1; 2; jdsample.asm - upsampling (64-bit SSE2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2009, 2016, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; [TAB8] 18 19%include "jsimdext.inc" 20 21; -------------------------------------------------------------------------- 22 SECTION SEG_CONST 23 24 alignz 32 25 GLOBAL_DATA(jconst_fancy_upsample_sse2) 26 27EXTN(jconst_fancy_upsample_sse2): 28 29PW_ONE times 8 dw 1 30PW_TWO times 8 dw 2 31PW_THREE times 8 dw 3 32PW_SEVEN times 8 dw 7 33PW_EIGHT times 8 dw 8 34 35 alignz 32 36 37; -------------------------------------------------------------------------- 38 SECTION SEG_TEXT 39 BITS 64 40; 41; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. 42; 43; The upsampling algorithm is linear interpolation between pixel centers, 44; also known as a "triangle filter". This is a good compromise between 45; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 46; of the way between input pixel centers. 47; 48; GLOBAL(void) 49; jsimd_h2v1_fancy_upsample_sse2(int max_v_samp_factor, 50; JDIMENSION downsampled_width, 51; JSAMPARRAY input_data, 52; JSAMPARRAY *output_data_ptr); 53; 54 55; r10 = int max_v_samp_factor 56; r11d = JDIMENSION downsampled_width 57; r12 = JSAMPARRAY input_data 58; r13 = JSAMPARRAY *output_data_ptr 59 60 align 32 61 GLOBAL_FUNCTION(jsimd_h2v1_fancy_upsample_sse2) 62 63EXTN(jsimd_h2v1_fancy_upsample_sse2): 64 push rbp 65 mov rax, rsp 66 mov rbp, rsp 67 collect_args 4 68 69 mov eax, r11d ; colctr 70 test rax, rax 71 jz near .return 72 73 mov rcx, r10 ; rowctr 74 test rcx, rcx 75 jz near .return 76 77 mov rsi, r12 ; input_data 78 mov rdi, r13 79 mov rdi, JSAMPARRAY [rdi] ; output_data 80.rowloop: 81 push rax ; colctr 82 push rdi 83 push rsi 84 85 mov rsi, JSAMPROW [rsi] ; inptr 86 mov rdi, JSAMPROW [rdi] ; outptr 87 88 test rax, SIZEOF_XMMWORD-1 89 jz short .skip 90 mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] 91 mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample 92.skip: 93 pxor xmm0, xmm0 ; xmm0=(all 0's) 94 pcmpeqb xmm7, xmm7 95 psrldq xmm7, (SIZEOF_XMMWORD-1) 96 pand xmm7, XMMWORD [rsi+0*SIZEOF_XMMWORD] 97 98 add rax, byte SIZEOF_XMMWORD-1 99 and rax, byte -SIZEOF_XMMWORD 100 cmp rax, byte SIZEOF_XMMWORD 101 ja short .columnloop 102 103.columnloop_last: 104 pcmpeqb xmm6, xmm6 105 pslldq xmm6, (SIZEOF_XMMWORD-1) 106 pand xmm6, XMMWORD [rsi+0*SIZEOF_XMMWORD] 107 jmp short .upsample 108 109.columnloop: 110 movdqa xmm6, XMMWORD [rsi+1*SIZEOF_XMMWORD] 111 pslldq xmm6, (SIZEOF_XMMWORD-1) 112 113.upsample: 114 movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] 115 movdqa xmm2, xmm1 116 movdqa xmm3, xmm1 ; xmm1=( 0 1 2 ... 13 14 15) 117 pslldq xmm2, 1 ; xmm2=(-- 0 1 ... 12 13 14) 118 psrldq xmm3, 1 ; xmm3=( 1 2 3 ... 14 15 --) 119 120 por xmm2, xmm7 ; xmm2=(-1 0 1 ... 