1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/message_loop/message_pump_glib.h"
6
7 #include <fcntl.h>
8 #include <math.h>
9
10 #include <glib.h>
11
12 #include "base/lazy_instance.h"
13 #include "base/logging.h"
14 #include "base/posix/eintr_wrapper.h"
15 #include "base/synchronization/lock.h"
16 #include "base/threading/platform_thread.h"
17
18 namespace base {
19
20 namespace {
21
22 // Return a timeout suitable for the glib loop, -1 to block forever,
23 // 0 to return right away, or a timeout in milliseconds from now.
GetTimeIntervalMilliseconds(const TimeTicks & from)24 int GetTimeIntervalMilliseconds(const TimeTicks& from) {
25 if (from.is_null())
26 return -1;
27
28 // Be careful here. TimeDelta has a precision of microseconds, but we want a
29 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
30 // 6? It should be 6 to avoid executing delayed work too early.
31 int delay = static_cast<int>(
32 ceil((from - TimeTicks::Now()).InMillisecondsF()));
33
34 // If this value is negative, then we need to run delayed work soon.
35 return delay < 0 ? 0 : delay;
36 }
37
38 // A brief refresher on GLib:
39 // GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40 // On each iteration of the GLib pump, it calls each source's Prepare function.
41 // This function should return TRUE if it wants GLib to call its Dispatch, and
42 // FALSE otherwise. It can also set a timeout in this case for the next time
43 // Prepare should be called again (it may be called sooner).
44 // After the Prepare calls, GLib does a poll to check for events from the
45 // system. File descriptors can be attached to the sources. The poll may block
46 // if none of the Prepare calls returned TRUE. It will block indefinitely, or
47 // by the minimum time returned by a source in Prepare.
48 // After the poll, GLib calls Check for each source that returned FALSE
49 // from Prepare. The return value of Check has the same meaning as for Prepare,
50 // making Check a second chance to tell GLib we are ready for Dispatch.
51 // Finally, GLib calls Dispatch for each source that is ready. If Dispatch
52 // returns FALSE, GLib will destroy the source. Dispatch calls may be recursive
53 // (i.e., you can call Run from them), but Prepare and Check cannot.
54 // Finalize is called when the source is destroyed.
55 // NOTE: It is common for subsystems to want to process pending events while
56 // doing intensive work, for example the flash plugin. They usually use the
57 // following pattern (recommended by the GTK docs):
58 // while (gtk_events_pending()) {
59 // gtk_main_iteration();
60 // }
61 //
62 // gtk_events_pending just calls g_main_context_pending, which does the
63 // following:
64 // - Call prepare on all the sources.
65 // - Do the poll with a timeout of 0 (not blocking).
66 // - Call check on all the sources.
67 // - *Does not* call dispatch on the sources.
68 // - Return true if any of prepare() or check() returned true.
69 //
70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
71 // thing, respecting the timeout for the poll (and block, although it is
72 // expected not to if gtk_events_pending returned true), and call dispatch.
73 //
74 // Thus it is important to only return true from prepare or check if we
75 // actually have events or work to do. We also need to make sure we keep
76 // internal state consistent so that if prepare/check return true when called
77 // from gtk_events_pending, they will still return true when called right
78 // after, from gtk_main_iteration.
79 //
80 // For the GLib pump we try to follow the Windows UI pump model:
81 // - Whenever we receive a wakeup event or the timer for delayed work expires,
82 // we run DoWork and/or DoDelayedWork. That part will also run in the other
83 // event pumps.
84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85 // loop, around event handling.
86
87 struct WorkSource : public GSource {
88 MessagePumpGlib* pump;
89 };
90
WorkSourcePrepare(GSource * source,gint * timeout_ms)91 gboolean WorkSourcePrepare(GSource* source,
92 gint* timeout_ms) {
93 *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94 // We always return FALSE, so that our timeout is honored. If we were
95 // to return TRUE, the timeout would be considered to be 0 and the poll
96 // would never block. Once the poll is finished, Check will be called.
97 return FALSE;
98 }
99
WorkSourceCheck(GSource * source)100 gboolean WorkSourceCheck(GSource* source) {
101 // Only return TRUE if Dispatch should be called.
102 return static_cast<WorkSource*>(source)->pump->HandleCheck();
103 }
104
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)105 gboolean WorkSourceDispatch(GSource* source,
106 GSourceFunc unused_func,
107 gpointer unused_data) {
108
109 static_cast<WorkSource*>(source)->pump->HandleDispatch();
110 // Always return TRUE so our source stays registered.
