1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // Source project : https://github.com/ismaelJimenez/cpp.leastsq
16 // Adapted to be used with google benchmark
17
18 #include "benchmark/benchmark.h"
19
20 #include <algorithm>
21 #include <cmath>
22 #include "check.h"
23 #include "complexity.h"
24
25 namespace benchmark {
26
27 // Internal function to calculate the different scalability forms
FittingCurve(BigO complexity)28 BigOFunc* FittingCurve(BigO complexity) {
29 static const double kLog2E = 1.44269504088896340736;
30 switch (complexity) {
31 case oN:
32 return [](int64_t n) -> double { return static_cast<double>(n); };
33 case oNSquared:
34 return [](int64_t n) -> double { return std::pow(n, 2); };
35 case oNCubed:
36 return [](int64_t n) -> double { return std::pow(n, 3); };
37 case oLogN:
38 /* Note: can't use log2 because Android's GNU STL lacks it */
39 return [](int64_t n) { return kLog2E * log(static_cast<double>(n)); };
40 case oNLogN:
41 /* Note: can't use log2 because Android's GNU STL lacks it */
42 return [](int64_t n) { return kLog2E * n * log(static_cast<double>(n)); };
43 case o1:
44 default:
45 return [](int64_t) { return 1.0; };
46 }
47 }
48
49 // Function to return an string for the calculated complexity
GetBigOString(BigO complexity)50 std::string GetBigOString(BigO complexity) {
51 switch (complexity) {
52 case oN:
53 return "N";
54 case oNSquared:
55 return "N^2";
56 case oNCubed:
57 return "N^3";
58 case oLogN:
59 return "lgN";
60 case oNLogN:
61 return "NlgN";
62 case o1:
63 return "(1)";
64 default:
65 return "f(N)";
66 }
67 }
68
69 // Find the coefficient for the high-order term in the running time, by
70 // minimizing the sum of squares of relative error, for the fitting curve
71 // given by the lambda expression.
72 // - n : Vector containing the size of the benchmark tests.
73 // - time : Vector containing the times for the benchmark tests.
74 // - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
75
76 // For a deeper explanation on the algorithm logic, please refer to
77 // https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics
78
MinimalLeastSq(const std::vector<int64_t> & n,const std::vector<double> & time,BigOFunc * fitting_curve)79 LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
80 const std::vector<double>& time,
81 BigOFunc* fitting_curve) {
82 double sigma_gn = 0.0;
83 double sigma_gn_squared = 0.0;
84 double sigma_time = 0.0;
85 double sigma_time_gn = 0.0;
86
87 // Calculate least square fitting parameter
88 for (size_t i = 0; i < n.size(); ++i) {
89 double gn_i = fitting_curve(n[i]);
90 sigma_gn += gn_i;
91 sigma_gn_squared += gn_i * gn_i;
92 sigma_time += time[i];
93 sigma_time_gn += time[i] * gn_i;
94 }
95
96 LeastSq result;
97 result.complexity = oLambda;
98
99 // Calculate complexity.
100 result.coef = sigma_time_gn / sigma_gn_squared;
101
102 // Calculate RMS
103 double rms = 0.0;
104 for (size_t i = 0; i < n.size(); ++i) {
105 double fit = result.coef * fitting_curve(n[i]);
106 rms += pow((time[i] - fit), 2);
107 }
108
109 // Normalized RMS by the mean of the observed values
110 double mean = sigma_time / n.size();
111 result.rms = sqrt(rms / n.size()) / mean;
112
113 return result;
114 }
115
116 // Find the coefficient for the high-order term in the running time, by
117 // minimizing the sum of squares of relative error.
118 // - n : Vector containing the size of the benchmark tests.
119 // - time : Vector containing the times for the benchmark tests.
120 // - complexity : If different than oAuto, the fitting curve will stick to
121 // this one. If it is oAuto, it will be calculated the best
122 // fitting curve.
MinimalLeastSq(const std::vector<int64_t> & n,const std::vector<double> & time,const BigO complexity)123 LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
124 const std::vector<double>& time, const BigO complexity) {
125 CHECK_EQ(n.size(), time.size());
126 CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
127 // benchmark runs are given
128 CHECK_NE(complexity, oNone);
129
130 LeastSq best_fit;
131
132 if (complexity == oAuto) {
133 std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
134
135 // Take o1 as default best fitting curve
136 best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
137 best_fit.complexity = o1;
138
139 // Compute all possible fitting curves and stick to the best one
140 for (const auto& fit : fit_curves) {
141 LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
142 if (current_fit.rms < best_fit.rms) {
143 best_fit = current_fit;
144 best_fit.complexity = fit;
145 }
146 }
147 } else {
148 best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
149 best_fit.complexity = complexity;
150 }
151
152 return best_fit;
153 }
154
ComputeBigO(const std::vector<BenchmarkReporter::Run> & reports)155 std::vector<BenchmarkReporter::Run> ComputeBigO(
156 const std::vector<BenchmarkReporter::Run>& reports) {
157 typedef BenchmarkReporter::Run Run;
158 std::vector<Run> results;
159
160 if (reports.size() < 2) return results;
161
162 // Accumulators.
163 std::vector<int64_t> n;
164 std::vector<double> real_time;
165 std::vector<double> cpu_time;
166
167 // Populate the accumulators.
168 for (const Run& run : reports) {
169 CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
170 n.push_back(run.complexity_n);
171 real_time.push_back(run.real_accumulated_time / run.iterations);
172 cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
173 }
174
175 LeastSq result_cpu;
176 LeastSq result_real;
177
178 if (reports[0].complexity == oLambda) {
179 result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
180 result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
181 } else {
182 result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
183 result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
184 }
185
186 std::string run_name = reports[0].benchmark_name().substr(
187 0, reports[0].benchmark_name().find('/'));
188
189 // Get the data from the accumulator to BenchmarkReporter::Run's.
190 Run big_o;
191 big_o.run_name = run_name;
192 big_o.run_type = BenchmarkReporter::Run::RT_Aggregate;
193 big_o.aggregate_name = "BigO";
194 big_o.iterations = 0;
195 big_o.real_accumulated_time = result_real.coef;
196 big_o.cpu_accumulated_time = result_cpu.coef;
197 big_o.report_big_o = true;
198 big_o.complexity = result_cpu.complexity;
199
200 // All the time results are reported after being multiplied by the
201 // time unit multiplier. But since RMS is a relative quantity it
202 // should not be multiplied at all. So, here, we _divide_ it by the
203 // multiplier so that when it is multiplied later the result is the
204 // correct one.
205 double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
206
207 // Only add label to mean/stddev if it is same for all runs
208 Run rms;
209 rms.run_name = run_name;
210 big_o.report_label = reports[0].report_label;
211 rms.run_type = BenchmarkReporter::Run::RT_Aggregate;
212 rms.aggregate_name = "RMS";
213 rms.report_label = big_o.report_label;
214 rms.iterations = 0;
215 rms.real_accumulated_time = result_real.rms / multiplier;
216 rms.cpu_accumulated_time = result_cpu.rms / multiplier;
217 rms.report_rms = true;
218 rms.complexity = result_cpu.complexity;
219 // don't forget to keep the time unit, or we won't be able to
220 // recover the correct value.
221 rms.time_unit = reports[0].time_unit;
222
223 results.push_back(big_o);
224 results.push_back(rms);
225 return results;
226 }
227
228 } // end namespace benchmark
229