12 13 14) 121 por xmm3, xmm6 ; xmm3=( 1 2 3 ... 14 15 16) 122 123 movdqa xmm7, xmm1 124 psrldq xmm7, (SIZEOF_XMMWORD-1) ; xmm7=(15 -- -- ... -- -- --) 125 126 movdqa xmm4, xmm1 127 punpcklbw xmm1, xmm0 ; xmm1=( 0 1 2 3 4 5 6 7) 128 punpckhbw xmm4, xmm0 ; xmm4=( 8 9 10 11 12 13 14 15) 129 movdqa xmm5, xmm2 130 punpcklbw xmm2, xmm0 ; xmm2=(-1 0 1 2 3 4 5 6) 131 punpckhbw xmm5, xmm0 ; xmm5=( 7 8 9 10 11 12 13 14) 132 movdqa xmm6, xmm3 133 punpcklbw xmm3, xmm0 ; xmm3=( 1 2 3 4 5 6 7 8) 134 punpckhbw xmm6, xmm0 ; xmm6=( 9 10 11 12 13 14 15 16) 135 136 pmullw xmm1, [rel PW_THREE] 137 pmullw xmm4, [rel PW_THREE] 138 paddw xmm2, [rel PW_ONE] 139 paddw xmm5, [rel PW_ONE] 140 paddw xmm3, [rel PW_TWO] 141 paddw xmm6, [rel PW_TWO] 142 143 paddw xmm2, xmm1 144 paddw xmm5, xmm4 145 psrlw xmm2, 2 ; xmm2=OutLE=( 0 2 4 6 8 10 12 14) 146 psrlw xmm5, 2 ; xmm5=OutHE=(16 18 20 22 24 26 28 30) 147 paddw xmm3, xmm1 148 paddw xmm6, xmm4 149 psrlw xmm3, 2 ; xmm3=OutLO=( 1 3 5 7 9 11 13 15) 150 psrlw xmm6, 2 ; xmm6=OutHO=(17 19 21 23 25 27 29 31) 151 152 psllw xmm3, BYTE_BIT 153 psllw xmm6, BYTE_BIT 154 por xmm2, xmm3 ; xmm2=OutL=( 0 1 2 ... 13 14 15) 155 por xmm5, xmm6 ; xmm5=OutH=(16 17 18 ... 29 30 31) 156 157 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm2 158 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm5 159 160 sub rax, byte SIZEOF_XMMWORD 161 add rsi, byte 1*SIZEOF_XMMWORD ; inptr 162 add rdi, byte 2*SIZEOF_XMMWORD ; outptr 163 cmp rax, byte SIZEOF_XMMWORD 164 ja near .columnloop 165 test eax, eax 166 jnz near .columnloop_last 167 168 pop rsi 169 pop rdi 170 pop rax 171 172 add rsi, byte SIZEOF_JSAMPROW ; input_data 173 add rdi, byte SIZEOF_JSAMPROW ; output_data 174 dec rcx ; rowctr 175 jg near .rowloop 176 177.return: 178 uncollect_args 4 179 pop rbp 180 ret 181 182; -------------------------------------------------------------------------- 183; 184; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. 185; Again a triangle filter; see comments for h2v1 case, above. 186; 187; GLOBAL(void) 188; jsimd_h2v2_fancy_upsample_sse2(int max_v_samp_factor, 189; JDIMENSION downsampled_width, 190; JSAMPARRAY input_data, 191; JSAMPARRAY *output_data_ptr); 192; 193 194; r10 = int max_v_samp_factor 195; r11d = JDIMENSION downsampled_width 196; r12 = JSAMPARRAY input_data 197; r13 = JSAMPARRAY *output_data_ptr 198 199%define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] 200%define WK_NUM 4 201 202 align 32 203 GLOBAL_FUNCTION(jsimd_h2v2_fancy_upsample_sse2) 204 205EXTN(jsimd_h2v2_fancy_upsample_sse2): 206 push rbp 207 mov rax, rsp ; rax = original rbp 208 sub rsp, byte 4 209 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 210 mov [rsp], rax 211 mov rbp, rsp ; rbp = aligned rbp 212 lea rsp, [wk(0)] 213 collect_args 4 214 push rbx 