• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 * Copyright 2016-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //     Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 //     GF(p^d) methods, if binomial generator
44 //
45 */
46 #include "owncp.h"
47 
48 #include "pcpgfpxmethod_binom_mulc.h"
49 #include "pcpgfpxmethod_com.h"
50 
51 //tbcd: temporary excluded: #include <assert.h>
52 
53 /*
54 // Multiplication in GF(p^3), if field polynomial: g(x) = x^3 + beta  => binominal
55 */
cpGFpxMul_p3_binom(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFEx)56 static BNU_CHUNK_T* cpGFpxMul_p3_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx)
57 {
58    gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
59    int groundElemLen = GFP_FELEN(pGroundGFE);
60 
61    mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
62    mod_add addF = GFP_METHOD(pGroundGFE)->add;
63    mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
64 
65    const BNU_CHUNK_T* pA0 = pA;
66    const BNU_CHUNK_T* pA1 = pA+groundElemLen;
67    const BNU_CHUNK_T* pA2 = pA+groundElemLen*2;
68 
69    const BNU_CHUNK_T* pB0 = pB;
70    const BNU_CHUNK_T* pB1 = pB+groundElemLen;
71    const BNU_CHUNK_T* pB2 = pB+groundElemLen*2;
72 
73    BNU_CHUNK_T* pR0 = pR;
74    BNU_CHUNK_T* pR1 = pR+groundElemLen;
75    BNU_CHUNK_T* pR2 = pR+groundElemLen*2;
76 
77    BNU_CHUNK_T* t0 = cpGFpGetPool(6, pGroundGFE);
78    BNU_CHUNK_T* t1 = t0+groundElemLen;
79    BNU_CHUNK_T* t2 = t1+groundElemLen;
80    BNU_CHUNK_T* u0 = t2+groundElemLen;
81    BNU_CHUNK_T* u1 = u0+groundElemLen;
82    BNU_CHUNK_T* u2 = u1+groundElemLen;
83    //tbcd: temporary excluded: assert(NULL!=t0);
84 
85    addF(u0 ,pA0, pA1, pGroundGFE);    /* u0 = a[0]+a[1] */
86    addF(t0 ,pB0, pB1, pGroundGFE);    /* t0 = b[0]+b[1] */
87    mulF(u0, u0,  t0,  pGroundGFE);    /* u0 = (a[0]+a[1])*(b[0]+b[1]) */
88    mulF(t0, pA0, pB0, pGroundGFE);    /* t0 = a[0]*b[0] */
89 
90    addF(u1 ,pA1, pA2, pGroundGFE);    /* u1 = a[1]+a[2] */
91    addF(t1 ,pB1, pB2, pGroundGFE);    /* t1 = b[1]+b[2] */
92    mulF(u1, u1,  t1,  pGroundGFE);    /* u1 = (a[1]+a[2])*(b[1]+b[2]) */
93    mulF(t1, pA1, pB1, pGroundGFE);    /* t1 = a[1]*b[1] */
94 
95    addF(u2 ,pA2, pA0, pGroundGFE);    /* u2 = a[2]+a[0] */
96    addF(t2 ,pB2, pB0, pGroundGFE);    /* t2 = b[2]+b[0] */
97    mulF(u2, u2,  t2,  pGroundGFE);    /* u2 = (a[2]+a[0])*(b[2]+b[0]) */
98    mulF(t2, pA2, pB2, pGroundGFE);    /* t2 = a[2]*b[2] */
99 
100    subF(u0, u0,  t0,  pGroundGFE);    /* u0 = a[0]*b[1]+a[1]*b[0] */
101    subF(u0, u0,  t1,  pGroundGFE);
102    subF(u1, u1,  t1,  pGroundGFE);    /* u1 = a[1]*b[2]+a[2]*b[1] */
103    subF(u1, u1,  t2,  pGroundGFE);
104    subF(u2, u2,  t2,  pGroundGFE);    /* u2 = a[2]*b[0]+a[0]*b[2] */
105    subF(u2, u2,  t0,  pGroundGFE);
106 
107    cpGFpxMul_G0(u1, u1, pGFEx); /* u1 = (a[1]*b[2]+a[2]*b[1]) * beta */
108    cpGFpxMul_G0(t2, t2, pGFEx); /* t2 = a[2]*b[2] * beta */
109 
110    subF(pR0, t0, u1,  pGroundGFE);    /* r[0] = a[0]*b[0] - (a[2]*b[1]+a[1]*b[2])*beta */
111    subF(pR1, u0, t2,  pGroundGFE);    /* r[1] = a[1]*b[0] + a[0]*b[1] - a[2]*b[2]*beta */
112 
