• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Type.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Target/TargetMachine.h"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "KaleidoscopeJIT.h"
19 #include <cassert>
20 #include <cctype>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstdlib>
24 #include <map>
25 #include <memory>
26 #include <string>
27 #include <utility>
28 #include <vector>
29 
30 using namespace llvm;
31 using namespace llvm::orc;
32 
33 //===----------------------------------------------------------------------===//
34 // Lexer
35 //===----------------------------------------------------------------------===//
36 
37 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
38 // of these for known things.
39 enum Token {
40   tok_eof = -1,
41 
42   // commands
43   tok_def = -2,
44   tok_extern = -3,
45 
46   // primary
47   tok_identifier = -4,
48   tok_number = -5,
49 
50   // control
51   tok_if = -6,
52   tok_then = -7,
53   tok_else = -8,
54   tok_for = -9,
55   tok_in = -10,
56 
57   // operators
58   tok_binary = -11,
59   tok_unary = -12,
60 
61   // var definition
62   tok_var = -13
63 };
64 
65 static std::string IdentifierStr; // Filled in if tok_identifier
66 static double NumVal;             // Filled in if tok_number
67 
68 /// gettok - Return the next token from standard input.
gettok()69 static int gettok() {
70   static int LastChar = ' ';
71 
72   // Skip any whitespace.
73   while (isspace(LastChar))
74     LastChar = getchar();
75 
76   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
77     IdentifierStr = LastChar;
78     while (isalnum((LastChar = getchar())))
79       IdentifierStr += LastChar;
80 
81     if (IdentifierStr == "def")
82       return tok_def;
83     if (IdentifierStr == "extern")
84       return tok_extern;
85     if (IdentifierStr == "if")
86       return tok_if;
87     if (IdentifierStr == "then")
88       return tok_then;
89     if (IdentifierStr == "else")
90       return tok_else;
91     if (IdentifierStr == "for")
92       return tok_for;
93     if (IdentifierStr == "in")
94       return tok_in;
95     if (IdentifierStr == "binary")
96       return tok_binary;
97     if (IdentifierStr == "unary")
98       return tok_unary;
99     if (IdentifierStr == "var")
100       return tok_var;
101     return tok_identifier;
102   }
103 
104   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
105     std::string NumStr;
106     do {
107       NumStr += LastChar;
108       LastChar = getchar();
109     } while (isdigit(LastChar) || LastChar == '.');
110 
111     NumVal = strtod(NumStr.c_str(), nullptr);
112     return tok_number;
113   }
114 
115   if (LastChar == '#') {
116     // Comment until end of line.
117     do
118       LastChar = getchar();
119     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
120 
121     if (LastChar != EOF)
122       return gettok();
123   }
124 
125   // Check for end of file.  Don't eat the EOF.
126   if (LastChar == EOF)
127     return tok_eof;
128 
129   // Otherwise, just return the character as its ascii value.
130   int ThisChar = LastChar;
131   LastChar = getchar();
132   return ThisChar;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 // Abstract Syntax Tree (aka Parse Tree)
137 //===----------------------------------------------------------------------===//
138 namespace {
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
~ExprAST()142   virtual ~ExprAST() {}
143   virtual Value *codegen() = 0;
144 };
145 
146 /// NumberExprAST - Expression class for numeric literals like "1.0".
147 class NumberExprAST : public ExprAST {
148   double Val;
149 
150 public:
NumberExprAST(double Val)151   NumberExprAST(double Val) : Val(Val) {}
152   Value *codegen() override;
153 };
154 
155 /// VariableExprAST - Expression class for referencing a variable, like "a".
156 class VariableExprAST : public ExprAST {
157   std::string Name;
158 
159 public:
VariableExprAST(const std::string & Name)160   VariableExprAST(const std::string &Name) : Name(Name) {}
getName() const161   const std::string &getName() const { return Name; }
162   Value *codegen() override;
163 };
164 
165 /// UnaryExprAST - Expression class for a unary operator.
166 class UnaryExprAST : public ExprAST {
167   char Opcode;
168   std::unique_ptr<ExprAST> Operand;
169 
170 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)171   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
172       : Opcode(Opcode), Operand(std::move(Operand)) {}
173   Value *codegen() override;
174 };
175 
176 /// BinaryExprAST - Expression class for a binary operator.