215 216 mov eax, r11d ; colctr 217 test rax, rax 218 jz near .return 219 220 mov rcx, r10 ; rowctr 221 test rcx, rcx 222 jz near .return 223 224 mov rsi, r12 ; input_data 225 mov rdi, r13 226 mov rdi, JSAMPARRAY [rdi] ; output_data 227.rowloop: 228 push rax ; colctr 229 push rcx 230 push rdi 231 push rsi 232 233 mov rcx, JSAMPROW [rsi-1*SIZEOF_JSAMPROW] ; inptr1(above) 234 mov rbx, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 235 mov rsi, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1(below) 236 mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 237 mov rdi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 238 239 test rax, SIZEOF_XMMWORD-1 240 jz short .skip 241 push rdx 242 mov dl, JSAMPLE [rcx+(rax-1)*SIZEOF_JSAMPLE] 243 mov JSAMPLE [rcx+rax*SIZEOF_JSAMPLE], dl 244 mov dl, JSAMPLE [rbx+(rax-1)*SIZEOF_JSAMPLE] 245 mov JSAMPLE [rbx+rax*SIZEOF_JSAMPLE], dl 246 mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] 247 mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample 248 pop rdx 249.skip: 250 ; -- process the first column block 251 252 movdqa xmm0, XMMWORD [rbx+0*SIZEOF_XMMWORD] ; xmm0=row[ 0][0] 253 movdqa xmm1, XMMWORD [rcx+0*SIZEOF_XMMWORD] ; xmm1=row[-1][0] 254 movdqa xmm2, XMMWORD [rsi+0*SIZEOF_XMMWORD] ; xmm2=row[+1][0] 255 256 pxor xmm3, xmm3 ; xmm3=(all 0's) 257 movdqa xmm4, xmm0 258 punpcklbw xmm0, xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) 259 punpckhbw xmm4, xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) 260 movdqa xmm5, xmm1 261 punpcklbw xmm1, xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) 262 punpckhbw xmm5, xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) 263 movdqa xmm6, xmm2 264 punpcklbw xmm2, xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) 265 punpckhbw xmm6, xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) 266 267 pmullw xmm0, [rel PW_THREE] 268 pmullw xmm4, [rel PW_THREE] 269 270 pcmpeqb xmm7, xmm7 271 psrldq xmm7, (SIZEOF_XMMWORD-2) 272 273 paddw xmm1, xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) 274 paddw xmm5, xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) 275 paddw xmm2, xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) 276 paddw xmm6, xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) 277 278 movdqa XMMWORD [rdx+0*SIZEOF_XMMWORD], xmm1 ; temporarily save 279 movdqa XMMWORD [rdx+1*SIZEOF_XMMWORD], xmm5 ; the intermediate data 280 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm2 281 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm6 282 283 pand xmm1, xmm7 ; xmm1=( 0 -- -- -- -- -- -- --) 284 pand xmm2, xmm7 ; xmm2=( 0 -- -- -- -- -- -- --) 285 286 movdqa XMMWORD [wk(0)], xmm1 287 movdqa XMMWORD [wk(1)], xmm2 288 289 add rax, byte SIZEOF_XMMWORD-1 290 and rax, byte -SIZEOF_XMMWORD 291 cmp