• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 Google Inc. All rights reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "benchmark_register.h"
16 
17 #ifndef BENCHMARK_OS_WINDOWS
18 #ifndef BENCHMARK_OS_FUCHSIA
19 #include <sys/resource.h>
20 #endif
21 #include <sys/time.h>
22 #include <unistd.h>
23 #endif
24 
25 #include <algorithm>
26 #include <atomic>
27 #include <condition_variable>
28 #include <cstdio>
29 #include <cstdlib>
30 #include <cstring>
31 #include <fstream>
32 #include <iostream>
33 #include <memory>
34 #include <sstream>
35 #include <thread>
36 
37 #include "benchmark/benchmark.h"
38 #include "benchmark_api_internal.h"
39 #include "check.h"
40 #include "commandlineflags.h"
41 #include "complexity.h"
42 #include "internal_macros.h"
43 #include "log.h"
44 #include "mutex.h"
45 #include "re.h"
46 #include "statistics.h"
47 #include "string_util.h"
48 #include "timers.h"
49 
50 namespace benchmark {
51 
52 namespace {
53 // For non-dense Range, intermediate values are powers of kRangeMultiplier.
54 static const int kRangeMultiplier = 8;
55 // The size of a benchmark family determines is the number of inputs to repeat
56 // the benchmark on. If this is "large" then warn the user during configuration.
57 static const size_t kMaxFamilySize = 100;
58 }  // end namespace
59 
60 namespace internal {
61 
62 //=============================================================================//
63 //                         BenchmarkFamilies
64 //=============================================================================//
65 
66 // Class for managing registered benchmarks.  Note that each registered
67 // benchmark identifies a family of related benchmarks to run.
68 class BenchmarkFamilies {
69  public:
70   static BenchmarkFamilies* GetInstance();
71 
72   // Registers a benchmark family and returns the index assigned to it.
73   size_t AddBenchmark(std::unique_ptr<Benchmark> family);
74 
75   // Clear all registered benchmark families.
76   void ClearBenchmarks();
77 
78   // Extract the list of benchmark instances that match the specified
79   // regular expression.
80   bool FindBenchmarks(std::string re,
81                       std::vector<BenchmarkInstance>* benchmarks,
82                       std::ostream* Err);
83 
84  private:
BenchmarkFamilies()85   BenchmarkFamilies() {}
86 
87   std::vector<std::unique_ptr<Benchmark>> families_;
88   Mutex mutex_;
89 };
90 
GetInstance()91 BenchmarkFamilies* BenchmarkFamilies::GetInstance() {
92   static BenchmarkFamilies instance;
93   return &instance;
94 }
95 
AddBenchmark(std::unique_ptr<Benchmark> family)96 size_t BenchmarkFamilies::AddBenchmark(std::unique_ptr<Benchmark> family) {
97   MutexLock l(mutex_);
98   size_t index = families_.size();
99   families_.push_back(std::move(family));
100   return index;
101 }
102 
ClearBenchmarks()103 void BenchmarkFamilies::ClearBenchmarks() {
104   MutexLock l(mutex_);
105   families_.clear();
106   families_.shrink_to_fit();
107 }
108 
FindBenchmarks(std::string spec,std::vector<BenchmarkInstance> * benchmarks,std::ostream * ErrStream)109 bool BenchmarkFamilies::FindBenchmarks(
110     std::string spec, std::vector<BenchmarkInstance>* benchmarks,
111     std::ostream* ErrStream) {
112   CHECK(ErrStream);
113   auto& Err = *ErrStream;
114   // Make regular expression out of command-line flag
115   std::string error_msg;
116   Regex re;
117   bool isNegativeFilter = false;
118   if (spec[0] == '-') {
119     spec.replace(0, 1, "");
120     isNegativeFilter = true;
121   }
122   if (!re.Init(spec, &error_msg)) {
123     Err << "Could not compile benchmark re: " << error_msg << std::endl;
124     return false;
125   }
126 
127   // Special list of thread counts to use when none are specified
128   const std::vector<int> one_thread = {1};
129 
130   MutexLock l(mutex_);
131   for (std::unique_ptr<Benchmark>& family : families_) {
132     // Family was deleted or benchmark doesn't match
133     if (!family) continue;
134 
135     if (family->ArgsCnt() == -1) {
136       family->Args({});
137     }
138     const std::vector<int>* thread_counts =
139         (family->thread_counts_.empty()
140              ? &one_thread
141              : &static_cast<const std::vector<int>&>(family->thread_counts_));
142     const size_t family_size = family->args_.size() * thread_counts->size();
143     // The benchmark will be run at least 'family_size' different inputs.
