.
339   *
340   * \sa class Map, class Quaternion, class QuaternionBase
341   */
342 template<typename _Scalar, int _Options>
343 class Map<const Quaternion<_Scalar>, _Options >
344   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
345 {
346   public:
347     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
348 
349     typedef _Scalar Scalar;
350     typedef typename internal::traits<Map>::Coefficients Coefficients;
351     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
352     using Base::operator*=;
353 
354     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
355       *
356       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
357       * \code *coeffs == {x, y, z, w} \endcode
358       *
359       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
360     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
361 
362     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
363 
364   protected:
365     const Coefficients m_coeffs;
366 };
367 
368 /** \ingroup Geometry_Module
369   * \brief Expression of a quaternion from a memory buffer
370   *
371   * \tparam _Scalar the type of the Quaternion coefficients
372   * \tparam _Options see class Map
373   *
374   * This is a specialization of class Map for Quaternion. This class allows to view
375   * a 4 scalar memory buffer as an Eigen's  Quaternion object.
376   *
377   * \sa class Map, class Quaternion, class QuaternionBase
378   */
379 template<typename _Scalar, int _Options>
380 class Map<Quaternion<_Scalar>, _Options >
381   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
382 {
383   public:
384     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
385 
386     typedef _Scalar Scalar;
387     typedef typename internal::traits<Map>::Coefficients Coefficients;
388     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
389     using Base::operator*=;
390 
391     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
392       *
393       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
394       * \code *coeffs == {x, y, z, w} \endcode
395       *
396       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
397     EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
398 
399     EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
400     EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
401 
402   protected:
403     Coefficients m_coeffs;
404 };
405 
406 /** \ingroup Geometry_Module
407   * Map an unaligned array of single precision scalars as a quaternion */
408 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
409 /** \ingroup Geometry_Module
410   * Map an unaligned array of double precision scalars as a quaternion */
411 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
412 /** \ingroup Geometry_Module
413   * Map a 16-byte aligned array of single precision scalars as a quaternion */
414 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
415 /** \ingroup Geometry_Module
416   * Map a 16-byte aligned array of double precision scalars as a quaternion */
417 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
418 
419 /***************************************************************************
420 * Implementation of QuaternionBase methods
421 ***************************************************************************/
422 
423 // Generic Quaternion * Quaternion product
424 // This product can be specialized for a given architecture via the Arch template argument.
425 namespace internal {
426 template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
427 {
428   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
429     return Quaternion<Scalar>
430     (
431       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
432       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
433       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
434       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
435     );
436   }
437 };
438 }
439 
440 /** \returns the concatenation of two rotations as a quaternion-quaternion product */
441 template <class Derived>
442 template <class OtherDerived>
443 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
444 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
445 {
446   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
447    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
448   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
449                          typename internal::traits<Derived>::Scalar>::run(*this, other);
450 }
451 
452 /** \sa operator*(Quaternion) */
453 template <class Derived>
454 template <class OtherDerived>
455 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
456 {
457   derived() = derived() * other.derived();
458   return derived();
459 }
460 
461 /** Rotation of a vector by a quaternion.
462   * \remarks If the quaternion is used to rotate several points (>1)
463   * then it is much more efficient to first convert it to a 3x3 Matrix.
464   * Comparison of the operation cost for n transformations:
465   *   - Quaternion2:    30n
466   *   - Via a Matrix3: 24 + 15n
467   */
468 template <class Derived>
469 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
470 QuaternionBase<Derived>::_transformVector(const Vector3& v) const
471 {
472     // Note that this algorithm comes from the optimization by hand
473     // of the conversion to a Matrix followed by a Matrix/Vector product.
474     // It appears to be much faster than the common algorithm found
475     // in the literature (30 versus 39 flops). It also requires two
476     // Vector3 as temporaries.
477     Vector3 uv = this->vec().cross(v);
478     uv += uv;
479     return v + this->w() * uv + this->vec().cross(uv);
480 }
481 
482 template<class Derived>
483 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
484 {
485   coeffs() = other.coeffs();
486   return derived();
487 }
488 
489 template<class Derived>
490 template<class OtherDerived>
491 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
492 {
493   coeffs() = other.coeffs();
494   return derived();
495 }
496 
497 /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
498   */
499 template<class Derived>
500 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
501 {
502   EIGEN_USING_STD_MATH(cos)
503   EIGEN_USING_STD_MATH(sin)
504   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
505   this->w() = cos(ha);
506   this->vec() = sin(ha) * aa.axis();
507   return derived();
508 }
509 
510 /** Set \c *this from the expression \a xpr:
511   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
512   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
513   *     and \a xpr is converted to a quaternion
514   */
515 
516 template<class Derived>
517 template<class MatrixDerived>
518 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
519 {
520   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
521    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
522   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
523   return derived();
524 }
525 
526 /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
527   * be normalized, otherwise the result is undefined.