rax, byte SIZEOF_XMMWORD 292 ja short .columnloop 293 294.columnloop_last: 295 ; -- process the last column block 296 297 pcmpeqb xmm1, xmm1 298 pslldq xmm1, (SIZEOF_XMMWORD-2) 299 movdqa xmm2, xmm1 300 301 pand xmm1, XMMWORD [rdx+1*SIZEOF_XMMWORD] 302 pand xmm2, XMMWORD [rdi+1*SIZEOF_XMMWORD] 303 304 movdqa XMMWORD [wk(2)], xmm1 ; xmm1=(-- -- -- -- -- -- -- 15) 305 movdqa XMMWORD [wk(3)], xmm2 ; xmm2=(-- -- -- -- -- -- -- 15) 306 307 jmp near .upsample 308 309.columnloop: 310 ; -- process the next column block 311 312 movdqa xmm0, XMMWORD [rbx+1*SIZEOF_XMMWORD] ; xmm0=row[ 0][1] 313 movdqa xmm1, XMMWORD [rcx+1*SIZEOF_XMMWORD] ; xmm1=row[-1][1] 314 movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] ; xmm2=row[+1][1] 315 316 pxor xmm3, xmm3 ; xmm3=(all 0's) 317 movdqa xmm4, xmm0 318 punpcklbw xmm0, xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) 319 punpckhbw xmm4, xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) 320 movdqa xmm5, xmm1 321 punpcklbw xmm1, xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) 322 punpckhbw xmm5, xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) 323 movdqa xmm6, xmm2 324 punpcklbw xmm2, xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) 325 punpckhbw xmm6, xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) 326 327 pmullw xmm0, [rel PW_THREE] 328 pmullw xmm4, [rel PW_THREE] 329 330 paddw xmm1, xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) 331 paddw xmm5, xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) 332 paddw xmm2, xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) 333 paddw xmm6, xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) 334 335 movdqa XMMWORD [rdx+2*SIZEOF_XMMWORD], xmm1 ; temporarily save 336 movdqa XMMWORD [rdx+3*SIZEOF_XMMWORD], xmm5 ; the intermediate data 337 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 338 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm6 339 340 pslldq xmm1, (SIZEOF_XMMWORD-2) ; xmm1=(-- -- -- -- -- -- -- 0) 341 pslldq xmm2, (SIZEOF_XMMWORD-2) ; xmm2=(-- -- -- -- -- -- -- 0) 342 343 movdqa XMMWORD [wk(2)], xmm1 344 movdqa XMMWORD [wk(3)], xmm2 345 346.upsample: 347 ; -- process the upper row 348 349 movdqa xmm7, XMMWORD [rdx+0*SIZEOF_XMMWORD] 350 movdqa xmm3, XMMWORD [rdx+1*SIZEOF_XMMWORD] 351 352 movdqa xmm0, xmm7 ; xmm7=Int0L=( 0 1 2 3 4 5 6 7) 353 movdqa xmm4, xmm3 ; xmm3=Int0H=( 8 9 10 11 12 13 14 15) 354 psrldq xmm0, 2 ; xmm0=( 1 2 3 4 5 6 7 --) 355 pslldq xmm4, (SIZEOF_XMMWORD-2) ; xmm4=(-- -- -- -- -- -- -- 8) 356 movdqa xmm5, xmm7 357 movdqa xmm6, xmm3 358 psrldq xmm5, (SIZEOF_XMMWORD-2) ; xmm5=( 7 -- -- -- -- -- -- --) 359 pslldq xmm6, 2 ; xmm6=(-- 8 9 10 11 12 13 14) 360 361 por xmm0, xmm4 ; xmm0=( 1 2 3 4 5 6 7 8) 362 por xmm5, xmm6 ; xmm5=( 7 8 9 10 11 12 13 14) 363 364 movdqa xmm1, xmm7 