113    addF(pR2, u2, t1,  pGroundGFE);     /* r[2] = a[2]*b[0] + a[1]*b[1] + a[0]*b[2] */
114 
115    cpGFpReleasePool(6, pGroundGFE);
116    return pR;
117 }
118 
119 /*
120 // Squaring in GF(p^3), if field polynomial: g(x) = x^3 + beta  => binominal
121 */
cpGFpxSqr_p3_binom(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFEx)122 static BNU_CHUNK_T* cpGFpxSqr_p3_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx)
123 {
124    gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
125    int groundElemLen = GFP_FELEN(pGroundGFE);
126 
127    mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
128    mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr;
129    mod_add addF = GFP_METHOD(pGroundGFE)->add;
130    mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
131 
132    const BNU_CHUNK_T* pA0 = pA;
133    const BNU_CHUNK_T* pA1 = pA+groundElemLen;
134    const BNU_CHUNK_T* pA2 = pA+groundElemLen*2;
135 
136    BNU_CHUNK_T* pR0 = pR;
137    BNU_CHUNK_T* pR1 = pR+groundElemLen;
138    BNU_CHUNK_T* pR2 = pR+groundElemLen*2;
139 
140    BNU_CHUNK_T* s0 = cpGFpGetPool(5, pGroundGFE);
141    BNU_CHUNK_T* s1 = s0+groundElemLen;
142    BNU_CHUNK_T* s2 = s1+groundElemLen;
143    BNU_CHUNK_T* s3 = s2+groundElemLen;
144    BNU_CHUNK_T* s4 = s3+groundElemLen;
145    //tbcd: temporary excluded: assert(NULL!=s0);
146 
147    addF(s2, pA0, pA2, pGroundGFE);
148    subF(s2,  s2, pA1, pGroundGFE);
149    sqrF(s2,  s2, pGroundGFE);
150    sqrF(s0, pA0, pGroundGFE);
151    sqrF(s4, pA2, pGroundGFE);
152    mulF(s1, pA0, pA1, pGroundGFE);
153    mulF(s3, pA1, pA2, pGroundGFE);
154    addF(s1,  s1,  s1, pGroundGFE);
155    addF(s3,  s3,  s3, pGroundGFE);
156 
157    addF(pR2,  s1, s2, pGroundGFE);
158    addF(pR2, pR2, s3, pGroundGFE);
159    subF(pR2, pR2, s0, pGroundGFE);
160    subF(pR2, pR2, s4, pGroundGFE);
161 
162    cpGFpxMul_G0(s4, s4, pGFEx);
163    subF(pR1, s1,  s4, pGroundGFE);
164 
165    cpGFpxMul_G0(s3, s3, pGFEx);
166    subF(pR0, s0,  s3, pGroundGFE);
167 
168    cpGFpReleasePool(5, pGroundGFE);
169    return pR;
170 }
171 
172 
173 /*
174 // return specific polynomi alarith methods
175 // polynomial - deg 3 binomial
176 */
gsPolyArith_binom3(void)177 static gsModMethod* gsPolyArith_binom3(void)
178 {
179    static gsModMethod m = {
180       cpGFpxEncode_com,
181       cpGFpxDecode_com,
182       cpGFpxMul_p3_binom,
183       cpGFpxSqr_p3_binom,
184       NULL,
185       cpGFpxAdd_com,
186       cpGFpxSub_com,
187       cpGFpxNeg_com,
188       cpGFpxDiv2_com,
189       cpGFpxMul2_com,
190       cpGFpxMul3_com,
191       //cpGFpxInv
192    };
193    return &m;
194 }
195 
196 /*F*
197 // Name: ippsGFpxMethod_binom2
198 //
199 // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd).
200 //
201 // Returns:          pointer to a structure containing
202 //                   an implementation of arithmetic operations over GF(pd)
203 //                   g(x) = x^3 - a0, a0 from GF(p)
204 //
205 //
206 *F*/
207 IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom3, (void) )
208 {
209    static IppsGFpMethod method = {
210       cpID_Binom,
211       3,
212       NULL,
213       NULL
214    };
215    method.arith = gsPolyArith_binom3();
216    return &method;
217 }
218