1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This is an implementation of the P224 elliptic curve group. It's written to
6 // be short and simple rather than fast, although it's still constant-time.
7 //
8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
9
10 #include "crypto/p224.h"
11
12 #include <stddef.h>
13 #include <stdint.h>
14 #include <string.h>
15
16 #include "base/sys_byteorder.h"
17
18 namespace {
19
20 using base::HostToNet32;
21 using base::NetToHost32;
22
23 // Field element functions.
24 //
25 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
26 //
27 // Field elements are represented by a FieldElement, which is a typedef to an
28 // array of 8 uint32_t's. The value of a FieldElement, a, is:
29 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
30 //
31 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
32 // than we would really like. But it has the useful feature that we hit 2**224
33 // exactly, making the reflections during a reduce much nicer.
34
35 using crypto::p224::FieldElement;
36
37 // kP is the P224 prime.
38 const FieldElement kP = {
39 1, 0, 0, 268431360,
40 268435455, 268435455, 268435455, 268435455,
41 };
42
43 void Contract(FieldElement* inout);
44
45 // IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise.
IsZero(const FieldElement & a)46 uint32_t IsZero(const FieldElement& a) {
47 FieldElement minimal;
48 memcpy(&minimal, &a, sizeof(minimal));
49 Contract(&minimal);
50
51 uint32_t is_zero = 0, is_p = 0;
52 for (unsigned i = 0; i < 8; i++) {
53 is_zero |= minimal[i];
54 is_p |= minimal[i] - kP[i];
55 }
56
57 // If either is_zero or is_p is 0, then we should return 1.
58 is_zero |= is_zero >> 16;
59 is_zero |= is_zero >> 8;
60 is_zero |= is_zero >> 4;
61 is_zero |= is_zero >> 2;
62 is_zero |= is_zero >> 1;
63
64 is_p |= is_p >> 16;
65 is_p |= is_p >> 8;
66 is_p |= is_p >> 4;
67 is_p |= is_p >> 2;
68 is_p |= is_p >> 1;
69
70 // For is_zero and is_p, the LSB is 0 iff all the bits are zero.
71 is_zero &= is_p & 1;
72 is_zero = (~is_zero) << 31;
73 is_zero = static_cast<int32_t>(is_zero) >> 31;
74 return is_zero;
75 }
76
77 // Add computes *out = a+b
78 //
79 // a[i] + b[i] < 2**32
Add(FieldElement * out,const FieldElement & a,const FieldElement & b)80 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) {
81 for (int i = 0; i < 8; i++) {
82 (*out)[i] = a[i] + b[i];
83 }
84 }
85
86 static const uint32_t kTwo31p3 = (1u << 31) + (1u << 3);
87 static const uint32_t kTwo31m3 = (1u << 31) - (1u << 3);
88 static const uint32_t kTwo31m15m3 = (1u << 31) - (1u << 15) - (1u << 3);
89 // kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can
90 // subtract smaller amounts without underflow. See the section "Subtraction" in
91 // [1] for why.
92 static const FieldElement kZero31ModP = {
93 kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3,
94 kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3
95 };
96
97 // Subtract computes *out = a-b
98 //
99 // a[i], b[i] < 2**30
100 // out[i] < 2**32
Subtract(FieldElement * out,const FieldElement & a,const FieldElement & b)101 void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) {
102 for (int i = 0; i < 8; i++) {
103 // See the section on "Subtraction" in [1] for details.
104 (*out)[i] = a[i] + kZero31ModP[i] - b[i];
105 }
106 }
107
108 static const uint64_t kTwo63p35 = (1ull << 63) + (1ull << 35);
109 static const uint64_t kTwo63m35 = (1ull << 63) - (1ull << 35);
110 static const uint64_t kTwo63m35m19 = (1ull << 63) - (1ull << 35) - (1ull << 19);
111 // kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section
112 // "Subtraction" in [1] for why.
113 static const uint64_t kZero63ModP[8] = {
114 kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
115 kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
116 };
117
118 static const uint32_t kBottom28Bits = 0xfffffff;
119
120 // LargeFieldElement also represents an element of the field. The limbs are
121 // still spaced 28-bits apart and in little-endian order. So the limbs are at
122 // 0, 28, 56, ..., 392 bits, each 64-bits wide.