365 movdqa xmm2, xmm3 366 pslldq xmm1, 2 ; xmm1=(-- 0 1 2 3 4 5 6) 367 psrldq xmm2, 2 ; xmm2=( 9 10 11 12 13 14 15 --) 368 movdqa xmm4, xmm3 369 psrldq xmm4, (SIZEOF_XMMWORD-2) ; xmm4=(15 -- -- -- -- -- -- --) 370 371 por xmm1, XMMWORD [wk(0)] ; xmm1=(-1 0 1 2 3 4 5 6) 372 por xmm2, XMMWORD [wk(2)] ; xmm2=( 9 10 11 12 13 14 15 16) 373 374 movdqa XMMWORD [wk(0)], xmm4 375 376 pmullw xmm7, [rel PW_THREE] 377 pmullw xmm3, [rel PW_THREE] 378 paddw xmm1, [rel PW_EIGHT] 379 paddw xmm5, [rel PW_EIGHT] 380 paddw xmm0, [rel PW_SEVEN] 381 paddw xmm2, [rel PW_SEVEN] 382 383 paddw xmm1, xmm7 384 paddw xmm5, xmm3 385 psrlw xmm1, 4 ; xmm1=Out0LE=( 0 2 4 6 8 10 12 14) 386 psrlw xmm5, 4 ; xmm5=Out0HE=(16 18 20 22 24 26 28 30) 387 paddw xmm0, xmm7 388 paddw xmm2, xmm3 389 psrlw xmm0, 4 ; xmm0=Out0LO=( 1 3 5 7 9 11 13 15) 390 psrlw xmm2, 4 ; xmm2=Out0HO=(17 19 21 23 25 27 29 31) 391 392 psllw xmm0, BYTE_BIT 393 psllw xmm2, BYTE_BIT 394 por xmm1, xmm0 ; xmm1=Out0L=( 0 1 2 ... 13 14 15) 395 por xmm5, xmm2 ; xmm5=Out0H=(16 17 18 ... 29 30 31) 396 397 movdqa XMMWORD [rdx+0*SIZEOF_XMMWORD], xmm1 398 movdqa XMMWORD [rdx+1*SIZEOF_XMMWORD], xmm5 399 400 ; -- process the lower row 401 402 movdqa xmm6, XMMWORD [rdi+0*SIZEOF_XMMWORD] 403 movdqa xmm4, XMMWORD [rdi+1*SIZEOF_XMMWORD] 404 405 movdqa xmm7, xmm6 ; xmm6=Int1L=( 0 1 2 3 4 5 6 7) 406 movdqa xmm3, xmm4 ; xmm4=Int1H=( 8 9 10 11 12 13 14 15) 407 psrldq xmm7, 2 ; xmm7=( 1 2 3 4 5 6 7 --) 408 pslldq xmm3, (SIZEOF_XMMWORD-2) ; xmm3=(-- -- -- -- -- -- -- 8) 409 movdqa xmm0, xmm6 410 movdqa xmm2, xmm4 411 psrldq xmm0, (SIZEOF_XMMWORD-2) ; xmm0=( 7 -- -- -- -- -- -- --) 412 pslldq xmm2, 2 ; xmm2=(-- 8 9 10 11 12 13 14) 413 414 por xmm7, xmm3 ; xmm7=( 1 2 3 4 5 6 7 8) 415 por xmm0, xmm2 ; xmm0=( 7 8 9 10 11 12 13 14) 416 417 movdqa xmm1, xmm6 418 movdqa xmm5, xmm4 419 pslldq xmm1, 2 ; xmm1=(-- 0 1 2 3 4 5 6) 420 psrldq xmm5, 2 ; xmm5=( 9 10 11 12 13 14 15 --) 421 movdqa xmm3, xmm4 422 psrldq xmm3, (SIZEOF_XMMWORD-2) ; xmm3=(15 -- -- -- -- -- -- --) 423 424 por xmm1, XMMWORD [wk(1)] ; xmm1=(-1 0 1 2 3 4 5 6) 425 por xmm5, XMMWORD [wk(3)] ; xmm5=( 9 10 11 12 13 14 15 16) 426 427 movdqa XMMWORD [wk(1)], xmm3 428 429 pmullw xmm6, [rel PW_THREE] 430 pmullw xmm4, [rel PW_THREE] 431 paddw xmm1, [rel PW_EIGHT] 432 paddw xmm0, [rel PW_EIGHT] 433 paddw xmm7, [rel PW_SEVEN] 434 paddw xmm5, [rel PW_SEVEN] 435 436 paddw xmm1, xmm6 437 paddw xmm0, xmm4 438 psrlw xmm1, 4 ; xmm1=Out1LE=( 0 2 4 6 8 10 12 14) 439 psrlw xmm0, 4 ; xmm0=Out1HE=(16 18 20 22 24 26 28 30) 440 paddw xmm7, xmm6 441 paddw xmm5, xmm4 442 psrlw xmm7, 4 ; xmm7=Out1LO=( 1 3 5 7 9 11 13 15) 443 psrlw xmm5, 4 ; xmm5=Out1HO=(17 19 21 23 25 27 29 31) 444 445 psllw xmm7, BYTE_BIT 446 psllw xmm5, BYTE_BIT 447 por xmm1, xmm7 ; xmm1=Out1L=( 0 1 2 ... 13 14 15) 448 por xmm0, xmm5 ; xmm0=Out1H=(16 17 18 ... 