• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1==============================
2TableGen Language Introduction
3==============================
4
5.. contents::
6   :local:
7
8.. warning::
9   This document is extremely rough. If you find something lacking, please
10   fix it, file a documentation bug, or ask about it on llvm-dev.
11
12Introduction
13============
14
15This document is not meant to be a normative spec about the TableGen language
16in and of itself (i.e. how to understand a given construct in terms of how
17it affects the final set of records represented by the TableGen file). For
18the formal language specification, see :doc:`LangRef`.
19
20TableGen syntax
21===============
22
23TableGen doesn't care about the meaning of data (that is up to the backend to
24define), but it does care about syntax, and it enforces a simple type system.
25This section describes the syntax and the constructs allowed in a TableGen file.
26
27TableGen primitives
28-------------------
29
30TableGen comments
31^^^^^^^^^^^^^^^^^
32
33TableGen supports C++ style "``//``" comments, which run to the end of the
34line, and it also supports **nestable** "``/* */``" comments.
35
36.. _TableGen type:
37
38The TableGen type system
39^^^^^^^^^^^^^^^^^^^^^^^^
40
41TableGen files are strongly typed, in a simple (but complete) type-system.
42These types are used to perform automatic conversions, check for errors, and to
43help interface designers constrain the input that they allow.  Every `value
44definition`_ is required to have an associated type.
45
46TableGen supports a mixture of very low-level types (such as ``bit``) and very
47high-level types (such as ``dag``).  This flexibility is what allows it to
48describe a wide range of information conveniently and compactly.  The TableGen
49types are:
50
51``bit``
52    A 'bit' is a boolean value that can hold either 0 or 1.
53
54``int``
55    The 'int' type represents a simple 32-bit integer value, such as 5.
56
57``string``
58    The 'string' type represents an ordered sequence of characters of arbitrary
59    length.
60
61``bits<n>``
62    A 'bits' type is an arbitrary, but fixed, size integer that is broken up
63    into individual bits.  This type is useful because it can handle some bits
64    being defined while others are undefined.
65
66``list<ty>``
67    This type represents a list whose elements are some other type.  The
68    contained type is arbitrary: it can even be another list type.
69
70Class type
71    Specifying a class name in a type context means that the defined value must
72    be a subclass of the specified class.  This is useful in conjunction with
73    the ``list`` type, for example, to constrain the elements of the list to a
74    common base class (e.g., a ``list<Register>`` can only contain definitions
75    derived from the "``Register``" class).
76
77``dag``
78    This type represents a nestable directed graph of elements.
79
80To date, these types have been sufficient for describing things that TableGen
81has been used for, but it is straight-forward to extend this list if needed.
82
83.. _TableGen expressions:
84
85TableGen values and expressions
86^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
87
88TableGen allows for a pretty reasonable number of different expression forms
89when building up values.  These forms allow the TableGen file to be written in a
90natural syntax and flavor for the application.  The current expression forms
91supported include:
92
93``?``
94    uninitialized field
95
96``0b1001011``
97    binary integer value.
98    Note that this is sized by the number of bits given and will not be
99    silently extended/truncated.
100
101``07654321``
102    octal integer value (indicated by a leading 0)
103
104``7``
105    decimal integer value
106
107``0x7F``
108    hexadecimal integer value
109
110``"foo"``
111    string value
112
113``[{ ... }]``
114    usually called a "code fragment", but is just a multiline string literal
115
116``[ X, Y, Z ]<type>``
117    list value.  <type> is the type of the list element and is usually optional.
118    In rare cases, TableGen is unable to deduce the element type in which case
119    the user must specify it explicitly.
120
121``{ a, b, 0b10 }``
122    initializer for a "bits<4>" value.
123    1-bit from "a", 1-bit from "b", 2-bits from 0b10.