123 typedef uint64_t LargeFieldElement[15];
124
125 // ReduceLarge converts a LargeFieldElement to a FieldElement.
126 //
127 // in[i] < 2**62
ReduceLarge(FieldElement * out,LargeFieldElement * inptr)128 void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) {
129 LargeFieldElement& in(*inptr);
130
131 for (int i = 0; i < 8; i++) {
132 in[i] += kZero63ModP[i];
133 }
134
135 // Eliminate the coefficients at 2**224 and greater while maintaining the
136 // same value mod p.
137 for (int i = 14; i >= 8; i--) {
138 in[i-8] -= in[i]; // reflection off the "+1" term of p.
139 in[i-5] += (in[i] & 0xffff) << 12; // part of the "-2**96" reflection.
140 in[i-4] += in[i] >> 16; // the rest of the "-2**96" reflection.
141 }
142 in[8] = 0;
143 // in[0..8] < 2**64
144
145 // As the values become small enough, we start to store them in |out| and use
146 // 32-bit operations.
147 for (int i = 1; i < 8; i++) {
148 in[i+1] += in[i] >> 28;
149 (*out)[i] = static_cast<uint32_t>(in[i] & kBottom28Bits);
150 }
151 // Eliminate the term at 2*224 that we introduced while keeping the same
152 // value mod p.
153 in[0] -= in[8]; // reflection off the "+1" term of p.
154 (*out)[3] += static_cast<uint32_t>(in[8] & 0xffff) << 12; // "-2**96" term
155 (*out)[4] += static_cast<uint32_t>(in[8] >> 16); // rest of "-2**96" term
156 // in[0] < 2**64
157 // out[3] < 2**29
158 // out[4] < 2**29
159 // out[1,2,5..7] < 2**28
160
161 (*out)[0] = static_cast<uint32_t>(in[0] & kBottom28Bits);
162 (*out)[1] += static_cast<uint32_t>((in[0] >> 28) & kBottom28Bits);
163 (*out)[2] += static_cast<uint32_t>(in[0] >> 56);
164 // out[0] < 2**28
165 // out[1..4] < 2**29
166 // out[5..7] < 2**28
167 }
168
169 // Mul computes *out = a*b
170 //
171 // a[i] < 2**29, b[i] < 2**30 (or vice versa)
172 // out[i] < 2**29
Mul(FieldElement * out,const FieldElement & a,const FieldElement & b)173 void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) {
174 LargeFieldElement tmp;
175 memset(&tmp, 0, sizeof(tmp));
176
177 for (int i = 0; i < 8; i++) {
178 for (int j = 0; j < 8; j++) {
179 tmp[i + j] += static_cast<uint64_t>(a[i]) * static_cast<uint64_t>(b[j]);
180 }
181 }
182
183 ReduceLarge(out, &tmp);
184 }
185
186 // Square computes *out = a*a
187 //
188 // a[i] < 2**29
189 // out[i] < 2**29
Square(FieldElement * out,const FieldElement & a)190 void Square(FieldElement* out, const FieldElement& a) {
191 LargeFieldElement tmp;
192 memset(&tmp, 0, sizeof(tmp));
193
194 for (int i = 0; i < 8; i++) {
195 for (int j = 0; j <= i; j++) {
196 uint64_t r = static_cast<uint64_t>(a[i]) * static_cast<uint64_t>(a[j]);
197 if (i == j) {
198 tmp[i+j] += r;
199 } else {
200 tmp[i+j] += r << 1;
201 }
202 }
203 }
204
205 ReduceLarge(out, &tmp);
206 }
207
208 // Reduce reduces the coefficients of in_out to smaller bounds.
209 //
210 // On entry: a[i] < 2**31 + 2**30
211 // On exit: a[i] < 2**29
Reduce(FieldElement * in_out)212 void Reduce(FieldElement* in_out) {
213 FieldElement& a = *in_out;
214
215 for (int i = 0; i < 7; i++) {
216 a[i+1] += a[i] >> 28;
217 a[i] &= kBottom28Bits;
218 }
219 uint32_t top = a[7] >> 28;
220 a[7] &= kBottom28Bits;
221
222 // top < 2**4
223 // Constant-time: mask = (top != 0) ? 0xffffffff : 0
224 uint32_t mask = top;
225 mask |= mask >> 2;
226 mask |= mask >> 1;
227 mask <<= 31;
228 mask = static_cast<uint32_t>(static_cast<int32_t>(mask) >> 31);
229
230 // Eliminate top while maintaining the same value mod p.