177 class BinaryExprAST : public ExprAST {
178   char Op;
179   std::unique_ptr<ExprAST> LHS, RHS;
180 
181 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)182   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
183                 std::unique_ptr<ExprAST> RHS)
184       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
185   Value *codegen() override;
186 };
187 
188 /// CallExprAST - Expression class for function calls.
189 class CallExprAST : public ExprAST {
190   std::string Callee;
191   std::vector<std::unique_ptr<ExprAST>> Args;
192 
193 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)194   CallExprAST(const std::string &Callee,
195               std::vector<std::unique_ptr<ExprAST>> Args)
196       : Callee(Callee), Args(std::move(Args)) {}
197   Value *codegen() override;
198 };
199 
200 /// IfExprAST - Expression class for if/then/else.
201 class IfExprAST : public ExprAST {
202   std::unique_ptr<ExprAST> Cond, Then, Else;
203 
204 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)205   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
206             std::unique_ptr<ExprAST> Else)
207       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
208   Value *codegen() override;
209 };
210 
211 /// ForExprAST - Expression class for for/in.
212 class ForExprAST : public ExprAST {
213   std::string VarName;
214   std::unique_ptr<ExprAST> Start, End, Step, Body;
215 
216 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)217   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
218              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
219              std::unique_ptr<ExprAST> Body)
220       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
221         Step(std::move(Step)), Body(std::move(Body)) {}
222   Value *codegen() override;
223 };
224 
225 /// VarExprAST - Expression class for var/in
226 class VarExprAST : public ExprAST {
227   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
228   std::unique_ptr<ExprAST> Body;
229 
230 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)231   VarExprAST(
232       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
233       std::unique_ptr<ExprAST> Body)
234       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
235   Value *codegen() override;
236 };
237 
238 /// PrototypeAST - This class represents the "prototype" for a function,
239 /// which captures its name, and its argument names (thus implicitly the number
240 /// of arguments the function takes), as well as if it is an operator.
241 class PrototypeAST {
242   std::string Name;
243   std::vector<std::string> Args;
244   bool IsOperator;
245   unsigned Precedence; // Precedence if a binary op.
246 
247 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)248   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
249                bool IsOperator = false, unsigned Prec = 0)
250       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
251         Precedence(Prec) {}
252   Function *codegen();
getName() const253   const std::string &getName() const { return Name; }
254 
isUnaryOp() const255   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const256   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
257 
getOperatorName() const258   char getOperatorName() const {
259     assert(isUnaryOp() || isBinaryOp());
260     return Name[Name.size() - 1];
261   }
262 
getBinaryPrecedence() const263   unsigned getBinaryPrecedence() const { return Precedence; }
264 };
265 
266 /// FunctionAST - This class represents a function definition itself.
267 class FunctionAST {
268   std::unique_ptr<PrototypeAST> Proto;
269   std::unique_ptr<ExprAST> Body;
270 
271 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)272   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
273               std::unique_ptr<ExprAST> Body)
274       : Proto(std::move(Proto)), Body(std::move(Body)) {}
275   Function *codegen();
276 };
277 } // end anonymous namespace
278 
279 //===----------------------------------------------------------------------===//
280 // Parser
281 //===----------------------------------------------------------------------===//
282 
283 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
284 /// token the parser is looking at.  getNextToken reads another token from the
285 /// lexer and updates CurTok with its results.
286 static int CurTok;
getNextToken()287 static int getNextToken() { return CurTok = gettok(); }
288 
289 /// BinopPrecedence - This holds the precedence for each binary operator that is
290 /// defined.
291 static std::map<char, int> BinopPrecedence;
292 
293 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()294 static int GetTokPrecedence() {
295   if (!isascii(CurTok))
296     return -1;
297 
298   // Make sure it's a declared binop.
299   int TokPrec = BinopPrecedence[CurTok];
300   if (TokPrec <= 0)
301     return -1;
302   return TokPrec;
303 }
304 
305 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)306 std::unique_ptr<ExprAST> LogError(const char *Str) {
307   fprintf(stderr, "Error: %s\n", Str);
308   return nullptr;
309 }
310 
LogErrorP(const char * Str)311 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
312   LogError(Str);
313   return nullptr;
314 }
315 
316 static std::unique_ptr<ExprAST> ParseExpression();
317 
318 /// numberexpr ::= number
ParseNumberExpr()319 static std::unique_ptr<ExprAST> ParseNumberExpr() {
320   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
321   getNextToken(); // consume the number
322   return std::move(Result);
323 }
324 
325 /// parenexpr ::= '(' expression ')'
ParseParenExpr()326 static std::unique_ptr<ExprAST> ParseParenExpr() {
327   getNextToken(); // eat (.
