• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_RUNTIME_NO_MALLOC
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 
real_qz(const MatrixType & m)15 template<typename MatrixType> void real_qz(const MatrixType& m)
16 {
17   /* this test covers the following files:
18      RealQZ.h
19   */
20   using std::abs;
21   typedef typename MatrixType::Index Index;
22   typedef typename MatrixType::Scalar Scalar;
23 
24   Index dim = m.cols();
25 
26   MatrixType A = MatrixType::Random(dim,dim),
27              B = MatrixType::Random(dim,dim);
28 
29 
30   // Regression test for bug 985: Randomly set rows or columns to zero
31   Index k=internal::random<Index>(0, dim-1);
32   switch(internal::random<int>(0,10)) {
33   case 0:
34     A.row(k).setZero(); break;
35   case 1:
36     A.col(k).setZero(); break;
37   case 2:
38     B.row(k).setZero(); break;
39   case 3:
40     B.col(k).setZero(); break;
41   default:
42     break;
43   }
44 
45   RealQZ<MatrixType> qz(dim);
46   // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition
47   //Eigen::internal::set_is_malloc_allowed(false);
48   qz.compute(A,B);
49   //Eigen::internal::set_is_malloc_allowed(true);
50 
51   VERIFY_IS_EQUAL(qz.info(), Success);
52   // check for zeros
53   bool all_zeros = true;
54   for (Index i=0; i<A.cols(); i++)
55     for (Index j=0; j<i; j++) {
56       if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
57       {
58         std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl;
59         all_zeros = false;
60       }
61       if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
62       {
63         std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl;
64         all_zeros = false;
65       }
66       if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
67       {
68         std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j)  << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl;
69         all_zeros = false;
70       }
71     }
72   VERIFY_IS_EQUAL(all_zeros, true);
73   VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);
74   VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
75   VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
76   VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim));
77 }
78 
test_real_qz()79 void test_real_qz()
80 {
81   int s = 0;
82   for(int i = 0; i < g_repeat; i++) {
83     CALL_SUBTEST_1( real_qz(Matrix4f()) );
84     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
85     CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) );
86 
87     // some trivial but implementation-wise tricky cases
88     CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) );
89     CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) );
90     CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) );
91     CALL_SUBTEST_4( real_qz(Matrix2d()) );
92   }
93 
94   TEST_SET_BUT_UNUSED_VARIABLE(s)
95 }
96