231 a[0] -= top;
232 a[3] += top << 12;
233
234 // We may have just made a[0] negative but, if we did, then we must
235 // have added something to a[3], thus it's > 2**12. Therefore we can
236 // carry down to a[0].
237 a[3] -= 1 & mask;
238 a[2] += mask & ((1<<28) - 1);
239 a[1] += mask & ((1<<28) - 1);
240 a[0] += mask & (1<<28);
241 }
242
243 // Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e.
244 // Fermat's little theorem.
Invert(FieldElement * out,const FieldElement & in)245 void Invert(FieldElement* out, const FieldElement& in) {
246 FieldElement f1, f2, f3, f4;
247
248 Square(&f1, in); // 2
249 Mul(&f1, f1, in); // 2**2 - 1
250 Square(&f1, f1); // 2**3 - 2
251 Mul(&f1, f1, in); // 2**3 - 1
252 Square(&f2, f1); // 2**4 - 2
253 Square(&f2, f2); // 2**5 - 4
254 Square(&f2, f2); // 2**6 - 8
255 Mul(&f1, f1, f2); // 2**6 - 1
256 Square(&f2, f1); // 2**7 - 2
257 for (int i = 0; i < 5; i++) { // 2**12 - 2**6
258 Square(&f2, f2);
259 }
260 Mul(&f2, f2, f1); // 2**12 - 1
261 Square(&f3, f2); // 2**13 - 2
262 for (int i = 0; i < 11; i++) { // 2**24 - 2**12
263 Square(&f3, f3);
264 }
265 Mul(&f2, f3, f2); // 2**24 - 1
266 Square(&f3, f2); // 2**25 - 2
267 for (int i = 0; i < 23; i++) { // 2**48 - 2**24
268 Square(&f3, f3);
269 }
270 Mul(&f3, f3, f2); // 2**48 - 1
271 Square(&f4, f3); // 2**49 - 2
272 for (int i = 0; i < 47; i++) { // 2**96 - 2**48
273 Square(&f4, f4);
274 }
275 Mul(&f3, f3, f4); // 2**96 - 1
276 Square(&f4, f3); // 2**97 - 2
277 for (int i = 0; i < 23; i++) { // 2**120 - 2**24
278 Square(&f4, f4);
279 }
280 Mul(&f2, f4, f2); // 2**120 - 1
281 for (int i = 0; i < 6; i++) { // 2**126 - 2**6
282 Square(&f2, f2);
283 }
284 Mul(&f1, f1, f2); // 2**126 - 1
285 Square(&f1, f1); // 2**127 - 2
286 Mul(&f1, f1, in); // 2**127 - 1
287 for (int i = 0; i < 97; i++) { // 2**224 - 2**97
288 Square(&f1, f1);
289 }
290 Mul(out, f1, f3); // 2**224 - 2**96 - 1
291 }
292
293 // Contract converts a FieldElement to its minimal, distinguished form.
294 //
295 // On entry, in[i] < 2**29
296 // On exit, in[i] < 2**28
Contract(FieldElement * inout)297 void Contract(FieldElement* inout) {
298 FieldElement& out = *inout;
299
300 // Reduce the coefficients to < 2**28.
301 for (int i = 0; i < 7; i++) {
302 out[i+1] += out[i] >> 28;
303 out[i] &= kBottom28Bits;
304 }
305 uint32_t top = out[7] >> 28;
306 out[7] &= kBottom28Bits;
307
308 // Eliminate top while maintaining the same value mod p.
309 out[0] -= top;
310 out[3] += top << 12;
311
312 // We may just have made out[0] negative. So we carry down. If we made
313 // out[0] negative then we know that out[3] is sufficiently positive
314 // because we just added to it.
315 for (int i = 0; i < 3; i++) {
316 uint32_t mask = static_cast<uint32_t>(static_cast<int32_t>(out[i]) >> 31);
317 out[i] += (1 << 28) & mask;
318 out[i+1] -= 1 & mask;
319 }
320
321 // We might have pushed out[3] over 2**28 so we perform another, partial
322 // carry chain.
