• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
11 #define EIGEN_EULERANGLESCLASS_H
12 
13 namespace Eigen
14 {
15   /*template<typename Other,
16          int OtherRows=Other::RowsAtCompileTime,
17          int OtherCols=Other::ColsAtCompileTime>
18   struct ei_eulerangles_assign_impl;*/
19 
20   /** \class EulerAngles
21     *
22     * \ingroup EulerAngles_Module
23     *
24     * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
25     *
26     * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
27     *
28     * Here is how intrinsic Euler angles works:
29     *  - first, rotate the axes system over the alpha axis in angle alpha
30     *  - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
31     *  - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
32     *
33     * \note This class support only intrinsic Euler angles for simplicity,
34     *  see EulerSystem how to easily overcome this for extrinsic systems.
35     *
36     * ### Rotation representation and conversions ###
37     *
38     * It has been proved(see Wikipedia link below) that every rotation can be represented
39     *  by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
40     * Therefore, you can convert from Eigen rotation and to them
41     *  (including rotation matrices, which is not called "rotations" by Eigen design).
42     *
43     * Euler angles usually used for:
44     *  - convenient human representation of rotation, especially in interactive GUI.
45     *  - gimbal systems and robotics
46     *  - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
47     *
48     * However, Euler angles are slow comparing to quaternion or matrices,
49     *  because their unnatural math definition, although it's simple for human.
50     * To overcome this, this class provide easy movement from the math friendly representation
51     *  to the human friendly representation, and vise-versa.
52     *
53     * All the user need to do is a safe simple C++ type conversion,
54     *  and this class take care for the math.
55     * Additionally, some axes related computation is done in compile time.
56     *
57     * #### Euler angles ranges in conversions ####
58     *
59     * When converting some rotation to Euler angles, there are some ways you can guarantee
60     *  the Euler angles ranges.
61     *
62     * #### implicit ranges ####
63     * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
64     *  unless you convert from some other Euler angles.
65     * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
66     * \sa EulerAngles(const MatrixBase<Derived>&)
67     * \sa EulerAngles(const RotationBase<Derived, 3>&)
68     *
69     * #### explicit ranges ####
70     * When using explicit ranges, all angles are guarantee to be in the range you choose.
71     * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
72     * - _true_ - force the range between [0, +2*PI]
73     * - _false_ - force the range between [-PI, +PI]
74     *
75     * ##### compile time ranges #####
76     * This is when you have compile time ranges and you prefer to
77     *  use template parameter. (e.g. for performance)
78     * \sa FromRotation()
79     *
80     * ##### run-time time ranges #####
81     * Run-time ranges are also supported.
82     * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
83     * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
84     *
85     * ### Convenient user typedefs ###
86     *
87     * Convenient typedefs for EulerAngles exist for float and double scalar,
88     *  in a form of EulerAngles{A}{B}{C}{scalar},
89     *  e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
90     *
91     * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
92     * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
93     *  a word that represent what you need.
94     *
95     * ### Example ###
96     *
97     * \include EulerAngles.cpp
98     * Output: \verbinclude EulerAngles.out
99     *
100     * ### Additional reading ###
101     *
102     * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
103     *
104     * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
105     *
106     * \tparam _Scalar the scalar type, i.e., the type of the angles.
107     *
108     * \tparam _System the EulerSystem to use, which represents the axes of rotation.