111 return TRUE;
112 }
113
114 // I wish these could be const, but g_source_new wants non-const.
115 GSourceFuncs WorkSourceFuncs = {WorkSourcePrepare, WorkSourceCheck,
116 WorkSourceDispatch, nullptr};
117
118 // The following is used to make sure we only run the MessagePumpGlib on one
119 // thread. X only has one message pump so we can only have one UI loop per
120 // process.
121 #ifndef NDEBUG
122
123 // Tracks the pump the most recent pump that has been run.
124 struct ThreadInfo {
125 // The pump.
126 MessagePumpGlib* pump;
127
128 // ID of the thread the pump was run on.
129 PlatformThreadId thread_id;
130 };
131
132 // Used for accesing |thread_info|.
133 static LazyInstance<Lock>::Leaky thread_info_lock = LAZY_INSTANCE_INITIALIZER;
134
135 // If non-NULL it means a MessagePumpGlib exists and has been Run. This is
136 // destroyed when the MessagePump is destroyed.
137 ThreadInfo* thread_info = NULL;
138
CheckThread(MessagePumpGlib * pump)139 void CheckThread(MessagePumpGlib* pump) {
140 AutoLock auto_lock(thread_info_lock.Get());
141 if (!thread_info) {
142 thread_info = new ThreadInfo;
143 thread_info->pump = pump;
144 thread_info->thread_id = PlatformThread::CurrentId();
145 }
146 DCHECK(thread_info->thread_id == PlatformThread::CurrentId()) <<
147 "Running MessagePumpGlib on two different threads; "
148 "this is unsupported by GLib!";
149 }
150
PumpDestroyed(MessagePumpGlib * pump)151 void PumpDestroyed(MessagePumpGlib* pump) {
152 AutoLock auto_lock(thread_info_lock.Get());
153 if (thread_info && thread_info->pump == pump) {
154 delete thread_info;
155 thread_info = NULL;
156 }
157 }
158
159 #endif
160
161 } // namespace
162
163 struct MessagePumpGlib::RunState {
164 Delegate* delegate;
165
166 // Used to flag that the current Run() invocation should return ASAP.
167 bool should_quit;
168
169 // Used to count how many Run() invocations are on the stack.
170 int run_depth;
171
172 // This keeps the state of whether the pump got signaled that there was new
173 // work to be done. Since we eat the message on the wake up pipe as soon as
174 // we get it, we keep that state here to stay consistent.
175 bool has_work;
176 };
177
MessagePumpGlib()178 MessagePumpGlib::MessagePumpGlib()
179 : state_(nullptr),
180 context_(g_main_context_default()),
181 wakeup_gpollfd_(new GPollFD) {
182 // Create our wakeup pipe, which is used to flag when work was scheduled.
183 int fds[2];
184 int ret = pipe(fds);
185 DCHECK_EQ(ret, 0);
186 (void)ret; // Prevent warning in release mode.
187
188 wakeup_pipe_read_ = fds[0];
189 wakeup_pipe_write_ = fds[1];
190 wakeup_gpollfd_->fd = wakeup_pipe_read_;
191 wakeup_gpollfd_->events = G_IO_IN;
192
193 work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
194 static_cast<WorkSource*>(work_source_)->pump = this;
195 g_source_add_poll(work_source_, wakeup_gpollfd_.get());
196 // Use a low priority so that we let other events in the queue go first.
197 g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
198 // This is needed to allow Run calls inside Dispatch.
199 g_source_set_can_recurse(work_source_, TRUE);
200 g_source_attach(work_source_, context_);
201 }
202
~MessagePumpGlib()203 MessagePumpGlib::~MessagePumpGlib() {
204 #ifndef NDEBUG
205 PumpDestroyed(this);
206 #endif
207 g_source_destroy(work_source_);
208 g_source_unref(work_source_);
209 close(wakeup_pipe_read_);
210 close(wakeup_pipe_write_);
211 }
212
213 // Return the timeout we want passed to poll.
HandlePrepare()214 int MessagePumpGlib::HandlePrepare() {
215 // We know we have work, but we haven't called HandleDispatch yet. Don't let
216 // the pump block so that we can do some processing.
217 if (state_ && // state_ may be null during tests.
218 state_->has_work)
219 return 0;
220
221 // We don't think we have work to do, but make sure not to block
222 // longer than the next time we need to run delayed work.
223 return GetTimeIntervalMilliseconds(delayed_work_time_);
224 }
225
HandleCheck()226 bool MessagePumpGlib::HandleCheck() {
227 if (!state_) // state_ may be null during tests.