323 for (int i = 3; i < 7; i++) {
324 out[i+1] += out[i] >> 28;
325 out[i] &= kBottom28Bits;
326 }
327 top = out[7] >> 28;
328 out[7] &= kBottom28Bits;
329
330 // Eliminate top while maintaining the same value mod p.
331 out[0] -= top;
332 out[3] += top << 12;
333
334 // There are two cases to consider for out[3]:
335 // 1) The first time that we eliminated top, we didn't push out[3] over
336 // 2**28. In this case, the partial carry chain didn't change any values
337 // and top is zero.
338 // 2) We did push out[3] over 2**28 the first time that we eliminated top.
339 // The first value of top was in [0..16), therefore, prior to eliminating
340 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
341 // overflowing and being reduced by the second carry chain, out[3] <=
342 // 0xf000. Thus it cannot have overflowed when we eliminated top for the
343 // second time.
344
345 // Again, we may just have made out[0] negative, so do the same carry down.
346 // As before, if we made out[0] negative then we know that out[3] is
347 // sufficiently positive.
348 for (int i = 0; i < 3; i++) {
349 uint32_t mask = static_cast<uint32_t>(static_cast<int32_t>(out[i]) >> 31);
350 out[i] += (1 << 28) & mask;
351 out[i+1] -= 1 & mask;
352 }
353
354 // The value is < 2**224, but maybe greater than p. In order to reduce to a
355 // unique, minimal value we see if the value is >= p and, if so, subtract p.
356
357 // First we build a mask from the top four limbs, which must all be
358 // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones
359 // ends up with any zero bits in the bottom 28 bits, then this wasn't
360 // true.
361 uint32_t top_4_all_ones = 0xffffffffu;
362 for (int i = 4; i < 8; i++) {
363 top_4_all_ones &= out[i];
364 }
365 top_4_all_ones |= 0xf0000000;
366 // Now we replicate any zero bits to all the bits in top_4_all_ones.
367 top_4_all_ones &= top_4_all_ones >> 16;
368 top_4_all_ones &= top_4_all_ones >> 8;
369 top_4_all_ones &= top_4_all_ones >> 4;
370 top_4_all_ones &= top_4_all_ones >> 2;
371 top_4_all_ones &= top_4_all_ones >> 1;
372 top_4_all_ones =
373 static_cast<uint32_t>(static_cast<int32_t>(top_4_all_ones << 31) >> 31);
374
375 // Now we test whether the bottom three limbs are non-zero.
376 uint32_t bottom_3_non_zero = out[0] | out[1] | out[2];
377 bottom_3_non_zero |= bottom_3_non_zero >> 16;
378 bottom_3_non_zero |= bottom_3_non_zero >> 8;
379 bottom_3_non_zero |= bottom_3_non_zero >> 4;
380 bottom_3_non_zero |= bottom_3_non_zero >> 2;
381 bottom_3_non_zero |= bottom_3_non_zero >> 1;
382 bottom_3_non_zero =
383 static_cast<uint32_t>(static_cast<int32_t>(bottom_3_non_zero) >> 31);
384
385 // Everything depends on the value of out[3].
386 // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p
387 // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0,
388 // then the whole value is >= p
389 // If it's < 0xffff000, then the whole value is < p
390 uint32_t n = out[3] - 0xffff000;
391 uint32_t out_3_equal = n;
392 out_3_equal |= out_3_equal >> 16;
393 out_3_equal |= out_3_equal >> 8;
394 out_3_equal |= out_3_equal >> 4;
395 out_3_equal |= out_3_equal >> 2;
396 out_3_equal |= out_3_equal >> 1;
397 out_3_equal =
398 ~static_cast<uint32_t>(static_cast<int32_t>(out_3_equal << 31) >> 31);
399
400 // If out[3] > 0xffff000 then n's MSB will be zero.
401 uint32_t out_3_gt =
402 ~static_cast<uint32_t>(static_cast<int32_t>(n << 31) >> 31);
403
404 uint32_t mask =
405 top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt);
406 out[0] -= 1 & mask;
407 out[3] -= 0xffff000 & mask;
408 out[4] -= 0xfffffff & mask;
409 out[5] -= 0xfffffff & mask;
410 out[6] -= 0xfffffff & mask;
411 out[7] -= 0xfffffff & mask;
412 }
413
414
415 // Group element functions.