109     */
110   template <typename _Scalar, class _System>
111   class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
112   {
113     public:
114       /** the scalar type of the angles */
115       typedef _Scalar Scalar;
116 
117       /** the EulerSystem to use, which represents the axes of rotation. */
118       typedef _System System;
119 
120       typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
121       typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
122       typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
123       typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
124 
125       /** \returns the axis vector of the first (alpha) rotation */
AlphaAxisVector()126       static Vector3 AlphaAxisVector() {
127         const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
128         return System::IsAlphaOpposite ? -u : u;
129       }
130 
131       /** \returns the axis vector of the second (beta) rotation */
BetaAxisVector()132       static Vector3 BetaAxisVector() {
133         const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
134         return System::IsBetaOpposite ? -u : u;
135       }
136 
137       /** \returns the axis vector of the third (gamma) rotation */
GammaAxisVector()138       static Vector3 GammaAxisVector() {
139         const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
140         return System::IsGammaOpposite ? -u : u;
141       }
142 
143     private:
144       Vector3 m_angles;
145 
146     public:
147       /** Default constructor without initialization. */
EulerAngles()148       EulerAngles() {}
149       /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
EulerAngles(const Scalar & alpha,const Scalar & beta,const Scalar & gamma)150       EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
151         m_angles(alpha, beta, gamma) {}
152 
153       /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
154         *
155         * \note All angles will be in the range [-PI, PI].
156       */
157       template<typename Derived>
EulerAngles(const MatrixBase<Derived> & m)158       EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
159 
160       /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
161         *  with options to choose for each angle the requested range.
162         *
163         * If positive range is true, then the specified angle will be in the range [0, +2*PI].
164         * Otherwise, the specified angle will be in the range [-PI, +PI].
165         *
166         * \param m The 3x3 rotation matrix to convert
167         * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
168         * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
169         * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
170       */
171       template<typename Derived>
EulerAngles(const MatrixBase<Derived> & m,bool positiveRangeAlpha,bool positiveRangeBeta,bool positiveRangeGamma)172       EulerAngles(
173         const MatrixBase<Derived>& m,
174         bool positiveRangeAlpha,
175         bool positiveRangeBeta,
176         bool positiveRangeGamma) {
177 
178         System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
179       }
180 
181       /** Constructs and initialize Euler angles from a rotation \p rot.
182         *
183         * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
184         *  If rot is an EulerAngles, expected EulerAngles range is __undefined__.
185         *  (Use other functions here for enforcing range if this effect is desired)
186       */
187       template<typename Derived>
EulerAngles(const RotationBase<Derived,3> & rot)188       EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
189 
190       /** Constructs and initialize Euler angles from a rotation \p rot,
191         *  with options to choose for each angle the requested range.
192         *
193         * If positive range is true, then the specified angle will be in the range [0, +2*PI].
194         * Otherwise, the specified angle will be in the range [-PI, +PI].
195         *
196         * \param rot The 3x3 rotation matrix to convert
197         * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
198         * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
199         * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
200       */
201       template<typename Derived>
EulerAngles(const RotationBase<Derived,3> & rot,bool positiveRangeAlpha,bool positiveRangeBeta,bool positiveRangeGamma)202       EulerAngles(
203         const RotationBase<Derived, 3>& rot,
204         bool positiveRangeAlpha,
205         bool positiveRangeBeta,
206         bool positiveRangeGamma) {
207 
208         System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
209       }
210 
211       /** \returns The angle values stored in a vector (alpha, beta, gamma). */
angles()212       const Vector3& angles() const { return m_angles; }
213       /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
angles()214       Vector3& angles() { return m_angles; }
215 
216       /** \returns The value of the first angle. */
alpha()217       Scalar alpha() const { return m_angles[0]; }
218       /** \returns A read-write reference to the angle of the first angle. */
alpha()219       Scalar& alpha() { return m_angles[0]; }
220 
221       /** \returns The value of the second angle. */
beta()222       Scalar beta() const { return m_angles[1]; }
223       /** \returns A read-write reference to the angle of the second angle. */
beta()224       Scalar& beta() { return m_angles[1]; }
225 
226       /** \returns The value of the third angle. */
gamma()227       Scalar gamma() const { return m_angles[2]; }
228       /** \returns A read-write reference to the angle of the third angle. */
gamma()229       Scalar& gamma() { return m_angles[2]; }
230 
231       /** \returns The Euler angles rotation inverse (which is as same as the negative),
232         *  (-alpha, -beta, -gamma).