528   */
529 template<class Derived>
530 EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
531 QuaternionBase<Derived>::toRotationMatrix(void) const
532 {
533   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
534   // if not inlined then the cost of the return by value is huge ~ +35%,
535   // however, not inlining this function is an order of magnitude slower, so
536   // it has to be inlined, and so the return by value is not an issue
537   Matrix3 res;
538 
539   const Scalar tx  = Scalar(2)*this->x();
540   const Scalar ty  = Scalar(2)*this->y();
541   const Scalar tz  = Scalar(2)*this->z();
542   const Scalar twx = tx*this->w();
543   const Scalar twy = ty*this->w();
544   const Scalar twz = tz*this->w();
545   const Scalar txx = tx*this->x();
546   const Scalar txy = ty*this->x();
547   const Scalar txz = tz*this->x();
548   const Scalar tyy = ty*this->y();
549   const Scalar tyz = tz*this->y();
550   const Scalar tzz = tz*this->z();
551 
552   res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
553   res.coeffRef(0,1) = txy-twz;
554   res.coeffRef(0,2) = txz+twy;
555   res.coeffRef(1,0) = txy+twz;
556   res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
557   res.coeffRef(1,2) = tyz-twx;
558   res.coeffRef(2,0) = txz-twy;
559   res.coeffRef(2,1) = tyz+twx;
560   res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
561 
562   return res;
563 }
564 
565 /** Sets \c *this to be a quaternion representing a rotation between
566   * the two arbitrary vectors \a a and \a b. In other words, the built
567   * rotation represent a rotation sending the line of direction \a a
568   * to the line of direction \a b, both lines passing through the origin.
569   *
570   * \returns a reference to \c *this.
571   *
572   * Note that the two input vectors do \b not have to be normalized, and
573   * do not need to have the same norm.
574   */
575 template<class Derived>
576 template<typename Derived1, typename Derived2>
577 EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
578 {
579   EIGEN_USING_STD_MATH(sqrt)
580   Vector3 v0 = a.normalized();
581   Vector3 v1 = b.normalized();
582   Scalar c = v1.dot(v0);
583 
584   // if dot == -1, vectors are nearly opposites
585   // => accurately compute the rotation axis by computing the
586   //    intersection of the two planes. This is done by solving:
587   //       x^T v0 = 0
588   //       x^T v1 = 0
589   //    under the constraint:
590   //       ||x|| = 1
591   //    which yields a singular value problem
592   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
593   {
594     c = numext::maxi(c,Scalar(-1));
595     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
596     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
597     Vector3 axis = svd.matrixV().col(2);
598 
599     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
600     this->w() = sqrt(w2);
601     this->vec() = axis * sqrt(Scalar(1) - w2);
602     return derived();
603   }
604   Vector3 axis = v0.cross(v1);
605   Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
606   Scalar invs = Scalar(1)/s;
607   this->vec() = axis * invs;
608   this->w() = s * Scalar(0.5);
609 
610   return derived();
611 }
612 
613 /** \returns a random unit quaternion following a uniform distribution law on SO(3)
614   *
615   * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
616   */
617 template<typename Scalar, int Options>
618 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
619 {
620   EIGEN_USING_STD_MATH(sqrt)
621   EIGEN_USING_STD_MATH(sin)
622   EIGEN_USING_STD_MATH(cos)
623   const Scalar u1 = internal::random<Scalar>(0, 1),
624                u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
625                u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
626   const Scalar a = sqrt(1 - u1),
627                b = sqrt(u1);
628   return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
629 }
630 
631 
632 /** Returns a quaternion representing a rotation between
633   * the two arbitrary vectors \a a and \a b. In other words, the built
634   * rotation represent a rotation sending the line of direction \a a
635   * to the line of direction \a b, both lines passing through the origin.
636   *
637   * \returns resulting quaternion
638   *
639   * Note that the two input vectors do \b not have to be normalized, and
640   * do not need to have the same norm.
