1 /*******************************************************************************
2 * Copyright 2016-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this software was obtained under the Intel Simplified Software License,
6 * the following terms apply:
7 *
8 * The source code, information and material ("Material") contained herein is
9 * owned by Intel Corporation or its suppliers or licensors, and title to such
10 * Material remains with Intel Corporation or its suppliers or licensors. The
11 * Material contains proprietary information of Intel or its suppliers and
12 * licensors. The Material is protected by worldwide copyright laws and treaty
13 * provisions. No part of the Material may be used, copied, reproduced,
14 * modified, published, uploaded, posted, transmitted, distributed or disclosed
15 * in any way without Intel's prior express written permission. No license under
16 * any patent, copyright or other intellectual property rights in the Material
17 * is granted to or conferred upon you, either expressly, by implication,
18 * inducement, estoppel or otherwise. Any license under such intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 * notice or any other notice embedded in Materials by Intel or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this software was obtained under the Apache License, Version 2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may not use this file except in compliance with the License. You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless required by applicable law or agreed to in writing, software
34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the License for the specific language governing permissions and
38 * limitations under the License.
39 *******************************************************************************/
40
41 /*
42 // Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 // GF(p^d) methods, if binomial generator
44 //
45 */
46 #include "owncp.h"
47
48 #include "pcpgfpxmethod_binom_mulc.h"
49 #include "pcpgfpxmethod_com.h"
50
51 //tbcd: temporary excluded: #include <assert.h>
52
53 /*
54 // Multiplication in GF(p^3), if field polynomial: g(x) = x^3 + beta => binominal
55 */
cpGFpxMul_p3_binom(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFEx)56 static BNU_CHUNK_T* cpGFpxMul_p3_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx)
57 {
58 gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
59 int groundElemLen = GFP_FELEN(pGroundGFE);
60
61 mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
62 mod_add addF = GFP_METHOD(pGroundGFE)->add;
63 mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
64
65 const BNU_CHUNK_T* pA0 = pA;
66 const BNU_CHUNK_T* pA1 = pA+groundElemLen;
67 const BNU_CHUNK_T* pA2 = pA+groundElemLen*2;
68
69 const BNU_CHUNK_T* pB0 = pB;
70 const BNU_CHUNK_T* pB1 = pB+groundElemLen;
71 const BNU_CHUNK_T* pB2 = pB+groundElemLen*2;
72
73 BNU_CHUNK_T* pR0 = pR;
74 BNU_CHUNK_T* pR1 = pR+groundElemLen;
75 BNU_CHUNK_T* pR2 = pR+groundElemLen*2;
76
77 BNU_CHUNK_T* t0 = cpGFpGetPool(6, pGroundGFE);
78 BNU_CHUNK_T* t1 = t0+groundElemLen;
79 BNU_CHUNK_T* t2 = t1+groundElemLen;
80 BNU_CHUNK_T* u0 = t2+groundElemLen;
81 BNU_CHUNK_T* u1 = u0+groundElemLen;
82 BNU_CHUNK_T* u2 = u1+groundElemLen;
83 //tbcd: temporary excluded: assert(NULL!=t0);
84
85 addF(u0 ,pA0, pA1, pGroundGFE); /* u0 = a[0]+a[1] */
86 addF(t0 ,pB0, pB1, pGroundGFE); /* t0 = b[0]+b[1] */
87 mulF(u0, u0, t0, pGroundGFE); /* u0 = (a[0]+a[1])*(b[0]+b[1]) */
88 mulF(t0, pA0, pB0, pGroundGFE); /* t0 = a[0]*b[0] */
89
90 addF(u1 ,pA1, pA2, pGroundGFE); /* u1 = a[1]+a[2] */
91 addF(t1 ,pB1, pB2, pGroundGFE); /* t1 = b[1]+b[2] */
92 mulF(u1, u1, t1, pGroundGFE); /* u1 = (a[1]+a[2])*(b[1]+b[2]) */
93 mulF(t1, pA1, pB1, pGroundGFE); /* t1 = a[1]*b[1] */