124
125``value``
126    value reference
127
128``value{17}``
129    access to one bit of a value
130
131``value{15-17}``
132    access to multiple bits of a value
133
134``DEF``
135    reference to a record definition
136
137``CLASS<val list>``
138    reference to a new anonymous definition of CLASS with the specified template
139    arguments.
140
141``X.Y``
142    reference to the subfield of a value
143
144``list[4-7,17,2-3]``
145    A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
146    Elements may be included multiple times.
147
148``foreach <var> = [ <list> ] in { <body> }``
149
150``foreach <var> = [ <list> ] in <def>``
151    Replicate <body> or <def>, replacing instances of <var> with each value
152    in <list>.  <var> is scoped at the level of the ``foreach`` loop and must
153    not conflict with any other object introduced in <body> or <def>.  Currently
154    only ``def``\s are expanded within <body>.
155
156``foreach <var> = 0-15 in ...``
157
158``foreach <var> = {0-15,32-47} in ...``
159    Loop over ranges of integers. The braces are required for multiple ranges.
160
161``(DEF a, b)``
162    a dag value.  The first element is required to be a record definition, the
163    remaining elements in the list may be arbitrary other values, including
164    nested ```dag``' values.
165
166``!listconcat(a, b, ...)``
167    A list value that is the result of concatenating the 'a' and 'b' lists.
168    The lists must have the same element type.
169    More than two arguments are accepted with the result being the concatenation
170    of all the lists given.
171
172``!strconcat(a, b, ...)``
173    A string value that is the result of concatenating the 'a' and 'b' strings.
174    More than two arguments are accepted with the result being the concatenation
175    of all the strings given.
176
177``str1#str2``
178    "#" (paste) is a shorthand for !strconcat.  It may concatenate things that
179    are not quoted strings, in which case an implicit !cast<string> is done on
180    the operand of the paste.
181
182``!cast<type>(a)``
183    A symbol of type *type* obtained by looking up the string 'a' in the symbol
184    table.  If the type of 'a' does not match *type*, TableGen aborts with an
185    error. !cast<string> is a special case in that the argument must be an
186    object defined by a 'def' construct.
187
188``!subst(a, b, c)``
189    If 'a' and 'b' are of string type or are symbol references, substitute 'b'
190    for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.
191
192``!foreach(a, b, c)``
193    For each member of dag or list 'b' apply operator 'c.'  'a' is a dummy
194    variable that should be declared as a member variable of an instantiated
195    class.  This operation is analogous to $(foreach) in GNU make.
196
197``!head(a)``
198    The first element of list 'a.'
199
200``!tail(a)``
201    The 2nd-N elements of list 'a.'
202
203``!empty(a)``
204    An integer {0,1} indicating whether list 'a' is empty.
205
206``!if(a,b,c)``
207  'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
208
209``!eq(a,b)``
210    'bit 1' if string a is equal to string b, 0 otherwise.  This only operates
211    on string, int and bit objects.  Use !cast<string> to compare other types of
212    objects.
213
214``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)`` ``!add(a,b)`` ``!and(a,b)``
215    The usual binary and arithmetic operators.
216
217Note that all of the values have rules specifying how they convert to values
218for different types.  These rules allow you to assign a value like "``7``"
219to a "``bits<4>``" value, for example.
220
221Classes and definitions
222-----------------------
223
224As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
225'records') in TableGen are the main high-level unit of information that TableGen
226collects.  Records are defined with a ``def`` or ``class`` keyword, the record
227name, and an optional list of "`template arguments`_".  If the record has
228superclasses, they are specified as a comma separated list that starts with a
229colon character ("``:``").  If `value definitions`_ or `let expressions`_ are
230needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
231the record ends with a semicolon.
232
233Here is a simple TableGen file:
234
235.. code-block:: llvm
236
237  class C { bit V = 1; }
238  def X : C;
239  def Y : C {
240    string Greeting = "hello";
241  }
242
243This example defines two definitions, ``X`` and ``Y``, both of which derive from
244the ``C`` class.  Because of this, they both get the ``V`` bit value.  The ``Y``
245definition also gets the Greeting member as well.