416 //
417 // These functions deal with group elements. The group is an elliptic curve
418 // group with a = -3 defined in FIPS 186-3, section D.2.2.
419
420 using crypto::p224::Point;
421
422 // kB is parameter of the elliptic curve.
423 const FieldElement kB = {
424 55967668, 11768882, 265861671, 185302395,
425 39211076, 180311059, 84673715, 188764328,
426 };
427
428 void CopyConditional(Point* out, const Point& a, uint32_t mask);
429 void DoubleJacobian(Point* out, const Point& a);
430
431 // AddJacobian computes *out = a+b where a != b.
AddJacobian(Point * out,const Point & a,const Point & b)432 void AddJacobian(Point *out,
433 const Point& a,
434 const Point& b) {
435 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
436 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v;
437
438 uint32_t z1_is_zero = IsZero(a.z);
439 uint32_t z2_is_zero = IsZero(b.z);
440
441 // Z1Z1 = Z1²
442 Square(&z1z1, a.z);
443
444 // Z2Z2 = Z2²
445 Square(&z2z2, b.z);
446
447 // U1 = X1*Z2Z2
448 Mul(&u1, a.x, z2z2);
449
450 // U2 = X2*Z1Z1
451 Mul(&u2, b.x, z1z1);
452
453 // S1 = Y1*Z2*Z2Z2
454 Mul(&s1, b.z, z2z2);
455 Mul(&s1, a.y, s1);
456
457 // S2 = Y2*Z1*Z1Z1
458 Mul(&s2, a.z, z1z1);
459 Mul(&s2, b.y, s2);
460
461 // H = U2-U1
462 Subtract(&h, u2, u1);
463 Reduce(&h);
464 uint32_t x_equal = IsZero(h);
465
466 // I = (2*H)²
467 for (int k = 0; k < 8; k++) {
468 i[k] = h[k] << 1;
469 }
470 Reduce(&i);
471 Square(&i, i);
472
473 // J = H*I
474 Mul(&j, h, i);
475 // r = 2*(S2-S1)
476 Subtract(&r, s2, s1);
477 Reduce(&r);
478 uint32_t y_equal = IsZero(r);
479
480 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
481 // The two input points are the same therefore we must use the dedicated
482 // doubling function as the slope of the line is undefined.
483 DoubleJacobian(out, a);
484 return;
485 }
486
487 for (int k = 0; k < 8; k++) {
488 r[k] <<= 1;
489 }
490 Reduce(&r);
491
492 // V = U1*I
493 Mul(&v, u1, i);
494
495 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
496 Add(&z1z1, z1z1, z2z2);
497 Add(&z2z2, a.z, b.z);
498 Reduce(&z2z2);
499 Square(&z2z2, z2z2);
500 Subtract(&out->z, z2z2, z1z1);
501 Reduce(&out->z);
502 Mul(&out->z, out->z, h);
503
504 // X3 = r²-J-2*V
505 for (int k = 0; k < 8; k++) {
506 z1z1[k] = v[k] << 1;
507 }
508 Add(&z1z1, j, z1z1);
509 Reduce(&z1z1);
510 Square(&out->x, r);
511 Subtract(&out->x, out->x, z1z1);
512 Reduce(&out->x);
513
514 // Y3 = r*(V-X3)-2*S1*J
515 for (int k = 0; k < 8; k++) {
516 s1[k] <<= 1;
517 }
518 Mul(&s1, s1, j);
519 Subtract(&z1z1, v, out->x);
520 Reduce(&z1z1);
521 Mul(&z1z1, z1z1, r);
522 Subtract(&out->y, z1z1, s1);
523 Reduce(&out->y);
524
525 CopyConditional(out, a, z2_is_zero);
526 CopyConditional(out, b, z1_is_zero);
527 }
528
529 // DoubleJacobian computes *out = a+a.
