• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#!/usr/bin/python
2
3from __future__ import print_function
4
5from keras.models import Sequential
6from keras.layers import Dense
7from keras.layers import LSTM
8from keras.layers import GRU
9from keras.models import load_model
10from keras import backend as K
11
12import numpy as np
13
14def printVector(f, vector, name):
15    v = np.reshape(vector, (-1));
16    #print('static const float ', name, '[', len(v), '] = \n', file=f)
17    f.write('static const opus_int16 {}[{}] = {{\n   '.format(name, len(v)))
18    for i in range(0, len(v)):
19        f.write('{}'.format(int(round(8192*v[i]))))
20        if (i!=len(v)-1):
21            f.write(',')
22        else:
23            break;
24        if (i%8==7):
25            f.write("\n   ")
26        else:
27            f.write(" ")
28    #print(v, file=f)
29    f.write('\n};\n\n')
30    return;
31
32def binary_crossentrop2(y_true, y_pred):
33        return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
34
35
36model = load_model("weights.hdf5", custom_objects={'binary_crossentrop2': binary_crossentrop2})
37
38weights = model.get_weights()
39
40f = open('rnn_weights.c', 'w')
41
42f.write('/*This file is automatically generated from a Keras model*/\n\n')
43f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n')
44
45printVector(f, weights[0], 'layer0_weights')
46printVector(f, weights[1], 'layer0_bias')
47printVector(f, weights[2], 'layer1_weights')
48printVector(f, weights[3], 'layer1_recur_weights')
49printVector(f, weights[4], 'layer1_bias')
50printVector(f, weights[5], 'layer2_weights')
51printVector(f, weights[6], 'layer2_bias')
52
53f.write('const DenseLayer layer0 = {\n   layer0_bias,\n   layer0_weights,\n   25, 16, 0\n};\n\n')
54f.write('const GRULayer layer1 = {\n   layer1_bias,\n   layer1_weights,\n   layer1_recur_weights,\n   16, 12\n};\n\n')
55f.write('const DenseLayer layer2 = {\n   layer2_bias,\n   layer2_weights,\n   12, 2, 1\n};\n\n')
56
57f.close()
58