641   */
642 template<typename Scalar, int Options>
643 template<typename Derived1, typename Derived2>
644 EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
645 {
646     Quaternion quat;
647     quat.setFromTwoVectors(a, b);
648     return quat;
649 }
650 
651 
652 /** \returns the multiplicative inverse of \c *this
653   * Note that in most cases, i.e., if you simply want the opposite rotation,
654   * and/or the quaternion is normalized, then it is enough to use the conjugate.
655   *
656   * \sa QuaternionBase::conjugate()
657   */
658 template <class Derived>
659 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
660 {
661   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
662   Scalar n2 = this->squaredNorm();
663   if (n2 > Scalar(0))
664     return Quaternion<Scalar>(conjugate().coeffs() / n2);
665   else
666   {
667     // return an invalid result to flag the error
668     return Quaternion<Scalar>(Coefficients::Zero());
669   }
670 }
671 
672 // Generic conjugate of a Quaternion
673 namespace internal {
674 template<int Arch, class Derived, typename Scalar> struct quat_conj
675 {
676   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
677     return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
678   }
679 };
680 }
681 
682 /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
683   * if the quaternion is normalized.
684   * The conjugate of a quaternion represents the opposite rotation.
685   *
686   * \sa Quaternion2::inverse()
687   */
688 template <class Derived>
689 EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
690 QuaternionBase<Derived>::conjugate() const
691 {
692   return internal::quat_conj<Architecture::Target, Derived,
693                          typename internal::traits<Derived>::Scalar>::run(*this);
694 
695 }
696 
697 /** \returns the angle (in radian) between two rotations
698   * \sa dot()
699   */
700 template <class Derived>
701 template <class OtherDerived>
702 EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
703 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
704 {
705   EIGEN_USING_STD_MATH(atan2)
706   Quaternion<Scalar> d = (*this) * other.conjugate();
707   return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
708 }
709 
710 
711 
712 /** \returns the spherical linear interpolation between the two quaternions
713   * \c *this and \a other at the parameter \a t in [0;1].
714   *
715   * This represents an interpolation for a constant motion between \c *this and \a other,
716   * see also http://en.wikipedia.org/wiki/Slerp.
717   */
718 template <class Derived>
719 template <class OtherDerived>
720 EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
721 QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
722 {
723   EIGEN_USING_STD_MATH(acos)
724   EIGEN_USING_STD_MATH(sin)
725   const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
726   Scalar d = this->dot(other);
727   Scalar absD = numext::abs(d);
728 
729   Scalar scale0;
730   Scalar scale1;
731 
732   if(absD>=one)
733   {
734     scale0 = Scalar(1) - t;
735     scale1 = t;
736   }
737   else
738   {
739     // theta is the angle between the 2 quaternions
740     Scalar theta = acos(absD);
741     Scalar sinTheta = sin(theta);
742 
743     scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
744     scale1 = sin( ( t * theta) ) / sinTheta;
745   }
746   if(d<Scalar(0)) scale1 = -scale1;
747 
748   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
749 }
750 
751 namespace internal {
752 
753 // set from a rotation matrix
754 template<typename Other>
755 struct quaternionbase_assign_impl<Other,3,3>
756 {
757   typedef typename Other::Scalar Scalar;
758   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
759   {
760     const typename internal::nested_eval<Other,2>::type mat(a_mat);
761     EIGEN_USING_STD_MATH(sqrt)
762     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
763     // Ken Shoemake, 1987 SIGGRAPH course notes
764     Scalar t = mat.trace();
765     if (t > Scalar(0))
766     {
767       t = sqrt(t + Scalar(1.0));
768       q.w() = Scalar(0.5)*t;
769       t = Scalar(0.5)/t;
770       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
771       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
772       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
773     }
774     else
775     {
776       Index i = 0;
777       if (mat.coeff(1,1) > mat.coeff(0,0))
778         i = 1;
779       if (mat.coeff(2,2) > mat.coeff(i,i))
780         i = 2;
781       Index j = (i+1)%3;
782       Index k = (j+1)%3;
783 
784       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
785       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
786       t = Scalar(0.5)/t;
787       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
788       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
789       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
790     }
791   }
792 };
793 
794 // set from a vector of coefficients assumed to be a quaternion
795 template<typename Other>
796 struct quaternionbase_assign_impl<Other,4,1>
797 {
798   typedef typename Other::Scalar Scalar;
799   template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
800   {
801     q.coeffs() = vec;
802   }
803 };
804 
805 } // end namespace internal
806 
807 } // end namespace Eigen
808 
809 #endif // EIGEN_QUATERNION_H
810