1 /*******************************************************************************
2 * Copyright 2016-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this software was obtained under the Intel Simplified Software License,
6 * the following terms apply:
7 *
8 * The source code, information and material ("Material") contained herein is
9 * owned by Intel Corporation or its suppliers or licensors, and title to such
10 * Material remains with Intel Corporation or its suppliers or licensors. The
11 * Material contains proprietary information of Intel or its suppliers and
12 * licensors. The Material is protected by worldwide copyright laws and treaty
13 * provisions. No part of the Material may be used, copied, reproduced,
14 * modified, published, uploaded, posted, transmitted, distributed or disclosed
15 * in any way without Intel's prior express written permission. No license under
16 * any patent, copyright or other intellectual property rights in the Material
17 * is granted to or conferred upon you, either expressly, by implication,
18 * inducement, estoppel or otherwise. Any license under such intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 * notice or any other notice embedded in Materials by Intel or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this software was obtained under the Apache License, Version 2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may not use this file except in compliance with the License. You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless required by applicable law or agreed to in writing, software
34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the License for the specific language governing permissions and
38 * limitations under the License.
39 *******************************************************************************/
40
41 /*
42 // Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 // GF(p) methods
44 //
45 */
46 #include "owndefs.h"
47 #include "owncp.h"
48
49 #include "pcpbnumisc.h"
50 #include "pcpgfpstuff.h"
51 #include "pcpgfpmethod.h"
52 #include "pcpecprime.h"
53
54 #if !defined(_PCP_GFPMETHOD_256_H_)
55 #define _PCP_GFPMETHOD_256_H_
56
57 #if(_IPP32E >= _IPP32E_M7)
58
59 /* arithmetic over arbitrary 256r-bit modulus */
60 #define gf256_add OWNAPI(gf256_add)
61 #define gf256_sub OWNAPI(gf256_sub)
62 #define gf256_neg OWNAPI(gf256_neg)
63 #define gf256_mulm OWNAPI(gf256_mulm)
64 #define gf256_sqrm OWNAPI(gf256_sqrm)
65 #define gf256_div2 OWNAPI(gf256_div2)
66
67 BNU_CHUNK_T* gf256_add(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, const BNU_CHUNK_T* pModulus);
68 BNU_CHUNK_T* gf256_sub(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, const BNU_CHUNK_T* pModulus);
69 BNU_CHUNK_T* gf256_neg(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pModulus);
70 BNU_CHUNK_T* gf256_mulm(BNU_CHUNK_T* pR,const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, const BNU_CHUNK_T* pModulus, BNU_CHUNK_T m0);
71 BNU_CHUNK_T* gf256_sqrm(BNU_CHUNK_T* pR,const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pModulus, BNU_CHUNK_T m0);
72 BNU_CHUNK_T* gf256_div2(BNU_CHUNK_T* pR,const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pModulus);
73
74 #define OPERAND_BITSIZE (256)
75 #define LEN_P256 (BITS_BNU_CHUNK(OPERAND_BITSIZE))
76
p256_add(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFE)77 static BNU_CHUNK_T* p256_add(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
78 {
79 return gf256_add(pR, pA, pB, GFP_MODULUS(pGFE));
80 }
81
p256_sub(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFE)82 static BNU_CHUNK_T* p256_sub(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
83 {
84 return gf256_sub(pR, pA, pB, GFP_MODULUS(pGFE));
85 }
86
p256_neg(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)87 static BNU_CHUNK_T* p256_neg(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
88 {
89 return gf256_neg(pR, pA, GFP_MODULUS(pGFE));
90 }
91
p256_div_by_2(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)92 static BNU_CHUNK_T* p256_div_by_2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
93 {
94 return gf256_div2(pR, pA, GFP_MODULUS(pGFE));
95 }
96
p256_mul_by_2(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)97 static BNU_CHUNK_T* p256_mul_by_2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
98 {
99 return gf256_add(pR, pA, pA, GFP_MODULUS(pGFE));
100 }
101
p256_mul_by_3(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)102 static BNU_CHUNK_T* p256_mul_by_3(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
103 {
104 BNU_CHUNK_T tmp[LEN_P256];
105 gf256_add(tmp, pA, pA, GFP_MODULUS(pGFE));
106 return gf256_add(pR, tmp, pA, GFP_MODULUS(pGFE));
107 }
108
p256_mul_montl(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFE)109 static BNU_CHUNK_T* p256_mul_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
110 {
111 return gf256_mulm(pR, pA, pB, GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
112 }
113
p256_sqr_montl(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)114 static BNU_CHUNK_T* p256_sqr_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
115 {
116 return gf256_sqrm(pR, pA, GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
117 }
118
119
p256_to_mont(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)120 static BNU_CHUNK_T* p256_to_mont(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
121 {
122 return gf256_mulm(pR, pA, GFP_MNT_RR(pGFE), GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
123 }
124
125 static BNU_CHUNK_T one[] = {1,0,0,0};
126
p256_mont_back(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)127 static BNU_CHUNK_T* p256_mont_back(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
128 {
129 return gf256_mulm(pR, pA, one, GFP_MODULUS(pGFE), GFP_MNT_FACTOR(pGFE));
130 }
131
132 /* return specific gf p256 arith methods */
gsArithGF_p256(void)133 static gsModMethod* gsArithGF_p256(void)
134 {
135 static gsModMethod m = {
136 p256_to_mont,
137 p256_mont_back,
138 p256_mul_montl,
139 p256_sqr_montl,
140 NULL,
141 p256_add,
142 p256_sub,
143 p256_neg,
144 p256_div_by_2,
145 p256_mul_by_2,
146 p256_mul_by_3,
147 };
148 return &m;
149 }
150 #endif /* _IPP32E >= _IPP32E_M7 */
151
152 #undef LEN_P256
153 #undef OPERAND_BITSIZE
154
155 #endif /* #if !defined(_PCP_GFPMETHOD_256_H_) */
156