DoubleJacobian(Point * out,const Point & a)530 void DoubleJacobian(Point* out, const Point& a) {
531 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
532 FieldElement delta, gamma, beta, alpha, t;
533
534 Square(&delta, a.z);
535 Square(&gamma, a.y);
536 Mul(&beta, a.x, gamma);
537
538 // alpha = 3*(X1-delta)*(X1+delta)
539 Add(&t, a.x, delta);
540 for (int i = 0; i < 8; i++) {
541 t[i] += t[i] << 1;
542 }
543 Reduce(&t);
544 Subtract(&alpha, a.x, delta);
545 Reduce(&alpha);
546 Mul(&alpha, alpha, t);
547
548 // Z3 = (Y1+Z1)²-gamma-delta
549 Add(&out->z, a.y, a.z);
550 Reduce(&out->z);
551 Square(&out->z, out->z);
552 Subtract(&out->z, out->z, gamma);
553 Reduce(&out->z);
554 Subtract(&out->z, out->z, delta);
555 Reduce(&out->z);
556
557 // X3 = alpha²-8*beta
558 for (int i = 0; i < 8; i++) {
559 delta[i] = beta[i] << 3;
560 }
561 Reduce(&delta);
562 Square(&out->x, alpha);
563 Subtract(&out->x, out->x, delta);
564 Reduce(&out->x);
565
566 // Y3 = alpha*(4*beta-X3)-8*gamma²
567 for (int i = 0; i < 8; i++) {
568 beta[i] <<= 2;
569 }
570 Reduce(&beta);
571 Subtract(&beta, beta, out->x);
572 Reduce(&beta);
573 Square(&gamma, gamma);
574 for (int i = 0; i < 8; i++) {
575 gamma[i] <<= 3;
576 }
577 Reduce(&gamma);
578 Mul(&out->y, alpha, beta);
579 Subtract(&out->y, out->y, gamma);
580 Reduce(&out->y);
581 }
582
583 // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of
584 // 0xffffffff.
CopyConditional(Point * out,const Point & a,uint32_t mask)585 void CopyConditional(Point* out, const Point& a, uint32_t mask) {
586 for (int i = 0; i < 8; i++) {
587 out->x[i] ^= mask & (a.x[i] ^ out->x[i]);
588 out->y[i] ^= mask & (a.y[i] ^ out->y[i]);
589 out->z[i] ^= mask & (a.z[i] ^ out->z[i]);
590 }
591 }
592
593 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of
594 // length scalar_len and != 0.
ScalarMult(Point * out,const Point & a,const uint8_t * scalar,size_t scalar_len)595 void ScalarMult(Point* out,
596 const Point& a,
597 const uint8_t* scalar,
598 size_t scalar_len) {
599 memset(out, 0, sizeof(*out));
600 Point tmp;
601
602 for (size_t i = 0; i < scalar_len; i++) {
603 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) {
604 DoubleJacobian(out, *out);
605 uint32_t bit = static_cast<uint32_t>(static_cast<int32_t>(
606 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31));
607 AddJacobian(&tmp, a, *out);
608 CopyConditional(out, tmp, bit);
609 }
610 }
611 }
612
613 // Get224Bits reads 7 words from in and scatters their contents in
614 // little-endian form into 8 words at out, 28 bits per output word.
Get224Bits(uint32_t * out,const uint32_t * in)615 void Get224Bits(uint32_t* out, const uint32_t* in) {
616 out[0] = NetToHost32(in[6]) & kBottom28Bits;
617 out[1] = ((NetToHost32(in[5]) << 4) |
618 (NetToHost32(in[6]) >> 28)) & kBottom28Bits;
619 out[2] = ((NetToHost32(in[4]) << 8) |
620 (NetToHost32(in[5]) >> 24)) & kBottom28Bits;
621 out[3] = ((NetToHost32(in[3]) << 12) |
622 (NetToHost32(in[4]) >> 20)) & kBottom28Bits;
623 out[4] = ((NetToHost32(in[2]) << 16) |
624 (NetToHost32(in[3]) >> 16)) & kBottom28Bits;
625 out[5] = ((NetToHost32(in[1]) << 20) |
626 (NetToHost32(in[2]) >> 12)) & kBottom28Bits;
627 out[6] = ((NetToHost32(in[0]) << 24) |
628 (NetToHost32(in[1]) >> 8)) & kBottom28Bits;
629 out[7] = (NetToHost32(in[0]) >> 4) & kBottom28Bits;
630 }
631
632 // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from
633 // each of 8 input words and writing them in big-endian order to 7 words at
634 // out.