228 return false;
229
230 // We usually have a single message on the wakeup pipe, since we are only
231 // signaled when the queue went from empty to non-empty, but there can be
232 // two messages if a task posted a task, hence we read at most two bytes.
233 // The glib poll will tell us whether there was data, so this read
234 // shouldn't block.
235 if (wakeup_gpollfd_->revents & G_IO_IN) {
236 char msg[2];
237 const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
238 if (num_bytes < 1) {
239 NOTREACHED() << "Error reading from the wakeup pipe.";
240 }
241 DCHECK((num_bytes == 1 && msg[0] == '!') ||
242 (num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
243 // Since we ate the message, we need to record that we have more work,
244 // because HandleCheck() may be called without HandleDispatch being called
245 // afterwards.
246 state_->has_work = true;
247 }
248
249 if (state_->has_work)
250 return true;
251
252 if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
253 // The timer has expired. That condition will stay true until we process
254 // that delayed work, so we don't need to record this differently.
255 return true;
256 }
257
258 return false;
259 }
260
HandleDispatch()261 void MessagePumpGlib::HandleDispatch() {
262 state_->has_work = false;
263 if (state_->delegate->DoWork()) {
264 // NOTE: on Windows at this point we would call ScheduleWork (see
265 // MessagePumpGlib::HandleWorkMessage in message_pump_win.cc). But here,
266 // instead of posting a message on the wakeup pipe, we can avoid the
267 // syscalls and just signal that we have more work.
268 state_->has_work = true;
269 }
270
271 if (state_->should_quit)
272 return;
273
274 state_->delegate->DoDelayedWork(&delayed_work_time_);
275 }
276
Run(Delegate * delegate)277 void MessagePumpGlib::Run(Delegate* delegate) {
278 #ifndef NDEBUG
279 CheckThread(this);
280 #endif
281
282 RunState state;
283 state.delegate = delegate;
284 state.should_quit = false;
285 state.run_depth = state_ ? state_->run_depth + 1 : 1;
286 state.has_work = false;
287
288 RunState* previous_state = state_;
289 state_ = &state;
290
291 // We really only do a single task for each iteration of the loop. If we
292 // have done something, assume there is likely something more to do. This
293 // will mean that we don't block on the message pump until there was nothing
294 // more to do. We also set this to true to make sure not to block on the
295 // first iteration of the loop, so RunUntilIdle() works correctly.
296 bool more_work_is_plausible = true;
297
298 // We run our own loop instead of using g_main_loop_quit in one of the
299 // callbacks. This is so we only quit our own loops, and we don't quit
300 // nested loops run by others. TODO(deanm): Is this what we want?
301 for (;;) {
302 // Don't block if we think we have more work to do.
303 bool block = !more_work_is_plausible;
304
305 more_work_is_plausible = g_main_context_iteration(context_, block);
306 if (state_->should_quit)
307 break;
308
309 more_work_is_plausible |= state_->delegate->DoWork();
310 if (state_->should_quit)
311 break;
312
313 more_work_is_plausible |=
314 state_->delegate->DoDelayedWork(&delayed_work_time_);
315 if (state_->should_quit)
316 break;
317
318 if (more_work_is_plausible)
319 continue;
320
321 more_work_is_plausible = state_->delegate->DoIdleWork();
322 if (state_->should_quit)
323 break;
324 }
325
326 state_ = previous_state;
327 }
328
Quit()329 void MessagePumpGlib::Quit() {
330 if (state_) {
331 state_->should_quit = true;
332 } else {
333 NOTREACHED() << "Quit called outside Run!";
334 }
335 }
336
ScheduleWork()337 void MessagePumpGlib::ScheduleWork() {
338 // This can be called on any thread, so we don't want to touch any state
339 // variables as we would then need locks all over. This ensures that if
340 // we are sleeping in a poll that we will wake up.
341 char msg = '!';
342 if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
343 NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
344 }
345 }
346
ScheduleDelayedWork(const TimeTicks & delayed_work_time)347 void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
348 // We need to wake up the loop in case the poll timeout needs to be
349 // adjusted. This will cause us to try to do work, but that's OK.
350 delayed_work_time_ = delayed_work_time;
351 ScheduleWork();
352 }
353
ShouldQuit() const354 bool MessagePumpGlib::ShouldQuit() const {
355 CHECK(state_);
356 return state_->should_quit;
357 }
358
359 } // namespace base
360