• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
12 
13 namespace Eigen {
14 
15 /** \class TensorAssign
16   * \ingroup CXX11_Tensor_Module
17   *
18   * \brief The tensor assignment class.
19   *
20   * This class is represents the assignment of the values resulting from the evaluation of
21   * the rhs expression to the memory locations denoted by the lhs expression.
22   */
23 namespace internal {
24 template<typename LhsXprType, typename RhsXprType>
25 struct traits<TensorAssignOp<LhsXprType, RhsXprType> >
26 {
27   typedef typename LhsXprType::Scalar Scalar;
28   typedef typename traits<LhsXprType>::StorageKind StorageKind;
29   typedef typename promote_index_type<typename traits<LhsXprType>::Index,
30                                       typename traits<RhsXprType>::Index>::type Index;
31   typedef typename LhsXprType::Nested LhsNested;
32   typedef typename RhsXprType::Nested RhsNested;
33   typedef typename remove_reference<LhsNested>::type _LhsNested;
34   typedef typename remove_reference<RhsNested>::type _RhsNested;
35   static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
36   static const int Layout = internal::traits<LhsXprType>::Layout;
37 
38   enum {
39     Flags = 0
40   };
41 };
42 
43 template<typename LhsXprType, typename RhsXprType>
44 struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense>
45 {
46   typedef const TensorAssignOp<LhsXprType, RhsXprType>& type;
47 };
48 
49 template<typename LhsXprType, typename RhsXprType>
50 struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type>
51 {
52   typedef TensorAssignOp<LhsXprType, RhsXprType> type;
53 };
54 
55 }  // end namespace internal
56 
57 
58 
59 template<typename LhsXprType, typename RhsXprType>
60 class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> >
61 {
62   public:
63   typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar;
64   typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
65   typedef typename LhsXprType::CoeffReturnType CoeffReturnType;
66   typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested;
67   typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind;
68   typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index;
69 
70   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs)
71       : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {}
72 
73     /** \returns the nested expressions */
74     EIGEN_DEVICE_FUNC
75     typename internal::remove_all<typename LhsXprType::Nested>::type&
76     lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); }
77 
78     EIGEN_DEVICE_FUNC
79     const typename internal::remove_all<typename RhsXprType::Nested>::type&
80     rhsExpression() const { return m_rhs_xpr; }
81 
82   protected:
83     typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr;
84     const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr;
85 };
86 
87 
88 template<typename LeftArgType, typename RightArgType, typename Device>
89 struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
90 {
91   typedef TensorAssignOp<LeftArgType, RightArgType> XprType;
92   typedef typename XprType::Index Index;
93   typedef typename XprType::Scalar Scalar;
94   typedef typename XprType::CoeffReturnType CoeffReturnType;
95   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
96   typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions;
97   static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
98 
99   enum {
100     IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
101     PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
102     Layout = TensorEvaluator<LeftArgType, Device>::Layout,
103     RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
104   };
105 
106   EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
107       m_leftImpl(op.lhsExpression(), device),
108       m_rightImpl(op.rhsExpression(), device)
109   {
110     EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
111   }
112 
113   EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
114   {
115     // The dimensions of the lhs and the rhs tensors should be equal to prevent
116     // overflows and ensure the result is fully initialized.
117     // TODO: use left impl instead if right impl dimensions are known at compile time.
118     return m_rightImpl.dimensions();
119   }
120 
121   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
122     eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
123     m_leftImpl.evalSubExprsIfNeeded(NULL);
124     // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
125     // null value), attempt to evaluate the rhs expression in place. Returns true iff in place
126     // evaluation isn't supported and the caller still needs to manually assign the values generated
127     // by the rhs to the lhs.
128     return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
129   }
130   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
131     m_leftImpl.cleanup();
132     m_rightImpl.cleanup();
133   }
134 
135   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
136     m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i);
137   }
138   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
139     const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned;
140     const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned;
141     m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i));
142   }
143   EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
144   {
145     return m_leftImpl.coeff(index);
146   }
147   template<int LoadMode>
148   EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
149   {
150     return m_leftImpl.template packet<LoadMode>(index);
151   }
152 
153   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
154   costPerCoeff(bool vectorized) const {
155     // We assume that evalPacket or evalScalar is called to perform the
156     // assignment and account for the cost of the write here, but reduce left
157     // cost by one load because we are using m_leftImpl.coeffRef.
158     TensorOpCost left = m_leftImpl.costPerCoeff(vectorized);
159     return m_rightImpl.costPerCoeff(vectorized) +
160            TensorOpCost(
161                numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)),
162                left.bytes_stored(), left.compute_cycles()) +
163            TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
164   }
165 
166   /// required by sycl in order to extract the accessor
167   const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
168   /// required by sycl in order to extract the accessor
169   const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }
170 
171   EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); }
172 
173  private:
174   TensorEvaluator<LeftArgType, Device> m_leftImpl;
175   TensorEvaluator<RightArgType, Device> m_rightImpl;
176 };
177 
178 }
179 
180 
181 #endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
182