Put224Bits(uint32_t * out,const uint32_t * in)635 void Put224Bits(uint32_t* out, const uint32_t* in) {
636 out[6] = HostToNet32((in[0] >> 0) | (in[1] << 28));
637 out[5] = HostToNet32((in[1] >> 4) | (in[2] << 24));
638 out[4] = HostToNet32((in[2] >> 8) | (in[3] << 20));
639 out[3] = HostToNet32((in[3] >> 12) | (in[4] << 16));
640 out[2] = HostToNet32((in[4] >> 16) | (in[5] << 12));
641 out[1] = HostToNet32((in[5] >> 20) | (in[6] << 8));
642 out[0] = HostToNet32((in[6] >> 24) | (in[7] << 4));
643 }
644
645 } // anonymous namespace
646
647 namespace crypto {
648
649 namespace p224 {
650
SetFromString(base::StringPiece in)651 bool Point::SetFromString(base::StringPiece in) {
652 if (in.size() != 2*28)
653 return false;
654 const uint32_t* inwords = reinterpret_cast<const uint32_t*>(in.data());
655 Get224Bits(x, inwords);
656 Get224Bits(y, inwords + 7);
657 memset(&z, 0, sizeof(z));
658 z[0] = 1;
659
660 // Check that the point is on the curve, i.e. that y² = x³ - 3x + b.
661 FieldElement lhs;
662 Square(&lhs, y);
663 Contract(&lhs);
664
665 FieldElement rhs;
666 Square(&rhs, x);
667 Mul(&rhs, x, rhs);
668
669 FieldElement three_x;
670 for (int i = 0; i < 8; i++) {
671 three_x[i] = x[i] * 3;
672 }
673 Reduce(&three_x);
674 Subtract(&rhs, rhs, three_x);
675 Reduce(&rhs);
676
677 ::Add(&rhs, rhs, kB);
678 Contract(&rhs);
679 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
680 }
681
ToString() const682 std::string Point::ToString() const {
683 FieldElement zinv, zinv_sq, xx, yy;
684
685 // If this is the point at infinity we return a string of all zeros.
686 if (IsZero(this->z)) {
687 static const char zeros[56] = {0};
688 return std::string(zeros, sizeof(zeros));
689 }
690
691 Invert(&zinv, this->z);
692 Square(&zinv_sq, zinv);
693 Mul(&xx, x, zinv_sq);
694 Mul(&zinv_sq, zinv_sq, zinv);
695 Mul(&yy, y, zinv_sq);
696
697 Contract(&xx);
698 Contract(&yy);
699
700 uint32_t outwords[14];
701 Put224Bits(outwords, xx);
702 Put224Bits(outwords + 7, yy);
703 return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords));
704 }
705
ScalarMult(const Point & in,const uint8_t * scalar,Point * out)706 void ScalarMult(const Point& in, const uint8_t* scalar, Point* out) {
707 ::ScalarMult(out, in, scalar, 28);
708 }
709
710 // kBasePoint is the base point (generator) of the elliptic curve group.
711 static const Point kBasePoint = {
712 {22813985, 52956513, 34677300, 203240812,
713 12143107, 133374265, 225162431, 191946955},
714 {83918388, 223877528, 122119236, 123340192,
715 266784067, 263504429, 146143011, 198407736},
716 {1, 0, 0, 0, 0, 0, 0, 0},
717 };
718
ScalarBaseMult(const uint8_t * scalar,Point * out)719 void ScalarBaseMult(const uint8_t* scalar, Point* out) {
720 ::ScalarMult(out, kBasePoint, scalar, 28);
721 }
722
Add(const Point & a,const Point & b,Point * out)723 void Add(const Point& a, const Point& b, Point* out) {
724 AddJacobian(out, a, b);
725 }
726
Negate(const Point & in,Point * out)727 void Negate(const Point& in, Point* out) {
728 // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z)
729 // is the negative in Jacobian coordinates, but it doesn't actually appear to
730 // be true in testing so this performs the negation in affine coordinates.
731 FieldElement zinv, zinv_sq, y;
732 Invert(&zinv, in.z);
733 Square(&zinv_sq, zinv);
734 Mul(&out->x, in.x, zinv_sq);
735 Mul(&zinv_sq, zinv_sq, zinv);
736 Mul(&y, in.y, zinv_sq);
737
738 Subtract(&out->y, kP, y);
739 Reduce(&out->y);
740
741 memset(&out->z, 0, sizeof(out->z));
742 out->z[0] = 1;
743 }
744
745 } // namespace p224
746
747 } // namespace crypto
748