1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11
diagonal(const MatrixType & m)12 template<typename MatrixType> void diagonal(const MatrixType& m)
13 {
14 typedef typename MatrixType::Index Index;
15 typedef typename MatrixType::Scalar Scalar;
16
17 Index rows = m.rows();
18 Index cols = m.cols();
19
20 MatrixType m1 = MatrixType::Random(rows, cols),
21 m2 = MatrixType::Random(rows, cols);
22
23 Scalar s1 = internal::random<Scalar>();
24
25 //check diagonal()
26 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
27 m2.diagonal() = 2 * m1.diagonal();
28 m2.diagonal()[0] *= 3;
29
30 if (rows>2)
31 {
32 enum {
33 N1 = MatrixType::RowsAtCompileTime>2 ? 2 : 0,
34 N2 = MatrixType::RowsAtCompileTime>1 ? -1 : 0
35 };
36
37 // check sub/super diagonal
38 if(MatrixType::SizeAtCompileTime!=Dynamic)
39 {
40 VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size());
41 VERIFY(m1.template diagonal<N2>().RowsAtCompileTime == m1.diagonal(N2).size());
42 }
43
44 m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
45 VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1));
46 m2.template diagonal<N1>()[0] *= 3;
47 VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
48
49
50 m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
51 m2.template diagonal<N2>()[0] *= 3;
52 VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
53
54 m2.diagonal(N1) = 2 * m1.diagonal(N1);
55 VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1));
56 m2.diagonal(N1)[0] *= 3;
57 VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
58
59 m2.diagonal(N2) = 2 * m1.diagonal(N2);
60 VERIFY_IS_APPROX(m2.template diagonal<N2>(), static_cast<Scalar>(2) * m1.diagonal(N2));
61 m2.diagonal(N2)[0] *= 3;
62 VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
63
64 m2.diagonal(N2).x() = s1;
65 VERIFY_IS_APPROX(m2.diagonal(N2).x(), s1);
66 m2.diagonal(N2).coeffRef(0) = Scalar(2)*s1;
67 VERIFY_IS_APPROX(m2.diagonal(N2).coeff(0), Scalar(2)*s1);
68 }
69 }
70
diagonal_assert(const MatrixType & m)71 template<typename MatrixType> void diagonal_assert(const MatrixType& m) {
72 Index rows = m.rows();
73 Index cols = m.cols();
74
75 MatrixType m1 = MatrixType::Random(rows, cols);
76
77 if (rows>=2 && cols>=2)
78 {
79 VERIFY_RAISES_ASSERT( m1 += m1.diagonal() );
80 VERIFY_RAISES_ASSERT( m1 -= m1.diagonal() );
81 VERIFY_RAISES_ASSERT( m1.array() *= m1.diagonal().array() );
82 VERIFY_RAISES_ASSERT( m1.array() /= m1.diagonal().array() );
83 }
84 }
85
test_diagonal()86 void test_diagonal()
87 {
88 for(int i = 0; i < g_repeat; i++) {
89 CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) );
90 CALL_SUBTEST_1( diagonal(Matrix<float, 4, 9>()) );
91 CALL_SUBTEST_1( diagonal(Matrix<float, 7, 3>()) );
92 CALL_SUBTEST_2( diagonal(Matrix4d()) );
93 CALL_SUBTEST_2( diagonal(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
94 CALL_SUBTEST_2( diagonal(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
95 CALL_SUBTEST_2( diagonal(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
96 CALL_SUBTEST_1( diagonal(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
97 CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) );
98 }
99
100 CALL_SUBTEST_1( diagonal_assert(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
101 }
102