1*> \brief \b CLARF 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CLARF + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarf.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarf.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarf.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 22* 23* .. Scalar Arguments .. 24* CHARACTER SIDE 25* INTEGER INCV, LDC, M, N 26* COMPLEX TAU 27* .. 28* .. Array Arguments .. 29* COMPLEX C( LDC, * ), V( * ), WORK( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> CLARF applies a complex elementary reflector H to a complex M-by-N 39*> matrix C, from either the left or the right. H is represented in the 40*> form 41*> 42*> H = I - tau * v * v**H 43*> 44*> where tau is a complex scalar and v is a complex vector. 45*> 46*> If tau = 0, then H is taken to be the unit matrix. 47*> 48*> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead 49*> tau. 50*> \endverbatim 51* 52* Arguments: 53* ========== 54* 55*> \param[in] SIDE 56*> \verbatim 57*> SIDE is CHARACTER*1 58*> = 'L': form H * C 59*> = 'R': form C * H 60*> \endverbatim 61*> 62*> \param[in] M 63*> \verbatim 64*> M is INTEGER 65*> The number of rows of the matrix C. 66*> \endverbatim 67*> 68*> \param[in] N 69*> \verbatim 70*> N is INTEGER 71*> The number of columns of the matrix C. 72*> \endverbatim 73*> 74*> \param[in] V 75*> \verbatim 76*> V is COMPLEX array, dimension 77*> (1 + (M-1)*abs(INCV)) if SIDE = 'L' 78*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R' 79*> The vector v in the representation of H. V is not used if 80*> TAU = 0. 81*> \endverbatim 82*> 83*> \param[in] INCV 84*> \verbatim 85*> INCV is INTEGER 86*> The increment between elements of v. INCV <> 0. 87*> \endverbatim 88*> 89*> \param[in] TAU 90*> \verbatim 91*> TAU is COMPLEX 92*> The value tau in the representation of H. 93*> \endverbatim 94*> 95*> \param[in,out] C 96*> \verbatim 97*> C is COMPLEX array, dimension (LDC,N) 98*> On entry, the M-by-N matrix C. 99*> On exit, C is overwritten by the matrix H * C if SIDE = 'L', 100*> or C * H if SIDE = 'R'. 101*> \endverbatim 102*> 103*> \param[in] LDC 104*> \verbatim 105*> LDC is INTEGER 106*> The leading dimension of the array C. LDC >= max(1,M). 107*> \endverbatim 108*> 109*> \param[out] WORK 110*> \verbatim 111*> WORK is COMPLEX array, dimension 112*> (N) if SIDE = 'L' 113*> or (M) if SIDE = 'R' 114*> \endverbatim 115* 116* Authors: 117* ======== 118* 119*> \author Univ. of Tennessee 120*> \author Univ. of California Berkeley 121*> \author Univ. of Colorado Denver 122*> \author NAG Ltd. 123* 124*> \date November 2011 125* 126*> \ingroup complexOTHERauxiliary 127* 128* ===================================================================== 129 SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 130* 131* -- LAPACK auxiliary routine (version 3.4.0) -- 132* -- LAPACK is a software package provided by Univ. of Tennessee, -- 133* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 134* November 2011 135* 136* .. Scalar Arguments .. 137 CHARACTER SIDE 138 INTEGER INCV, LDC, M, N 139 COMPLEX TAU 140* .. 141* .. Array Arguments .. 142 COMPLEX C( LDC, * ), V( * ), WORK( * ) 143* .. 144* 145* ===================================================================== 146* 147* .. Parameters .. 148 COMPLEX ONE, ZERO 149 PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), 150 $ ZERO = ( 0.0E+0, 0.0E+0 ) ) 151* .. 152* .. Local Scalars .. 153 LOGICAL APPLYLEFT 154 INTEGER I, LASTV, LASTC 155* .. 156* .. External Subroutines .. 157 EXTERNAL CGEMV, CGERC 158* .. 159* .. External Functions .. 160 LOGICAL LSAME 161 INTEGER ILACLR, ILACLC 162 EXTERNAL LSAME, ILACLR, ILACLC 163* .. 164* .. Executable Statements .. 165* 166 APPLYLEFT = LSAME( SIDE, 'L' ) 167 LASTV = 0 168 LASTC = 0 169 IF( TAU.NE.ZERO ) THEN 170! Set up variables for scanning V. LASTV begins pointing to the end 171! of V. 172 IF( APPLYLEFT ) THEN 173 LASTV = M 174 ELSE 175 LASTV = N 176 END IF 177 IF( INCV.GT.0 ) THEN 178 I = 1 + (LASTV-1) * INCV 179 ELSE 180 I = 1 181 END IF 182! Look for the last non-zero row in V. 183 DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) 184 LASTV = LASTV - 1 185 I = I - INCV 186 END DO 187 IF( APPLYLEFT ) THEN 188! Scan for the last non-zero column in C(1:lastv,:). 189 LASTC = ILACLC(LASTV, N, C, LDC) 190 ELSE 191! Scan for the last non-zero row in C(:,1:lastv). 192 LASTC = ILACLR(M, LASTV, C, LDC) 193 END IF 194 END IF 195! Note that lastc.eq.0 renders the BLAS operations null; no special 196! case is needed at this level. 197 IF( APPLYLEFT ) THEN 198* 199* Form H * C 200* 201 IF( LASTV.GT.0 ) THEN 202* 203* w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1) 204* 205 CALL CGEMV( 'Conjugate transpose', LASTV, LASTC, ONE, 206 $ C, LDC, V, INCV, ZERO, WORK, 1 ) 207* 208* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H 209* 210 CALL CGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC ) 211 END IF 212 ELSE 213* 214* Form C * H 215* 216 IF( LASTV.GT.0 ) THEN 217* 218* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) 219* 220 CALL CGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC, 221 $ V, INCV, ZERO, WORK, 1 ) 222* 223* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H 224* 225 CALL CGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC ) 226 END IF 227 END IF 228 RETURN 229* 230* End of CLARF 231* 232 END 233