328   auto V = ParseExpression();
329   if (!V)
330     return nullptr;
331 
332   if (CurTok != ')')
333     return LogError("expected ')'");
334   getNextToken(); // eat ).
335   return V;
336 }
337 
338 /// identifierexpr
339 ///   ::= identifier
340 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()341 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
342   std::string IdName = IdentifierStr;
343 
344   getNextToken(); // eat identifier.
345 
346   if (CurTok != '(') // Simple variable ref.
347     return llvm::make_unique<VariableExprAST>(IdName);
348 
349   // Call.
350   getNextToken(); // eat (
351   std::vector<std::unique_ptr<ExprAST>> Args;
352   if (CurTok != ')') {
353     while (true) {
354       if (auto Arg = ParseExpression())
355         Args.push_back(std::move(Arg));
356       else
357         return nullptr;
358 
359       if (CurTok == ')')
360         break;
361 
362       if (CurTok != ',')
363         return LogError("Expected ')' or ',' in argument list");
364       getNextToken();
365     }
366   }
367 
368   // Eat the ')'.
369   getNextToken();
370 
371   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
372 }
373 
374 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()375 static std::unique_ptr<ExprAST> ParseIfExpr() {
376   getNextToken(); // eat the if.
377 
378   // condition.
379   auto Cond = ParseExpression();
380   if (!Cond)
381     return nullptr;
382 
383   if (CurTok != tok_then)
384     return LogError("expected then");
385   getNextToken(); // eat the then
386 
387   auto Then = ParseExpression();
388   if (!Then)
389     return nullptr;
390 
391   if (CurTok != tok_else)
392     return LogError("expected else");
393 
394   getNextToken();
395 
396   auto Else = ParseExpression();
397   if (!Else)
398     return nullptr;
399 
400   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
401                                       std::move(Else));
402 }
403 
404 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()405 static std::unique_ptr<ExprAST> ParseForExpr() {
406   getNextToken(); // eat the for.
407 
408   if (CurTok != tok_identifier)
409     return LogError("expected identifier after for");
410 
411   std::string IdName = IdentifierStr;
412   getNextToken(); // eat identifier.
413 
414   if (CurTok != '=')
415     return LogError("expected '=' after for");
416   getNextToken(); // eat '='.
417 
418   auto Start = ParseExpression();
419   if (!Start)
420     return nullptr;
421   if (CurTok != ',')
422     return LogError("expected ',' after for start value");
423   getNextToken();
424 
425   auto End = ParseExpression();
426   if (!End)
427     return nullptr;
428 
429   // The step value is optional.
430   std::unique_ptr<ExprAST> Step;
431   if (CurTok == ',') {
432     getNextToken();
433     Step = ParseExpression();
434     if (!Step)
435       return nullptr;
436   }
437 
438   if (CurTok != tok_in)
439     return LogError("expected 'in' after for");
440   getNextToken(); // eat 'in'.
441 
442   auto Body = ParseExpression();
443   if (!Body)
444     return nullptr;
445 
446   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
447                                        std::move(Step), std::move(Body));
448 }
449 
450 /// varexpr ::= 'var' identifier ('=' expression)?
451 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()452 static std::unique_ptr<ExprAST> ParseVarExpr() {
453   getNextToken(); // eat the var.
454 
455   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
456 
457   // At least one variable name is required.
458   if (CurTok != tok_identifier)
459     return LogError("expected identifier after var");
460 
461   while (true) {
462     std::string Name = IdentifierStr;
463     getNextToken(); // eat identifier.
464 
465     // Read the optional initializer.
466     std::unique_ptr<ExprAST> Init = nullptr;
467     if (CurTok == '=') {
468       getNextToken(); // eat the '='.
469 
470       Init = ParseExpression();
471       if (!Init)
472         return nullptr;
473     }
474 
475     VarNames.push_back(std::make_pair(Name, std::move(Init)));
476 
477     // End of var list, exit loop.
478     if (CurTok != ',')
479       break;
480     getNextToken(); // eat the ','.
481 
482     if (CurTok != tok_identifier)
483       return LogError("expected identifier list after var");
484   }
485 
486   // At this point, we have to have 'in'.
487   if (CurTok != tok_in)
488     return LogError("expected 'in' keyword after 'var'");
489   getNextToken(); // eat 'in'.
