1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
11 #define EIGEN_EULERANGLESCLASS_H
12
13 namespace Eigen
14 {
15 /*template<typename Other,
16 int OtherRows=Other::RowsAtCompileTime,
17 int OtherCols=Other::ColsAtCompileTime>
18 struct ei_eulerangles_assign_impl;*/
19
20 /** \class EulerAngles
21 *
22 * \ingroup EulerAngles_Module
23 *
24 * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
25 *
26 * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
27 *
28 * Here is how intrinsic Euler angles works:
29 * - first, rotate the axes system over the alpha axis in angle alpha
30 * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
31 * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
32 *
33 * \note This class support only intrinsic Euler angles for simplicity,
34 * see EulerSystem how to easily overcome this for extrinsic systems.
35 *
36 * ### Rotation representation and conversions ###
37 *
38 * It has been proved(see Wikipedia link below) that every rotation can be represented
39 * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
40 * Therefore, you can convert from Eigen rotation and to them
41 * (including rotation matrices, which is not called "rotations" by Eigen design).
42 *
43 * Euler angles usually used for:
44 * - convenient human representation of rotation, especially in interactive GUI.
45 * - gimbal systems and robotics
46 * - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
47 *
48 * However, Euler angles are slow comparing to quaternion or matrices,
49 * because their unnatural math definition, although it's simple for human.
50 * To overcome this, this class provide easy movement from the math friendly representation
51 * to the human friendly representation, and vise-versa.
52 *
53 * All the user need to do is a safe simple C++ type conversion,
54 * and this class take care for the math.
55 * Additionally, some axes related computation is done in compile time.
56 *
57 * #### Euler angles ranges in conversions ####
58 *
59 * When converting some rotation to Euler angles, there are some ways you can guarantee
60 * the Euler angles ranges.
61 *
62 * #### implicit ranges ####
63 * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
64 * unless you convert from some other Euler angles.
65 * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
66 * \sa EulerAngles(const MatrixBase<Derived>&)
67 * \sa EulerAngles(const RotationBase<Derived, 3>&)
68 *
69 * #### explicit ranges ####
70 * When using explicit ranges, all angles are guarantee to be in the range you choose.
71 * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
72 * - _true_ - force the range between [0, +2*PI]
73 * - _false_ - force the range between [-PI, +PI]
74 *
75 * ##### compile time ranges #####
76 * This is when you have compile time ranges and you prefer to
77 * use template parameter. (e.g. for performance)
78 * \sa FromRotation()
79 *
80 * ##### run-time time ranges #####
81 * Run-time ranges are also supported.
82 * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
83 * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
84 *
85 * ### Convenient user typedefs ###
86 *
87 * Convenient typedefs for EulerAngles exist for float and double scalar,
88 * in a form of EulerAngles{A}{B}{C}{scalar},
89 * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
90 *
91 * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
92 * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
93 * a word that represent what you need.
94 *
95 * ### Example ###
96 *
97 * \include EulerAngles.cpp
98 * Output: \verbinclude EulerAngles.out
99 *
100 * ### Additional reading ###
101 *
102 * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
103 *
104 * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
105 *
106 * \tparam _Scalar the scalar type, i.e., the type of the angles.
107 *
108 * \tparam _System the EulerSystem to use, which represents the axes of rotation.