246
247In general, classes are useful for collecting together the commonality between a
248group of records and isolating it in a single place.  Also, classes permit the
249specification of default values for their subclasses, allowing the subclasses to
250override them as they wish.
251
252.. _value definition:
253.. _value definitions:
254
255Value definitions
256^^^^^^^^^^^^^^^^^
257
258Value definitions define named entries in records.  A value must be defined
259before it can be referred to as the operand for another value definition or
260before the value is reset with a `let expression`_.  A value is defined by
261specifying a `TableGen type`_ and a name.  If an initial value is available, it
262may be specified after the type with an equal sign.  Value definitions require
263terminating semicolons.
264
265.. _let expression:
266.. _let expressions:
267.. _"let" expressions within a record:
268
269'let' expressions
270^^^^^^^^^^^^^^^^^
271
272A record-level let expression is used to change the value of a value definition
273in a record.  This is primarily useful when a superclass defines a value that a
274derived class or definition wants to override.  Let expressions consist of the
275'``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
276value.  For example, a new class could be added to the example above, redefining
277the ``V`` field for all of its subclasses:
278
279.. code-block:: llvm
280
281  class D : C { let V = 0; }
282  def Z : D;
283
284In this case, the ``Z`` definition will have a zero value for its ``V`` value,
285despite the fact that it derives (indirectly) from the ``C`` class, because the
286``D`` class overrode its value.
287
288.. _template arguments:
289
290Class template arguments
291^^^^^^^^^^^^^^^^^^^^^^^^
292
293TableGen permits the definition of parameterized classes as well as normal
294concrete classes.  Parameterized TableGen classes specify a list of variable
295bindings (which may optionally have defaults) that are bound when used.  Here is
296a simple example:
297
298.. code-block:: llvm
299
300  class FPFormat<bits<3> val> {
301    bits<3> Value = val;
302  }
303  def NotFP      : FPFormat<0>;
304  def ZeroArgFP  : FPFormat<1>;
305  def OneArgFP   : FPFormat<2>;
306  def OneArgFPRW : FPFormat<3>;
307  def TwoArgFP   : FPFormat<4>;
308  def CompareFP  : FPFormat<5>;
309  def CondMovFP  : FPFormat<6>;
310  def SpecialFP  : FPFormat<7>;
311
312In this case, template arguments are used as a space efficient way to specify a
313list of "enumeration values", each with a "``Value``" field set to the specified
314integer.
315
316The more esoteric forms of `TableGen expressions`_ are useful in conjunction
317with template arguments.  As an example:
318
319.. code-block:: llvm
320
321  class ModRefVal<bits<2> val> {
322    bits<2> Value = val;
323  }
324
325  def None   : ModRefVal<0>;
326  def Mod    : ModRefVal<1>;
327  def Ref    : ModRefVal<2>;
328  def ModRef : ModRefVal<3>;
329
330  class Value<ModRefVal MR> {
331    // Decode some information into a more convenient format, while providing
332    // a nice interface to the user of the "Value" class.
333    bit isMod = MR.Value{0};
334    bit isRef = MR.Value{1};
335
336    // other stuff...
337  }
338
339  // Example uses
340  def bork : Value<Mod>;
341  def zork : Value<Ref>;
342  def hork : Value<ModRef>;
343
344This is obviously a contrived example, but it shows how template arguments can
345be used to decouple the interface provided to the user of the class from the
346actual internal data representation expected by the class.  In this case,
347running ``llvm-tblgen`` on the example prints the following definitions:
348
349.. code-block:: llvm
350
351  def bork {      // Value
352    bit isMod = 1;
353    bit isRef = 0;
354  }
355  def hork {      // Value
356    bit isMod = 1;
357    bit isRef = 1;
358  }
359  def zork {      // Value
360    bit isMod = 0;
361    bit isRef = 1;
362  }
363
364This shows that TableGen was able to dig into the argument and extract a piece
365of information that was requested by the designer of the "Value" class.  For
366more realistic examples, please see existing users of TableGen, such as the X86
367backend.