490 
491   auto Body = ParseExpression();
492   if (!Body)
493     return nullptr;
494 
495   return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
496 }
497 
498 /// primary
499 ///   ::= identifierexpr
500 ///   ::= numberexpr
501 ///   ::= parenexpr
502 ///   ::= ifexpr
503 ///   ::= forexpr
504 ///   ::= varexpr
ParsePrimary()505 static std::unique_ptr<ExprAST> ParsePrimary() {
506   switch (CurTok) {
507   default:
508     return LogError("unknown token when expecting an expression");
509   case tok_identifier:
510     return ParseIdentifierExpr();
511   case tok_number:
512     return ParseNumberExpr();
513   case '(':
514     return ParseParenExpr();
515   case tok_if:
516     return ParseIfExpr();
517   case tok_for:
518     return ParseForExpr();
519   case tok_var:
520     return ParseVarExpr();
521   }
522 }
523 
524 /// unary
525 ///   ::= primary
526 ///   ::= '!' unary
ParseUnary()527 static std::unique_ptr<ExprAST> ParseUnary() {
528   // If the current token is not an operator, it must be a primary expr.
529   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
530     return ParsePrimary();
531 
532   // If this is a unary operator, read it.
533   int Opc = CurTok;
534   getNextToken();
535   if (auto Operand = ParseUnary())
536     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
537   return nullptr;
538 }
539 
540 /// binoprhs
541 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)542 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
543                                               std::unique_ptr<ExprAST> LHS) {
544   // If this is a binop, find its precedence.
545   while (true) {
546     int TokPrec = GetTokPrecedence();
547 
548     // If this is a binop that binds at least as tightly as the current binop,
549     // consume it, otherwise we are done.
550     if (TokPrec < ExprPrec)
551       return LHS;
552 
553     // Okay, we know this is a binop.
554     int BinOp = CurTok;
555     getNextToken(); // eat binop
556 
557     // Parse the unary expression after the binary operator.
558     auto RHS = ParseUnary();
559     if (!RHS)
560       return nullptr;
561 
562     // If BinOp binds less tightly with RHS than the operator after RHS, let
563     // the pending operator take RHS as its LHS.
564     int NextPrec = GetTokPrecedence();
565     if (TokPrec < NextPrec) {
566       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
567       if (!RHS)
568         return nullptr;
569     }
570 
571     // Merge LHS/RHS.
572     LHS =
573         llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
574   }
575 }
576 
577 /// expression
578 ///   ::= unary binoprhs
579 ///
ParseExpression()580 static std::unique_ptr<ExprAST> ParseExpression() {
581   auto LHS = ParseUnary();
582   if (!LHS)
583     return nullptr;
584 
585   return ParseBinOpRHS(0, std::move(LHS));
586 }
587 
588 /// prototype
589 ///   ::= id '(' id* ')'
590 ///   ::= binary LETTER number? (id, id)
591 ///   ::= unary LETTER (id)
ParsePrototype()592 static std::unique_ptr<PrototypeAST> ParsePrototype() {
593   std::string FnName;
594 
595   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
596   unsigned BinaryPrecedence = 30;
597 
598   switch (CurTok) {
599   default:
600     return LogErrorP("Expected function name in prototype");
601   case tok_identifier:
602     FnName = IdentifierStr;
603     Kind = 0;
604     getNextToken();
605     break;
606   case tok_unary:
607     getNextToken();
608     if (!isascii(CurTok))
609       return LogErrorP("Expected unary operator");
610     FnName = "unary";
611     FnName += (char)CurTok;
612     Kind = 1;
613     getNextToken();
614     break;
615   case tok_binary:
616     getNextToken();
617     if (!isascii(CurTok))
618       return LogErrorP("Expected binary operator");
619     FnName = "binary";
620     FnName += (char)CurTok;
621     Kind = 2;
622     getNextToken();
623 
624     // Read the precedence if present.
625     if (CurTok == tok_number) {
626       if (NumVal < 1 || NumVal > 100)
627         return LogErrorP("Invalid precedecnce: must be 1..100");
628       BinaryPrecedence = (unsigned)NumVal;
629       getNextToken();
630     }
631     break;
632   }
633 
634   if (CurTok != '(')
635     return LogErrorP("Expected '(' in prototype");
636 
637   std::vector<std::string> ArgNames;
638   while (getNextToken() == tok_identifier)
639     ArgNames.push_back(IdentifierStr);
640   if (CurTok != ')')
641     return LogErrorP("Expected ')' in prototype");
642 
643   // success.