94
95 addF(u2 ,pA2, pA0, pGroundGFE); /* u2 = a[2]+a[0] */
96 addF(t2 ,pB2, pB0, pGroundGFE); /* t2 = b[2]+b[0] */
97 mulF(u2, u2, t2, pGroundGFE); /* u2 = (a[2]+a[0])*(b[2]+b[0]) */
98 mulF(t2, pA2, pB2, pGroundGFE); /* t2 = a[2]*b[2] */
99
100 subF(u0, u0, t0, pGroundGFE); /* u0 = a[0]*b[1]+a[1]*b[0] */
101 subF(u0, u0, t1, pGroundGFE);
102 subF(u1, u1, t1, pGroundGFE); /* u1 = a[1]*b[2]+a[2]*b[1] */
103 subF(u1, u1, t2, pGroundGFE);
104 subF(u2, u2, t2, pGroundGFE); /* u2 = a[2]*b[0]+a[0]*b[2] */
105 subF(u2, u2, t0, pGroundGFE);
106
107 cpGFpxMul_G0(u1, u1, pGFEx); /* u1 = (a[1]*b[2]+a[2]*b[1]) * beta */
108 cpGFpxMul_G0(t2, t2, pGFEx); /* t2 = a[2]*b[2] * beta */
109
110 subF(pR0, t0, u1, pGroundGFE); /* r[0] = a[0]*b[0] - (a[2]*b[1]+a[1]*b[2])*beta */
111 subF(pR1, u0, t2, pGroundGFE); /* r[1] = a[1]*b[0] + a[0]*b[1] - a[2]*b[2]*beta */
112
113 addF(pR2, u2, t1, pGroundGFE); /* r[2] = a[2]*b[0] + a[1]*b[1] + a[0]*b[2] */
114
115 cpGFpReleasePool(6, pGroundGFE);
116 return pR;
117 }
118
119 /*
120 // Squaring in GF(p^3), if field polynomial: g(x) = x^3 + beta => binominal
121 */
cpGFpxSqr_p3_binom(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFEx)122 static BNU_CHUNK_T* cpGFpxSqr_p3_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx)
123 {
124 gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
125 int groundElemLen = GFP_FELEN(pGroundGFE);
126
127 mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
128 mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr;
129 mod_add addF = GFP_METHOD(pGroundGFE)->add;
130 mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
131
132 const BNU_CHUNK_T* pA0 = pA;
133 const BNU_CHUNK_T* pA1 = pA+groundElemLen;
134 const BNU_CHUNK_T* pA2 = pA+groundElemLen*2;
135
136 BNU_CHUNK_T* pR0 = pR;
137 BNU_CHUNK_T* pR1 = pR+groundElemLen;
138 BNU_CHUNK_T* pR2 = pR+groundElemLen*2;
139
140 BNU_CHUNK_T* s0 = cpGFpGetPool(5, pGroundGFE);
141 BNU_CHUNK_T* s1 = s0+groundElemLen;
142 BNU_CHUNK_T* s2 = s1+groundElemLen;
143 BNU_CHUNK_T* s3 = s2+groundElemLen;
144 BNU_CHUNK_T* s4 = s3+groundElemLen;
145 //tbcd: temporary excluded: assert(NULL!=s0);
146
147 addF(s2, pA0, pA2, pGroundGFE);
148 subF(s2, s2, pA1, pGroundGFE);
149 sqrF(s2, s2, pGroundGFE);
150 sqrF(s0, pA0, pGroundGFE);
151 sqrF(s4, pA2, pGroundGFE);
152 mulF(s1, pA0, pA1, pGroundGFE);
153 mulF(s3, pA1, pA2, pGroundGFE);
154 addF(s1, s1, s1, pGroundGFE);
155 addF(s3, s3, s3, pGroundGFE);
156
157 addF(pR2, s1, s2, pGroundGFE);
158 addF(pR2, pR2, s3, pGroundGFE);
159 subF(pR2, pR2, s0, pGroundGFE);
160 subF(pR2, pR2, s4, pGroundGFE);
161
162 cpGFpxMul_G0(s4, s4, pGFEx);
163 subF(pR1, s1, s4, pGroundGFE);
164
165 cpGFpxMul_G0(s3, s3, pGFEx);
166 subF(pR0, s0, s3, pGroundGFE);
167
168 cpGFpReleasePool(5, pGroundGFE);
169 return pR;
170 }
171
172
173 /*
174 // return specific polynomi alarith methods
175 // polynomial - deg 3 binomial
176 */
gsPolyArith_binom3(void)177 static gsModMethod* gsPolyArith_binom3(void)
178 {
179 static gsModMethod m = {
180 cpGFpxEncode_com,
181 cpGFpxDecode_com,
182 cpGFpxMul_p3_binom,
183 cpGFpxSqr_p3_binom,
184 NULL,
185 cpGFpxAdd_com,
186 cpGFpxSub_com,
187 cpGFpxNeg_com,
188 cpGFpxDiv2_com,
189 cpGFpxMul2_com,
190 cpGFpxMul3_com,
191 //cpGFpxInv
192 };
193 return &m;
194 }
195
196 /*F*
197 // Name: ippsGFpxMethod_binom2
198 //
199 // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd).
200 //
201 // Returns: pointer to a structure containing
202 // an implementation of arithmetic operations over GF(pd)
203 // g(x) = x^3 - a0, a0 from GF(p)
204 //
205 //
206 *F*/
207 IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom3, (void) )
208 {
209 static IppsGFpMethod method = {
210 cpID_Binom,
211 3,
212 NULL,
213 NULL
214 };
215 method.arith = gsPolyArith_binom3();
216 return &method;
217 }
218