368
369Multiclass definitions and instances
370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
371
372While classes with template arguments are a good way to factor commonality
373between two instances of a definition, multiclasses allow a convenient notation
374for defining multiple definitions at once (instances of implicitly constructed
375classes).  For example, consider an 3-address instruction set whose instructions
376come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
377(e.g. SPARC). In this case, you'd like to specify in one place that this
378commonality exists, then in a separate place indicate what all the ops are.
379
380Here is an example TableGen fragment that shows this idea:
381
382.. code-block:: llvm
383
384  def ops;
385  def GPR;
386  def Imm;
387  class inst<int opc, string asmstr, dag operandlist>;
388
389  multiclass ri_inst<int opc, string asmstr> {
390    def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
391                   (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
392    def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
393                   (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
394  }
395
396  // Instantiations of the ri_inst multiclass.
397  defm ADD : ri_inst<0b111, "add">;
398  defm SUB : ri_inst<0b101, "sub">;
399  defm MUL : ri_inst<0b100, "mul">;
400  ...
401
402The name of the resultant definitions has the multidef fragment names appended
403to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc.  A defm may
404inherit from multiple multiclasses, instantiating definitions from each
405multiclass.  Using a multiclass this way is exactly equivalent to instantiating
406the classes multiple times yourself, e.g. by writing:
407
408.. code-block:: llvm
409
410  def ops;
411  def GPR;
412  def Imm;
413  class inst<int opc, string asmstr, dag operandlist>;
414
415  class rrinst<int opc, string asmstr>
416    : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
417           (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
418
419  class riinst<int opc, string asmstr>
420    : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
421           (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
422
423  // Instantiations of the ri_inst multiclass.
424  def ADD_rr : rrinst<0b111, "add">;
425  def ADD_ri : riinst<0b111, "add">;
426  def SUB_rr : rrinst<0b101, "sub">;
427  def SUB_ri : riinst<0b101, "sub">;
428  def MUL_rr : rrinst<0b100, "mul">;
429  def MUL_ri : riinst<0b100, "mul">;
430  ...
431
432A ``defm`` can also be used inside a multiclass providing several levels of
433multiclass instantiations.
434
435.. code-block:: llvm
436
437  class Instruction<bits<4> opc, string Name> {
438    bits<4> opcode = opc;
439    string name = Name;
440  }
441
442  multiclass basic_r<bits<4> opc> {
443    def rr : Instruction<opc, "rr">;
444    def rm : Instruction<opc, "rm">;
445  }
446
447  multiclass basic_s<bits<4> opc> {
448    defm SS : basic_r<opc>;
449    defm SD : basic_r<opc>;
450    def X : Instruction<opc, "x">;
451  }
452
453  multiclass basic_p<bits<4> opc> {
454    defm PS : basic_r<opc>;
455    defm PD : basic_r<opc>;
456    def Y : Instruction<opc, "y">;
457  }
458
459  defm ADD : basic_s<0xf>, basic_p<0xf>;
460  ...
461
462  // Results
463  def ADDPDrm { ...
464  def ADDPDrr { ...
465  def ADDPSrm { ...
466  def ADDPSrr { ...
467  def ADDSDrm { ...
468  def ADDSDrr { ...
469  def ADDY { ...
470  def ADDX { ...
471
472``defm`` declarations can inherit from classes too, the rule to follow is that
473the class list must start after the last multiclass, and there must be at least
474one multiclass before them.