233       */
inverse()234       EulerAngles inverse() const
235       {
236         EulerAngles res;
237         res.m_angles = -m_angles;
238         return res;
239       }
240 
241       /** \returns The Euler angles rotation negative (which is as same as the inverse),
242         *  (-alpha, -beta, -gamma).
243       */
244       EulerAngles operator -() const
245       {
246         return inverse();
247       }
248 
249       /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
250         *  with options to choose for each angle the requested range (__only in compile time__).
251         *
252         * If positive range is true, then the specified angle will be in the range [0, +2*PI].
253         * Otherwise, the specified angle will be in the range [-PI, +PI].
254         *
255         * \param m The 3x3 rotation matrix to convert
256         * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
257         * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
258         * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
259         */
260       template<
261         bool PositiveRangeAlpha,
262         bool PositiveRangeBeta,
263         bool PositiveRangeGamma,
264         typename Derived>
FromRotation(const MatrixBase<Derived> & m)265       static EulerAngles FromRotation(const MatrixBase<Derived>& m)
266       {
267         EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
268 
269         EulerAngles e;
270         System::template CalcEulerAngles<
271           PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
272         return e;
273       }
274 
275       /** Constructs and initialize Euler angles from a rotation \p rot,
276         *  with options to choose for each angle the requested range (__only in compile time__).
277         *
278         * If positive range is true, then the specified angle will be in the range [0, +2*PI].
279         * Otherwise, the specified angle will be in the range [-PI, +PI].
280         *
281         * \param rot The 3x3 rotation matrix to convert
282         * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
283         * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
284         * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
285       */
286       template<
287         bool PositiveRangeAlpha,
288         bool PositiveRangeBeta,
289         bool PositiveRangeGamma,
290         typename Derived>
FromRotation(const RotationBase<Derived,3> & rot)291       static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
292       {
293         return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
294       }
295 
296       /*EulerAngles& fromQuaternion(const QuaternionType& q)
297       {
298         // TODO: Implement it in a faster way for quaternions
299         // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
300         //  we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
301         // Currently we compute all matrix cells from quaternion.
302 
303         // Special case only for ZYX
304         //Scalar y2 = q.y() * q.y();
305         //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
306         //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
307         //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
308       }*/
309 
310       /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
311       template<typename Derived>
312       EulerAngles& operator=(const MatrixBase<Derived>& m) {
313         EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
314 
315         System::CalcEulerAngles(*this, m);
316         return *this;
317       }
318 
319       // TODO: Assign and construct from another EulerAngles (with different system)
320 
321       /** Set \c *this from a rotation. */
322       template<typename Derived>
323       EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
324         System::CalcEulerAngles(*this, rot.toRotationMatrix());
325         return *this;
326       }
327 
328       // TODO: Support isApprox function
329 
330       /** \returns an equivalent 3x3 rotation matrix. */
toRotationMatrix()331       Matrix3 toRotationMatrix() const
332       {
333         return static_cast<QuaternionType>(*this).toRotationMatrix();
334       }
335 
336       /** Convert the Euler angles to quaternion. */
QuaternionType()337       operator QuaternionType() const
338       {
339         return
340           AngleAxisType(alpha(), AlphaAxisVector()) *
341           AngleAxisType(beta(), BetaAxisVector())   *
342           AngleAxisType(gamma(), GammaAxisVector());
343       }
344 
345       friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
346       {
347         s << eulerAngles.angles().transpose();
348         return s;
349       }
350   };
351 
352 #define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
353   /** \ingroup EulerAngles_Module */ \
354   typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
355 
356 #define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
357   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
358   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
359   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
360   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
361  \
362   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
363   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
364   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
365   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
366  \
367   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
368   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
369   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
370   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
371 
EIGEN_EULER_ANGLES_TYPEDEFS(float,f)372 EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
373 EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
374 
375   namespace internal
376   {
377     template<typename _Scalar, class _System>
378     struct traits<EulerAngles<_Scalar, _System> >
379     {
380       typedef _Scalar Scalar;
381     };
382   }
383 
384 }
385 
386 #endif // EIGEN_EULERANGLESCLASS_H
387