644   getNextToken(); // eat ')'.
645 
646   // Verify right number of names for operator.
647   if (Kind && ArgNames.size() != Kind)
648     return LogErrorP("Invalid number of operands for operator");
649 
650   return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
651                                          BinaryPrecedence);
652 }
653 
654 /// definition ::= 'def' prototype expression
ParseDefinition()655 static std::unique_ptr<FunctionAST> ParseDefinition() {
656   getNextToken(); // eat def.
657   auto Proto = ParsePrototype();
658   if (!Proto)
659     return nullptr;
660 
661   if (auto E = ParseExpression())
662     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
663   return nullptr;
664 }
665 
666 /// toplevelexpr ::= expression
ParseTopLevelExpr()667 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
668   if (auto E = ParseExpression()) {
669     // Make an anonymous proto.
670     auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
671                                                  std::vector<std::string>());
672     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
673   }
674   return nullptr;
675 }
676 
677 /// external ::= 'extern' prototype
ParseExtern()678 static std::unique_ptr<PrototypeAST> ParseExtern() {
679   getNextToken(); // eat extern.
680   return ParsePrototype();
681 }
682 
683 //===----------------------------------------------------------------------===//
684 // Code Generation
685 //===----------------------------------------------------------------------===//
686 
687 static LLVMContext TheContext;
688 static IRBuilder<> Builder(TheContext);
689 static std::unique_ptr<Module> TheModule;
690 static std::map<std::string, AllocaInst *> NamedValues;
691 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
692 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
693 
LogErrorV(const char * Str)694 Value *LogErrorV(const char *Str) {
695   LogError(Str);
696   return nullptr;
697 }
698 
getFunction(std::string Name)699 Function *getFunction(std::string Name) {
700   // First, see if the function has already been added to the current module.
701   if (auto *F = TheModule->getFunction(Name))
702     return F;
703 
704   // If not, check whether we can codegen the declaration from some existing
705   // prototype.
706   auto FI = FunctionProtos.find(Name);
707   if (FI != FunctionProtos.end())
708     return FI->second->codegen();
709 
710   // If no existing prototype exists, return null.
711   return nullptr;
712 }
713 
714 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
715 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)716 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
717                                           const std::string &VarName) {
718   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
719                    TheFunction->getEntryBlock().begin());
720   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
721 }
722 
codegen()723 Value *NumberExprAST::codegen() {
724   return ConstantFP::get(TheContext, APFloat(Val));
725 }
726 
codegen()727 Value *VariableExprAST::codegen() {
728   // Look this variable up in the function.
729   Value *V = NamedValues[Name];
730   if (!V)
731     return LogErrorV("Unknown variable name");
732 
733   // Load the value.
734   return Builder.CreateLoad(V, Name.c_str());
735 }
736 
codegen()737 Value *UnaryExprAST::codegen() {
738   Value *OperandV = Operand->codegen();
739   if (!OperandV)
740     return nullptr;
741 
742   Function *F = getFunction(std::string("unary") + Opcode);
743   if (!F)
744     return LogErrorV("Unknown unary operator");
745 
746   return Builder.CreateCall(F, OperandV, "unop");
747 }
748 
codegen()749 Value *BinaryExprAST::codegen() {
750   // Special case '=' because we don't want to emit the LHS as an expression.
751   if (Op == '=') {
752     // Assignment requires the LHS to be an identifier.
753     // This assume we're building without RTTI because LLVM builds that way by
754     // default.  If you build LLVM with RTTI this can be changed to a
755     // dynamic_cast for automatic error checking.
756     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
757     if (!LHSE)
758       return LogErrorV("destination of '=' must be a variable");
759     // Codegen the RHS.
760     Value *Val = RHS->codegen();
761     if (!Val)
762       return nullptr;
763 
764     // Look up the name.
765     Value *Variable = NamedValues[LHSE->getName()];
766     if (!Variable)
767       return LogErrorV("Unknown variable name");
768 
769     Builder.CreateStore(Val, Variable);
770     return Val;
771   }
772 
773   Value *L = LHS->codegen();
774   Value *R = RHS->codegen();
775   if (!L || !R)
776     return nullptr;
777 
778   switch (Op) {
779   case '+':
780     return Builder.CreateFAdd(L, R, "addtmp");
781   case '-':
782     return Builder.CreateFSub(L, R, "subtmp");
783   case '*':
784     return Builder.CreateFMul(L, R, "multmp");
785   case '<':
786     L = Builder.CreateFCmpULT(L, R, "cmptmp");
787     // Convert bool 0/1 to double 0.0 or 1.0
788     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
789   default:
790     break;
791   }
792 
793   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
794   // a call to it.