475
476.. code-block:: llvm
477
478  class XD { bits<4> Prefix = 11; }
479  class XS { bits<4> Prefix = 12; }
480
481  class I<bits<4> op> {
482    bits<4> opcode = op;
483  }
484
485  multiclass R {
486    def rr : I<4>;
487    def rm : I<2>;
488  }
489
490  multiclass Y {
491    defm SS : R, XD;
492    defm SD : R, XS;
493  }
494
495  defm Instr : Y;
496
497  // Results
498  def InstrSDrm {
499    bits<4> opcode = { 0, 0, 1, 0 };
500    bits<4> Prefix = { 1, 1, 0, 0 };
501  }
502  ...
503  def InstrSSrr {
504    bits<4> opcode = { 0, 1, 0, 0 };
505    bits<4> Prefix = { 1, 0, 1, 1 };
506  }
507
508File scope entities
509-------------------
510
511File inclusion
512^^^^^^^^^^^^^^
513
514TableGen supports the '``include``' token, which textually substitutes the
515specified file in place of the include directive.  The filename should be
516specified as a double quoted string immediately after the '``include``' keyword.
517Example:
518
519.. code-block:: llvm
520
521  include "foo.td"
522
523'let' expressions
524^^^^^^^^^^^^^^^^^
525
526"Let" expressions at file scope are similar to `"let" expressions within a
527record`_, except they can specify a value binding for multiple records at a
528time, and may be useful in certain other cases.  File-scope let expressions are
529really just another way that TableGen allows the end-user to factor out
530commonality from the records.
531
532File-scope "let" expressions take a comma-separated list of bindings to apply,
533and one or more records to bind the values in.  Here are some examples:
534
535.. code-block:: llvm
536
537  let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
538    def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
539
540  let isCall = 1 in
541    // All calls clobber the non-callee saved registers...
542    let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
543                MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
544                XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
545      def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
546                             "call\t${dst:call}", []>;
547      def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
548                          "call\t{*}$dst", [(X86call GR32:$dst)]>;
549      def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
550                          "call\t{*}$dst", []>;
551    }
552
553File-scope "let" expressions are often useful when a couple of definitions need
554to be added to several records, and the records do not otherwise need to be
555opened, as in the case with the ``CALL*`` instructions above.
556
557It's also possible to use "let" expressions inside multiclasses, providing more
558ways to factor out commonality from the records, specially if using several
559levels of multiclass instantiations. This also avoids the need of using "let"
560expressions within subsequent records inside a multiclass.
561
562.. code-block:: llvm
563
564  multiclass basic_r<bits<4> opc> {
565    let Predicates = [HasSSE2] in {
566      def rr : Instruction<opc, "rr">;
567      def rm : Instruction<opc, "rm">;
568    }
569    let Predicates = [HasSSE3] in
570      def rx : Instruction<opc, "rx">;
571  }
572
573  multiclass basic_ss<bits<4> opc> {
574    let IsDouble = 0 in
575      defm SS : basic_r<opc>;
576
577    let IsDouble = 1 in
578      defm SD : basic_r<opc>;
579  }
580
581  defm ADD : basic_ss<0xf>;
582
583Looping
584^^^^^^^
585
586TableGen supports the '``foreach``' block, which textually replicates the loop
587body, substituting iterator values for iterator references in the body.
588Example:
589
590.. code-block:: llvm
591
592  foreach i = [0, 1, 2, 3] in {
593    def R#i : Register<...>;
594    def F#i : Register<...>;
595  }
596
597This will create objects ``R0``, ``R1``, ``R2`` and ``R3``.  ``foreach`` blocks
598may be nested. If there is only one item in the body the braces may be
599elided:
600
601.. code-block:: llvm
602
603  foreach i = [0, 1, 2, 3] in
604    def R#i : Register<...>;
605
606Code Generator backend info
607===========================
608
609Expressions used by code generator to describe instructions and isel patterns:
610
611``(implicit a)``
612    an implicitly defined physical register.  This tells the dag instruction
613    selection emitter the input pattern's extra definitions matches implicit
614    physical register definitions.
615
616