109 */
110 template <typename _Scalar, class _System>
111 class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
112 {
113 public:
114 /** the scalar type of the angles */
115 typedef _Scalar Scalar;
116
117 /** the EulerSystem to use, which represents the axes of rotation. */
118 typedef _System System;
119
120 typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
121 typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
122 typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
123 typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
124
125 /** \returns the axis vector of the first (alpha) rotation */
AlphaAxisVector()126 static Vector3 AlphaAxisVector() {
127 const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
128 return System::IsAlphaOpposite ? -u : u;
129 }
130
131 /** \returns the axis vector of the second (beta) rotation */
BetaAxisVector()132 static Vector3 BetaAxisVector() {
133 const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
134 return System::IsBetaOpposite ? -u : u;
135 }
136
137 /** \returns the axis vector of the third (gamma) rotation */
GammaAxisVector()138 static Vector3 GammaAxisVector() {
139 const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
140 return System::IsGammaOpposite ? -u : u;
141 }
142
143 private:
144 Vector3 m_angles;
145
146 public:
147 /** Default constructor without initialization. */
EulerAngles()148 EulerAngles() {}
149 /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
EulerAngles(const Scalar & alpha,const Scalar & beta,const Scalar & gamma)150 EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
151 m_angles(alpha, beta, gamma) {}
152
153 /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
154 *
155 * \note All angles will be in the range [-PI, PI].
156 */
157 template<typename Derived>
EulerAngles(const MatrixBase<Derived> & m)158 EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
159
160 /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
161 * with options to choose for each angle the requested range.
162 *
163 * If positive range is true, then the specified angle will be in the range [0, +2*PI].
164 * Otherwise, the specified angle will be in the range [-PI, +PI].
165 *
166 * \param m The 3x3 rotation matrix to convert
167 * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
168 * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
169 * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
170 */
171 template<typename Derived>
EulerAngles(const MatrixBase<Derived> & m,bool positiveRangeAlpha,bool positiveRangeBeta,bool positiveRangeGamma)172 EulerAngles(
173 const MatrixBase<Derived>& m,
174 bool positiveRangeAlpha,
175 bool positiveRangeBeta,
176 bool positiveRangeGamma) {
177
178 System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
179 }
180
181 /** Constructs and initialize Euler angles from a rotation \p rot.
182 *
183 * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
184 * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
185 * (Use other functions here for enforcing range if this effect is desired)
186 */
187 template<typename Derived>
EulerAngles(const RotationBase<Derived,3> & rot)188 EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
189
190 /** Constructs and initialize Euler angles from a rotation \p rot,
191 * with options to choose for each angle the requested range.
192 *
193 * If positive range is true, then the specified angle will be in the range [0, +2*PI].
194 * Otherwise, the specified angle will be in the range [-PI, +PI].
195 *
196 * \param rot The 3x3 rotation matrix to convert
197 * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
198 * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
199 * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
200 */
201 template<typename Derived>
EulerAngles(const RotationBase<Derived,3> & rot,bool positiveRangeAlpha,bool positiveRangeBeta,bool positiveRangeGamma)202 EulerAngles(
203 const RotationBase<Derived, 3>& rot,
204 bool positiveRangeAlpha,
205 bool positiveRangeBeta,
206 bool positiveRangeGamma) {
207
208 System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
209 }
210
211 /** \returns The angle values stored in a vector (alpha, beta, gamma). */
angles()212 const Vector3& angles() const { return m_angles; }
213 /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
angles()214 Vector3& angles() { return m_angles; }
215
216 /** \returns The value of the first angle. */
alpha()217 Scalar alpha() const { return m_angles[0]; }
218 /** \returns A read-write reference to the angle of the first angle. */
alpha()219 Scalar& alpha() { return m_angles[0]; }
220
221 /** \returns The value of the second angle. */
beta()222 Scalar beta() const { return m_angles[1]; }
223 /** \returns A read-write reference to the angle of the second angle. */
beta()224 Scalar& beta() { return m_angles[1]; }
225
226 /** \returns The value of the third angle. */
gamma()227 Scalar gamma() const { return m_angles[2]; }
228 /** \returns A read-write reference to the angle of the third angle. */
gamma()229 Scalar& gamma() { return m_angles[2]; }
230
231 /** \returns The Euler angles rotation inverse (which is as same as the negative),
232 * (-alpha, -beta, -gamma).
233 */
inverse()234 EulerAngles inverse() const
235 {
236 EulerAngles res;
237 res.m_angles = -m_angles;
238 return res;
239 }
240
241 /** \returns The Euler angles rotation negative (which is as same as the inverse),
242 * (-alpha, -beta, -gamma).