144     // If 'family_size' is very large warn the user.
145     if (family_size > kMaxFamilySize) {
146       Err << "The number of inputs is very large. " << family->name_
147           << " will be repeated at least " << family_size << " times.\n";
148     }
149     // reserve in the special case the regex ".", since we know the final
150     // family size.
151     if (spec == ".") benchmarks->reserve(family_size);
152 
153     for (auto const& args : family->args_) {
154       for (int num_threads : *thread_counts) {
155         BenchmarkInstance instance;
156         instance.name = family->name_;
157         instance.benchmark = family.get();
158         instance.aggregation_report_mode = family->aggregation_report_mode_;
159         instance.arg = args;
160         instance.time_unit = family->time_unit_;
161         instance.range_multiplier = family->range_multiplier_;
162         instance.min_time = family->min_time_;
163         instance.iterations = family->iterations_;
164         instance.repetitions = family->repetitions_;
165         instance.use_real_time = family->use_real_time_;
166         instance.use_manual_time = family->use_manual_time_;
167         instance.complexity = family->complexity_;
168         instance.complexity_lambda = family->complexity_lambda_;
169         instance.statistics = &family->statistics_;
170         instance.threads = num_threads;
171 
172         // Add arguments to instance name
173         size_t arg_i = 0;
174         for (auto const& arg : args) {
175           instance.name += "/";
176 
177           if (arg_i < family->arg_names_.size()) {
178             const auto& arg_name = family->arg_names_[arg_i];
179             if (!arg_name.empty()) {
180               instance.name +=
181                   StrFormat("%s:", family->arg_names_[arg_i].c_str());
182             }
183           }
184 
185           // we know that the args are always non-negative (see 'AddRange()'),
186           // thus print as 'unsigned'. BUT, do a cast due to the 32-bit builds.
187           instance.name += StrFormat("%lu", static_cast<unsigned long>(arg));
188           ++arg_i;
189         }
190 
191         if (!IsZero(family->min_time_))
192           instance.name += StrFormat("/min_time:%0.3f", family->min_time_);
193         if (family->iterations_ != 0) {
194           instance.name +=
195               StrFormat("/iterations:%lu",
196                         static_cast<unsigned long>(family->iterations_));
197         }
198         if (family->repetitions_ != 0)
199           instance.name += StrFormat("/repeats:%d", family->repetitions_);
200 
201         if (family->use_manual_time_) {
202           instance.name += "/manual_time";
203         } else if (family->use_real_time_) {
204           instance.name += "/real_time";
205         }
206 
207         // Add the number of threads used to the name
208         if (!family->thread_counts_.empty()) {
209           instance.name += StrFormat("/threads:%d", instance.threads);
210         }
211 
212         if ((re.Match(instance.name) && !isNegativeFilter) ||
213             (!re.Match(instance.name) && isNegativeFilter)) {
214           instance.last_benchmark_instance = (&args == &family->args_.back());
215           benchmarks->push_back(std::move(instance));
216         }
217       }
218     }
219   }
220   return true;
221 }
222 
RegisterBenchmarkInternal(Benchmark * bench)223 Benchmark* RegisterBenchmarkInternal(Benchmark* bench) {
224   std::unique_ptr<Benchmark> bench_ptr(bench);
225   BenchmarkFamilies* families = BenchmarkFamilies::GetInstance();
226   families->AddBenchmark(std::move(bench_ptr));
227   return bench;
228 }
229 
230 // FIXME: This function is a hack so that benchmark.cc can access
231 // `BenchmarkFamilies`
FindBenchmarksInternal(const std::string & re,std::vector<BenchmarkInstance> * benchmarks,std::ostream * Err)232 bool FindBenchmarksInternal(const std::string& re,
233                             std::vector<BenchmarkInstance>* benchmarks,
234                             std::ostream* Err) {
235   return BenchmarkFamilies::GetInstance()->FindBenchmarks(re, benchmarks, Err);
236 }
237 
238 //=============================================================================//
239 //                               Benchmark
240 //=============================================================================//
241 
Benchmark(const char * name)242 Benchmark::Benchmark(const char* name)
243     : name_(name),
244       aggregation_report_mode_(ARM_Unspecified),
245       time_unit_(kNanosecond),