795   Function *F = getFunction(std::string("binary") + Op);
796   assert(F && "binary operator not found!");
797 
798   Value *Ops[] = {L, R};
799   return Builder.CreateCall(F, Ops, "binop");
800 }
801 
codegen()802 Value *CallExprAST::codegen() {
803   // Look up the name in the global module table.
804   Function *CalleeF = getFunction(Callee);
805   if (!CalleeF)
806     return LogErrorV("Unknown function referenced");
807 
808   // If argument mismatch error.
809   if (CalleeF->arg_size() != Args.size())
810     return LogErrorV("Incorrect # arguments passed");
811 
812   std::vector<Value *> ArgsV;
813   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
814     ArgsV.push_back(Args[i]->codegen());
815     if (!ArgsV.back())
816       return nullptr;
817   }
818 
819   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
820 }
821 
codegen()822 Value *IfExprAST::codegen() {
823   Value *CondV = Cond->codegen();
824   if (!CondV)
825     return nullptr;
826 
827   // Convert condition to a bool by comparing equal to 0.0.
828   CondV = Builder.CreateFCmpONE(
829       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
830 
831   Function *TheFunction = Builder.GetInsertBlock()->getParent();
832 
833   // Create blocks for the then and else cases.  Insert the 'then' block at the
834   // end of the function.
835   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
836   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
837   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
838 
839   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
840 
841   // Emit then value.
842   Builder.SetInsertPoint(ThenBB);
843 
844   Value *ThenV = Then->codegen();
845   if (!ThenV)
846     return nullptr;
847 
848   Builder.CreateBr(MergeBB);
849   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
850   ThenBB = Builder.GetInsertBlock();
851 
852   // Emit else block.
853   TheFunction->getBasicBlockList().push_back(ElseBB);
854   Builder.SetInsertPoint(ElseBB);
855 
856   Value *ElseV = Else->codegen();
857   if (!ElseV)
858     return nullptr;
859 
860   Builder.CreateBr(MergeBB);
861   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
862   ElseBB = Builder.GetInsertBlock();
863 
864   // Emit merge block.
865   TheFunction->getBasicBlockList().push_back(MergeBB);
866   Builder.SetInsertPoint(MergeBB);
867   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
868 
869   PN->addIncoming(ThenV, ThenBB);
870   PN->addIncoming(ElseV, ElseBB);
871   return PN;
872 }
873 
874 // Output for-loop as:
875 //   var = alloca double
876 //   ...
877 //   start = startexpr
878 //   store start -> var
879 //   goto loop
880 // loop:
881 //   ...
882 //   bodyexpr
883 //   ...
884 // loopend:
885 //   step = stepexpr
886 //   endcond = endexpr
887 //
888 //   curvar = load var
889 //   nextvar = curvar + step
890 //   store nextvar -> var
891 //   br endcond, loop, endloop
892 // outloop:
codegen()893 Value *ForExprAST::codegen() {
894   Function *TheFunction = Builder.GetInsertBlock()->getParent();
895 
896   // Create an alloca for the variable in the entry block.
897   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
898 
899   // Emit the start code first, without 'variable' in scope.
900   Value *StartVal = Start->codegen();
901   if (!StartVal)
902     return nullptr;
903 
904   // Store the value into the alloca.
905   Builder.CreateStore(StartVal, Alloca);
906 
907   // Make the new basic block for the loop header, inserting after current
908   // block.
909   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
910 
911   // Insert an explicit fall through from the current block to the LoopBB.
912   Builder.CreateBr(LoopBB);
913 
914   // Start insertion in LoopBB.
915   Builder.SetInsertPoint(LoopBB);
916 
917   // Within the loop, the variable is defined equal to the PHI node.  If it
918   // shadows an existing variable, we have to restore it, so save it now.
919   AllocaInst *OldVal = NamedValues[VarName];
920   NamedValues[VarName] = Alloca;
921 
922   // Emit the body of the loop.  This, like any other expr, can change the
923   // current BB.  Note that we ignore the value computed by the body, but don't
924   // allow an error.
925   if (!Body->codegen())
926     return nullptr;
927 
928   // Emit the step value.
929   Value *StepVal = nullptr;
930   if (Step) {
931     StepVal = Step->codegen();
932     if (!StepVal)
933       return nullptr;
934   } else {
935     // If not specified, use 1.0.