29 30 31) 449 450 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm1 451 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm0 452 453 sub rax, byte SIZEOF_XMMWORD 454 add rcx, byte 1*SIZEOF_XMMWORD ; inptr1(above) 455 add rbx, byte 1*SIZEOF_XMMWORD ; inptr0 456 add rsi, byte 1*SIZEOF_XMMWORD ; inptr1(below) 457 add rdx, byte 2*SIZEOF_XMMWORD ; outptr0 458 add rdi, byte 2*SIZEOF_XMMWORD ; outptr1 459 cmp rax, byte SIZEOF_XMMWORD 460 ja near .columnloop 461 test rax, rax 462 jnz near .columnloop_last 463 464 pop rsi 465 pop rdi 466 pop rcx 467 pop rax 468 469 add rsi, byte 1*SIZEOF_JSAMPROW ; input_data 470 add rdi, byte 2*SIZEOF_JSAMPROW ; output_data 471 sub rcx, byte 2 ; rowctr 472 jg near .rowloop 473 474.return: 475 pop rbx 476 uncollect_args 4 477 mov rsp, rbp ; rsp <- aligned rbp 478 pop rsp ; rsp <- original rbp 479 pop rbp 480 ret 481 482; -------------------------------------------------------------------------- 483; 484; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. 485; It's still a box filter. 486; 487; GLOBAL(void) 488; jsimd_h2v1_upsample_sse2(int max_v_samp_factor, JDIMENSION output_width, 489; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); 490; 491 492; r10 = int max_v_samp_factor 493; r11d = JDIMENSION output_width 494; r12 = JSAMPARRAY input_data 495; r13 = JSAMPARRAY *output_data_ptr 496 497 align 32 498 GLOBAL_FUNCTION(jsimd_h2v1_upsample_sse2) 499 500EXTN(jsimd_h2v1_upsample_sse2): 501 push rbp 502 mov rax, rsp 503 mov rbp, rsp 504 collect_args 4 505 506 mov edx, r11d 507 add rdx, byte (2*SIZEOF_XMMWORD)-1 508 and rdx, byte -(2*SIZEOF_XMMWORD) 509 jz near .return 510 511 mov rcx, r10 ; rowctr 512 test rcx, rcx 513 jz short .return 514 515 mov rsi, r12 ; input_data 516 mov rdi, r13 517 mov rdi, JSAMPARRAY [rdi] ; output_data 518.rowloop: 519 push rdi 520 push rsi 521 522 mov rsi, JSAMPROW [rsi] ; inptr 523 mov rdi, JSAMPROW [rdi] ; outptr 524 mov rax, rdx ; colctr 525.columnloop: 526 527 movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] 528 529 movdqa xmm1, xmm0 530 punpcklbw xmm0, xmm0 531 punpckhbw xmm1, xmm1 532 533 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 534 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 535 536 sub rax, byte 2*SIZEOF_XMMWORD 537 jz short .nextrow 538 539 movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] 540 541 movdqa xmm3, xmm2 542 punpcklbw xmm2, xmm2 543 punpckhbw xmm3, xmm3 544 545 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 546 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm3 547 548 sub rax, byte 2*SIZEOF_XMMWORD 549 jz short .nextrow 550 551 add rsi, byte 2*SIZEOF_XMMWORD ; inptr 552 add rdi, byte 4*SIZEOF_XMMWORD ; outptr 553 jmp short .columnloop 554 555.nextrow: 556 pop rsi 557 pop rdi 558 559 add rsi, byte SIZEOF_JSAMPROW ; input_data 560 add rdi, byte SIZEOF_JSAMPROW ; output_data 561 dec rcx ; rowctr 562 jg short .rowloop 563 564.return: 565 uncollect_args 4 566 pop rbp 567 ret 568 569; -------------------------------------------------------------------------- 570; 571; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. 