246       range_multiplier_(kRangeMultiplier),
247       min_time_(0),
248       iterations_(0),
249       repetitions_(0),
250       use_real_time_(false),
251       use_manual_time_(false),
252       complexity_(oNone),
253       complexity_lambda_(nullptr) {
254   ComputeStatistics("mean", StatisticsMean);
255   ComputeStatistics("median", StatisticsMedian);
256   ComputeStatistics("stddev", StatisticsStdDev);
257 }
258 
~Benchmark()259 Benchmark::~Benchmark() {}
260 
Arg(int64_t x)261 Benchmark* Benchmark::Arg(int64_t x) {
262   CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
263   args_.push_back({x});
264   return this;
265 }
266 
Unit(TimeUnit unit)267 Benchmark* Benchmark::Unit(TimeUnit unit) {
268   time_unit_ = unit;
269   return this;
270 }
271 
Range(int64_t start,int64_t limit)272 Benchmark* Benchmark::Range(int64_t start, int64_t limit) {
273   CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
274   std::vector<int64_t> arglist;
275   AddRange(&arglist, start, limit, range_multiplier_);
276 
277   for (int64_t i : arglist) {
278     args_.push_back({i});
279   }
280   return this;
281 }
282 
Ranges(const std::vector<std::pair<int64_t,int64_t>> & ranges)283 Benchmark* Benchmark::Ranges(
284     const std::vector<std::pair<int64_t, int64_t>>& ranges) {
285   CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(ranges.size()));
286   std::vector<std::vector<int64_t>> arglists(ranges.size());
287   std::size_t total = 1;
288   for (std::size_t i = 0; i < ranges.size(); i++) {
289     AddRange(&arglists[i], ranges[i].first, ranges[i].second,
290              range_multiplier_);
291     total *= arglists[i].size();
292   }
293 
294   std::vector<std::size_t> ctr(arglists.size(), 0);
295 
296   for (std::size_t i = 0; i < total; i++) {
297     std::vector<int64_t> tmp;
298     tmp.reserve(arglists.size());
299 
300     for (std::size_t j = 0; j < arglists.size(); j++) {
301       tmp.push_back(arglists[j].at(ctr[j]));
302     }
303 
304     args_.push_back(std::move(tmp));
305 
306     for (std::size_t j = 0; j < arglists.size(); j++) {
307       if (ctr[j] + 1 < arglists[j].size()) {
308         ++ctr[j];
309         break;
310       }
311       ctr[j] = 0;
312     }
313   }
314   return this;
315 }
316 
ArgName(const std::string & name)317 Benchmark* Benchmark::ArgName(const std::string& name) {
318   CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
319   arg_names_ = {name};
320   return this;
321 }
322 
ArgNames(const std::vector<std::string> & names)323 Benchmark* Benchmark::ArgNames(const std::vector<std::string>& names) {
324   CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(names.size()));
325   arg_names_ = names;
326   return this;
327 }
328 
DenseRange(int64_t start,int64_t limit,int step)329 Benchmark* Benchmark::DenseRange(int64_t start, int64_t limit, int step) {
330   CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
331   CHECK_GE(start, 0);
332   CHECK_LE(start, limit);
333   for (int64_t arg = start; arg <= limit; arg += step) {
334     args_.push_back({arg});
335   }
336   return this;
337 }
338 
Args(const std::vector<int64_t> & args)339 Benchmark* Benchmark::Args(const std::vector<int64_t>& args) {
340   CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(args.size()));
341   args_.push_back(args);
342   return this;
343 }
344 
Apply(void (* custom_arguments)(Benchmark * benchmark))345 Benchmark* Benchmark::Apply(void (*custom_arguments)(Benchmark* benchmark)) {
346   custom_arguments(this);
347   return this;
348 }
349 
RangeMultiplier(int multiplier)350 Benchmark* Benchmark::RangeMultiplier(int multiplier) {
351   CHECK(multiplier > 1);
352   range_multiplier_ = multiplier;
353   return this;
354 }
355 
MinTime(double t)356 Benchmark* Benchmark::MinTime(double t) {
357   CHECK(t > 0.0);
358   CHECK(iterations_ == 0);
359   min_time_ = t;
360   return this;
361 }
362 
Iterations(size_t n)363 Benchmark* Benchmark::Iterations(size_t n) {
364   CHECK(n > 0);
365   CHECK(IsZero(min_time_));
366   iterations_ = n;
367   return this;
368 }
369 
Repetitions(int n)370 Benchmark* Benchmark::Repetitions(int n) {
371   CHECK(n > 0);
372   repetitions_ = n;
373   return this;
374 }
375 
ReportAggregatesOnly(bool value)376 Benchmark* Benchmark::ReportAggregatesOnly(bool value) {
377   aggregation_report_mode_ = value ? ARM_ReportAggregatesOnly : ARM_Default;
378   return this;
379 }
380 
DisplayAggregatesOnly(bool value)381 Benchmark* Benchmark::DisplayAggregatesOnly(bool value) {
382   // If we were called, the report mode is no longer 'unspecified', in any case.