936     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
937   }
938 
939   // Compute the end condition.
940   Value *EndCond = End->codegen();
941   if (!EndCond)
942     return nullptr;
943 
944   // Reload, increment, and restore the alloca.  This handles the case where
945   // the body of the loop mutates the variable.
946   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
947   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
948   Builder.CreateStore(NextVar, Alloca);
949 
950   // Convert condition to a bool by comparing equal to 0.0.
951   EndCond = Builder.CreateFCmpONE(
952       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
953 
954   // Create the "after loop" block and insert it.
955   BasicBlock *AfterBB =
956       BasicBlock::Create(TheContext, "afterloop", TheFunction);
957 
958   // Insert the conditional branch into the end of LoopEndBB.
959   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
960 
961   // Any new code will be inserted in AfterBB.
962   Builder.SetInsertPoint(AfterBB);
963 
964   // Restore the unshadowed variable.
965   if (OldVal)
966     NamedValues[VarName] = OldVal;
967   else
968     NamedValues.erase(VarName);
969 
970   // for expr always returns 0.0.
971   return Constant::getNullValue(Type::getDoubleTy(TheContext));
972 }
973 
codegen()974 Value *VarExprAST::codegen() {
975   std::vector<AllocaInst *> OldBindings;
976 
977   Function *TheFunction = Builder.GetInsertBlock()->getParent();
978 
979   // Register all variables and emit their initializer.
980   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
981     const std::string &VarName = VarNames[i].first;
982     ExprAST *Init = VarNames[i].second.get();
983 
984     // Emit the initializer before adding the variable to scope, this prevents
985     // the initializer from referencing the variable itself, and permits stuff
986     // like this:
987     //  var a = 1 in
988     //    var a = a in ...   # refers to outer 'a'.
989     Value *InitVal;
990     if (Init) {
991       InitVal = Init->codegen();
992       if (!InitVal)
993         return nullptr;
994     } else { // If not specified, use 0.0.
995       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
996     }
997 
998     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
999     Builder.CreateStore(InitVal, Alloca);
1000 
1001     // Remember the old variable binding so that we can restore the binding when
1002     // we unrecurse.
1003     OldBindings.push_back(NamedValues[VarName]);
1004 
1005     // Remember this binding.
1006     NamedValues[VarName] = Alloca;
1007   }
1008 
1009   // Codegen the body, now that all vars are in scope.
1010   Value *BodyVal = Body->codegen();
1011   if (!BodyVal)
1012     return nullptr;
1013 
1014   // Pop all our variables from scope.
1015   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1016     NamedValues[VarNames[i].first] = OldBindings[i];
1017 
1018   // Return the body computation.
1019   return BodyVal;
1020 }
1021 
codegen()1022 Function *PrototypeAST::codegen() {
1023   // Make the function type:  double(double,double) etc.
1024   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1025   FunctionType *FT =
1026       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1027 
1028   Function *F =
1029       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1030 
1031   // Set names for all arguments.
1032   unsigned Idx = 0;
1033   for (auto &Arg : F->args())
1034     Arg.setName(Args[Idx++]);
1035 
1036   return F;
1037 }
1038 
codegen()1039 Function *FunctionAST::codegen() {
1040   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1041   // reference to it for use below.
1042   auto &P = *Proto;
1043   FunctionProtos[Proto->getName()] = std::move(Proto);
1044   Function *TheFunction = getFunction(P.getName());
1045   if (!TheFunction)
1046     return nullptr;
1047 
1048   // If this is an operator, install it.
1049   if (P.isBinaryOp())
1050     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1051 
1052   // Create a new basic block to start insertion into.
1053   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1054   Builder.SetInsertPoint(BB);
1055 
1056   // Record the function arguments in the NamedValues map.
1057   NamedValues.clear();
1058   for (auto &Arg : TheFunction->args()) {
1059     // Create an alloca for this variable.
1060     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1061 
1062     // Store the initial value into the alloca.
1063     Builder.CreateStore(&Arg, Alloca);
1064 
1065     // Add arguments to variable symbol table.
1066     NamedValues[Arg.getName()] = Alloca;
1067   }
1068 
1069   if (Value *RetVal = Body->codegen()) {
1070     // Finish off the function.
1071     Builder.CreateRet(RetVal);
1072 
1073     // Validate the generated code, checking for consistency.
1074     verifyFunction(*TheFunction);
1075 
1076     return TheFunction;
1077   }
1078 
1079   // Error reading body, remove function.