243 */
244 EulerAngles operator -() const
245 {
246 return inverse();
247 }
248
249 /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
250 * with options to choose for each angle the requested range (__only in compile time__).
251 *
252 * If positive range is true, then the specified angle will be in the range [0, +2*PI].
253 * Otherwise, the specified angle will be in the range [-PI, +PI].
254 *
255 * \param m The 3x3 rotation matrix to convert
256 * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
257 * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
258 * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
259 */
260 template<
261 bool PositiveRangeAlpha,
262 bool PositiveRangeBeta,
263 bool PositiveRangeGamma,
264 typename Derived>
FromRotation(const MatrixBase<Derived> & m)265 static EulerAngles FromRotation(const MatrixBase<Derived>& m)
266 {
267 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
268
269 EulerAngles e;
270 System::template CalcEulerAngles<
271 PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
272 return e;
273 }
274
275 /** Constructs and initialize Euler angles from a rotation \p rot,
276 * with options to choose for each angle the requested range (__only in compile time__).
277 *
278 * If positive range is true, then the specified angle will be in the range [0, +2*PI].
279 * Otherwise, the specified angle will be in the range [-PI, +PI].
280 *
281 * \param rot The 3x3 rotation matrix to convert
282 * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
283 * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
284 * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
285 */
286 template<
287 bool PositiveRangeAlpha,
288 bool PositiveRangeBeta,
289 bool PositiveRangeGamma,
290 typename Derived>
FromRotation(const RotationBase<Derived,3> & rot)291 static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
292 {
293 return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
294 }
295
296 /*EulerAngles& fromQuaternion(const QuaternionType& q)
297 {
298 // TODO: Implement it in a faster way for quaternions
299 // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
300 // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
301 // Currently we compute all matrix cells from quaternion.
302
303 // Special case only for ZYX
304 //Scalar y2 = q.y() * q.y();
305 //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
306 //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
307 //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
308 }*/
309
310 /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
311 template<typename Derived>
312 EulerAngles& operator=(const MatrixBase<Derived>& m) {
313 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
314
315 System::CalcEulerAngles(*this, m);
316 return *this;
317 }
318
319 // TODO: Assign and construct from another EulerAngles (with different system)
320
321 /** Set \c *this from a rotation. */
322 template<typename Derived>
323 EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
324 System::CalcEulerAngles(*this, rot.toRotationMatrix());
325 return *this;
326 }
327
328 // TODO: Support isApprox function
329
330 /** \returns an equivalent 3x3 rotation matrix. */
toRotationMatrix()331 Matrix3 toRotationMatrix() const
332 {
333 return static_cast<QuaternionType>(*this).toRotationMatrix();
334 }
335
336 /** Convert the Euler angles to quaternion. */
QuaternionType()337 operator QuaternionType() const
338 {
339 return
340 AngleAxisType(alpha(), AlphaAxisVector()) *
341 AngleAxisType(beta(), BetaAxisVector()) *
342 AngleAxisType(gamma(), GammaAxisVector());
343 }
344
345 friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
346 {
347 s << eulerAngles.angles().transpose();
348 return s;
349 }
350 };
351
352 #define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
353 /** \ingroup EulerAngles_Module */ \
354 typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
355
356 #define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
357 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
358 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
359 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
360 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
361 \
362 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
363 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
364 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
365 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
366 \
367 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
368 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
369 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
370 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
371
EIGEN_EULER_ANGLES_TYPEDEFS(float,f)372 EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
373 EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
374
375 namespace internal
376 {
377 template<typename _Scalar, class _System>
378 struct traits<EulerAngles<_Scalar, _System> >
379 {
380 typedef _Scalar Scalar;
381 };
382 }
383
384 }
385
386 #endif // EIGEN_EULERANGLESCLASS_H
387