572; It's still a box filter. 573; 574; GLOBAL(void) 575; jsimd_h2v2_upsample_sse2(int max_v_samp_factor, JDIMENSION output_width, 576; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); 577; 578 579; r10 = int max_v_samp_factor 580; r11d = JDIMENSION output_width 581; r12 = JSAMPARRAY input_data 582; r13 = JSAMPARRAY *output_data_ptr 583 584 align 32 585 GLOBAL_FUNCTION(jsimd_h2v2_upsample_sse2) 586 587EXTN(jsimd_h2v2_upsample_sse2): 588 push rbp 589 mov rax, rsp 590 mov rbp, rsp 591 collect_args 4 592 push rbx 593 594 mov edx, r11d 595 add rdx, byte (2*SIZEOF_XMMWORD)-1 596 and rdx, byte -(2*SIZEOF_XMMWORD) 597 jz near .return 598 599 mov rcx, r10 ; rowctr 600 test rcx, rcx 601 jz near .return 602 603 mov rsi, r12 ; input_data 604 mov rdi, r13 605 mov rdi, JSAMPARRAY [rdi] ; output_data 606.rowloop: 607 push rdi 608 push rsi 609 610 mov rsi, JSAMPROW [rsi] ; inptr 611 mov rbx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 612 mov rdi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 613 mov rax, rdx ; colctr 614.columnloop: 615 616 movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] 617 618 movdqa xmm1, xmm0 619 punpcklbw xmm0, xmm0 620 punpckhbw xmm1, xmm1 621 622 movdqa XMMWORD [rbx+0*SIZEOF_XMMWORD], xmm0 623 movdqa XMMWORD [rbx+1*SIZEOF_XMMWORD], xmm1 624 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 625 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 626 627 sub rax, byte 2*SIZEOF_XMMWORD 628 jz short .nextrow 629 630 movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] 631 632 movdqa xmm3, xmm2 633 punpcklbw xmm2, xmm2 634 punpckhbw xmm3, xmm3 635 636 movdqa XMMWORD [rbx+2*SIZEOF_XMMWORD], xmm2 637 movdqa XMMWORD [rbx+3*SIZEOF_XMMWORD], xmm3 638 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 639 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm3 640 641 sub rax, byte 2*SIZEOF_XMMWORD 642 jz short .nextrow 643 644 add rsi, byte 2*SIZEOF_XMMWORD ; inptr 645 add rbx, byte 4*SIZEOF_XMMWORD ; outptr0 646 add rdi, byte 4*SIZEOF_XMMWORD ; outptr1 647 jmp short .columnloop 648 649.nextrow: 650 pop rsi 651 pop rdi 652 653 add rsi, byte 1*SIZEOF_JSAMPROW ; input_data 654 add rdi, byte 2*SIZEOF_JSAMPROW ; output_data 655 sub rcx, byte 2 ; rowctr 656 jg near .rowloop 657 658.return: 659 pop rbx 660 uncollect_args 4 661 pop rbp 662 ret 663 664; For some reason, the OS X linker does not honor the request to align the 665; segment unless we do this. 666 align 32 667