1080   TheFunction->eraseFromParent();
1081 
1082   if (P.isBinaryOp())
1083     BinopPrecedence.erase(Proto->getOperatorName());
1084   return nullptr;
1085 }
1086 
1087 //===----------------------------------------------------------------------===//
1088 // Top-Level parsing and JIT Driver
1089 //===----------------------------------------------------------------------===//
1090 
InitializeModule()1091 static void InitializeModule() {
1092   // Open a new module.
1093   TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1094   TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1095 }
1096 
HandleDefinition()1097 static void HandleDefinition() {
1098   if (auto FnAST = ParseDefinition()) {
1099     if (auto *FnIR = FnAST->codegen()) {
1100       fprintf(stderr, "Read function definition:");
1101       FnIR->dump();
1102       TheJIT->addModule(std::move(TheModule));
1103       InitializeModule();
1104     }
1105   } else {
1106     // Skip token for error recovery.
1107     getNextToken();
1108   }
1109 }
1110 
HandleExtern()1111 static void HandleExtern() {
1112   if (auto ProtoAST = ParseExtern()) {
1113     if (auto *FnIR = ProtoAST->codegen()) {
1114       fprintf(stderr, "Read extern: ");
1115       FnIR->dump();
1116       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1117     }
1118   } else {
1119     // Skip token for error recovery.
1120     getNextToken();
1121   }
1122 }
1123 
HandleTopLevelExpression()1124 static void HandleTopLevelExpression() {
1125   // Evaluate a top-level expression into an anonymous function.
1126   if (auto FnAST = ParseTopLevelExpr()) {
1127     if (FnAST->codegen()) {
1128       // JIT the module containing the anonymous expression, keeping a handle so
1129       // we can free it later.
1130       auto H = TheJIT->addModule(std::move(TheModule));
1131       InitializeModule();
1132 
1133       // Search the JIT for the __anon_expr symbol.
1134       auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1135       assert(ExprSymbol && "Function not found");
1136 
1137       // Get the symbol's address and cast it to the right type (takes no
1138       // arguments, returns a double) so we can call it as a native function.
1139       double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1140       fprintf(stderr, "Evaluated to %f\n", FP());
1141 
1142       // Delete the anonymous expression module from the JIT.
1143       TheJIT->removeModule(H);
1144     }
1145   } else {
1146     // Skip token for error recovery.
1147     getNextToken();
1148   }
1149 }
1150 
1151 /// top ::= definition | external | expression | ';'
MainLoop()1152 static void MainLoop() {
1153   while (true) {
1154     fprintf(stderr, "ready> ");
1155     switch (CurTok) {
1156     case tok_eof:
1157       return;
1158     case ';': // ignore top-level semicolons.
1159       getNextToken();
1160       break;
1161     case tok_def:
1162       HandleDefinition();
1163       break;
1164     case tok_extern:
1165       HandleExtern();
1166       break;
1167     default:
1168       HandleTopLevelExpression();
1169       break;
1170     }
1171   }
1172 }
1173 
1174 //===----------------------------------------------------------------------===//
1175 // "Library" functions that can be "extern'd" from user code.
1176 //===----------------------------------------------------------------------===//
1177 
1178 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1179 extern "C" double putchard(double X) {
1180   fputc((char)X, stderr);
1181   return 0;
1182 }
1183 
1184 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1185 extern "C" double printd(double X) {
1186   fprintf(stderr, "%f\n", X);
1187   return 0;
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 // Main driver code.
1192 //===----------------------------------------------------------------------===//
1193 
main()1194 int main() {
1195   InitializeNativeTarget();
1196   InitializeNativeTargetAsmPrinter();
1197   InitializeNativeTargetAsmParser();
1198 
1199   // Install standard binary operators.
1200   // 1 is lowest precedence.
1201   BinopPrecedence['='] = 2;
1202   BinopPrecedence['<'] = 10;
1203   BinopPrecedence['+'] = 20;
1204   BinopPrecedence['-'] = 20;
1205   BinopPrecedence['*'] = 40; // highest.
1206 
1207   // Prime the first token.
1208   fprintf(stderr, "ready> ");
1209   getNextToken();
1210 
1211   TheJIT = llvm::make_unique<KaleidoscopeJIT>();
1212 
1213   InitializeModule();
1214 
1215   // Run the main "interpreter loop" now.
1216   MainLoop();
1217 
1218   return 0;
1219 }
1220