383   aggregation_report_mode_ = static_cast<AggregationReportMode>(
384       aggregation_report_mode_ | ARM_Default);
385 
386   if (value) {
387     aggregation_report_mode_ = static_cast<AggregationReportMode>(
388         aggregation_report_mode_ | ARM_DisplayReportAggregatesOnly);
389   } else {
390     aggregation_report_mode_ = static_cast<AggregationReportMode>(
391         aggregation_report_mode_ & ~ARM_DisplayReportAggregatesOnly);
392   }
393 
394   return this;
395 }
396 
UseRealTime()397 Benchmark* Benchmark::UseRealTime() {
398   CHECK(!use_manual_time_)
399       << "Cannot set UseRealTime and UseManualTime simultaneously.";
400   use_real_time_ = true;
401   return this;
402 }
403 
UseManualTime()404 Benchmark* Benchmark::UseManualTime() {
405   CHECK(!use_real_time_)
406       << "Cannot set UseRealTime and UseManualTime simultaneously.";
407   use_manual_time_ = true;
408   return this;
409 }
410 
Complexity(BigO complexity)411 Benchmark* Benchmark::Complexity(BigO complexity) {
412   complexity_ = complexity;
413   return this;
414 }
415 
Complexity(BigOFunc * complexity)416 Benchmark* Benchmark::Complexity(BigOFunc* complexity) {
417   complexity_lambda_ = complexity;
418   complexity_ = oLambda;
419   return this;
420 }
421 
ComputeStatistics(std::string name,StatisticsFunc * statistics)422 Benchmark* Benchmark::ComputeStatistics(std::string name,
423                                         StatisticsFunc* statistics) {
424   statistics_.emplace_back(name, statistics);
425   return this;
426 }
427 
Threads(int t)428 Benchmark* Benchmark::Threads(int t) {
429   CHECK_GT(t, 0);
430   thread_counts_.push_back(t);
431   return this;
432 }
433 
ThreadRange(int min_threads,int max_threads)434 Benchmark* Benchmark::ThreadRange(int min_threads, int max_threads) {
435   CHECK_GT(min_threads, 0);
436   CHECK_GE(max_threads, min_threads);
437 
438   AddRange(&thread_counts_, min_threads, max_threads, 2);
439   return this;
440 }
441 
DenseThreadRange(int min_threads,int max_threads,int stride)442 Benchmark* Benchmark::DenseThreadRange(int min_threads, int max_threads,
443                                        int stride) {
444   CHECK_GT(min_threads, 0);
445   CHECK_GE(max_threads, min_threads);
446   CHECK_GE(stride, 1);
447 
448   for (auto i = min_threads; i < max_threads; i += stride) {
449     thread_counts_.push_back(i);
450   }
451   thread_counts_.push_back(max_threads);
452   return this;
453 }
454 
ThreadPerCpu()455 Benchmark* Benchmark::ThreadPerCpu() {
456   thread_counts_.push_back(CPUInfo::Get().num_cpus);
457   return this;
458 }
459 
SetName(const char * name)460 void Benchmark::SetName(const char* name) { name_ = name; }
461 
ArgsCnt() const462 int Benchmark::ArgsCnt() const {
463   if (args_.empty()) {
464     if (arg_names_.empty()) return -1;
465     return static_cast<int>(arg_names_.size());
466   }
467   return static_cast<int>(args_.front().size());
468 }
469 
470 //=============================================================================//
471 //                            FunctionBenchmark
472 //=============================================================================//
473 
Run(State & st)474 void FunctionBenchmark::Run(State& st) { func_(st); }
475 
476 }  // end namespace internal
477 
ClearRegisteredBenchmarks()478 void ClearRegisteredBenchmarks() {
479   internal::BenchmarkFamilies::GetInstance()->ClearBenchmarks();
480 }
481 
482 }  // end namespace benchmark
483