1 /*******************************************************************************
2 * Copyright 2013-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this software was obtained under the Intel Simplified Software License,
6 * the following terms apply:
7 *
8 * The source code, information and material ("Material") contained herein is
9 * owned by Intel Corporation or its suppliers or licensors, and title to such
10 * Material remains with Intel Corporation or its suppliers or licensors. The
11 * Material contains proprietary information of Intel or its suppliers and
12 * licensors. The Material is protected by worldwide copyright laws and treaty
13 * provisions. No part of the Material may be used, copied, reproduced,
14 * modified, published, uploaded, posted, transmitted, distributed or disclosed
15 * in any way without Intel's prior express written permission. No license under
16 * any patent, copyright or other intellectual property rights in the Material
17 * is granted to or conferred upon you, either expressly, by implication,
18 * inducement, estoppel or otherwise. Any license under such intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 * notice or any other notice embedded in Materials by Intel or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this software was obtained under the Apache License, Version 2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may not use this file except in compliance with the License. You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless required by applicable law or agreed to in writing, software
34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the License for the specific language governing permissions and
38 * limitations under the License.
39 *******************************************************************************/
40
41 /*
42 //
43 // Purpose:
44 // Cryptography Primitive.
45 // RSA Functions
46 //
47 //
48 */
49
50 #include "owndefs.h"
51 #include "owncp.h"
52 #include "pcpbn.h"
53 #include "pcpprimeg.h"
54 #include "pcpprng.h"
55 #include "pcpngrsa.h"
56
57
cpMillerRabinTest(BNU_CHUNK_T * pW,cpSize nsW,const BNU_CHUNK_T * pE,cpSize bitsizeE,int k,const BNU_CHUNK_T * pPrime1,gsModEngine * pMont,BNU_CHUNK_T * pBuffer)58 static int cpMillerRabinTest(BNU_CHUNK_T* pW, cpSize nsW,
59 const BNU_CHUNK_T* pE, cpSize bitsizeE,
60 int k,
61 const BNU_CHUNK_T* pPrime1,
62 gsModEngine* pMont,
63 BNU_CHUNK_T* pBuffer)
64 {
65 cpSize nsP = MOD_LEN(pMont);
66
67 /* to Montgomery Domain */
68 ZEXPAND_BNU(pW, nsW, nsP);
69 MOD_METHOD(pMont)->encode(pW, pW, pMont);
70
71 /* w = exp(w,e) */
72 gsMontExpWin_BNU_sscm(pW, pW, nsP, pE, bitsizeE, pMont, pBuffer);
73
74 /* if (w==1) ||(w==prime-1) => probably prime */
75 if ((0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP))
76 || (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP)))
77 return 1; /* witness of the primality */
78
79 while (--k) {
80 MOD_METHOD(pMont)->sqr(pW, pW, pMont);
81
82 if (0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP))
83 return 0; /* witness of the compositeness */
84 if (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP))
85 return 1; /* witness of the primality */
86 }
87 return 0;
88 }
89
90 /* test if P is prime
91
92 returns:
93 IPP_IS_PRIME (==1) - prime value has been detected
94 IPP_IS_COMPOSITE (==0) - composite value has been detected
95 -1 - if internal error (ippStsNoErr != rndFunc())
96 */
cpIsProbablyPrime(BNU_CHUNK_T * pPrime,int bitSize,int nTrials,IppBitSupplier rndFunc,void * pRndParam,gsModEngine * pME,BNU_CHUNK_T * pBuffer)97 static int cpIsProbablyPrime(BNU_CHUNK_T* pPrime, int bitSize,
98 int nTrials,
99 IppBitSupplier rndFunc, void* pRndParam,
100 gsModEngine* pME,
101 BNU_CHUNK_T* pBuffer)
102 {
103 /* if test for trivial divisors passed*/
104 int ret = cpMimimalPrimeTest((Ipp32u*)pPrime, BITS2WORD32_SIZE(bitSize));
105
106 /* appy Miller-Rabin test */
107 if (ret) {
108 int ns = BITS_BNU_CHUNK(bitSize);
109 BNU_CHUNK_T* pPrime1 = pBuffer;
110 BNU_CHUNK_T* pOdd = pPrime1 + ns;
111 BNU_CHUNK_T* pWitness = pOdd + ns;
112 BNU_CHUNK_T* pMontPrime1 = pWitness + ns;
113 BNU_CHUNK_T* pScratchBuffer = pMontPrime1 + ns;
114 int k, a, lenOdd;
115
116 /* prime1 = prime-1 = odd*2^a */
117 cpDec_BNU(pPrime1, pPrime, ns, 1);
118 for (k = 0, a = 0; k<ns; k++) {
119 cpSize da = cpNTZ_BNU(pPrime1[k]);
120 a += da;
121 if (BNU_CHUNK_BITS != da)
122 break;
123 }
124 lenOdd = cpLSR_BNU(pOdd, pPrime1, ns, a);
125 FIX_BNU(pOdd, lenOdd);
126
127 /* prime1 to (Montgomery Domain) */
128 cpSub_BNU(pMontPrime1, pPrime, MOD_MNT_R(pME), ns);
129
130 for (k = 0, ret = 0; k<nTrials && !ret; k++) {
131 BNU_CHUNK_T one = 1;
132 ret = cpPRNGenRange(pWitness, &one, 1, pPrime1, ns, rndFunc, pRndParam);
133 if (ret <= 0) break; /* internal error */
134 /* test primality */
135 ret = cpMillerRabinTest(pWitness, ns,
136 //pOdd, lenOdd, a,
137 pOdd, bitSize - a, a,
138 pMontPrime1,
139 pME, pScratchBuffer);
140 }
141 }
142 return ret;
143 }