1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Type.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Transforms/Scalar/GVN.h"
19 #include "KaleidoscopeJIT.h"
20 #include <cassert>
21 #include <cctype>
22 #include <cstdint>
23 #include <cstdio>
24 #include <cstdlib>
25 #include <map>
26 #include <memory>
27 #include <string>
28 #include <utility>
29 #include <vector>
30
31 #include <netdb.h>
32 #include <unistd.h>
33 #include <netinet/in.h>
34 #include <sys/socket.h>
35
36 using namespace llvm;
37 using namespace llvm::orc;
38
39 // Command line argument for TCP hostname.
40 cl::opt<std::string> HostName("hostname",
41 cl::desc("TCP hostname to connect to"),
42 cl::init("localhost"));
43
44 // Command line argument for TCP port.
45 cl::opt<uint32_t> Port("port",
46 cl::desc("TCP port to connect to"),
47 cl::init(20000));
48
49 //===----------------------------------------------------------------------===//
50 // Lexer
51 //===----------------------------------------------------------------------===//
52
53 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
54 // of these for known things.
55 enum Token {
56 tok_eof = -1,
57
58 // commands
59 tok_def = -2,
60 tok_extern = -3,
61
62 // primary
63 tok_identifier = -4,
64 tok_number = -5,
65
66 // control
67 tok_if = -6,
68 tok_then = -7,
69 tok_else = -8,
70 tok_for = -9,
71 tok_in = -10,
72
73 // operators
74 tok_binary = -11,
75 tok_unary = -12,
76
77 // var definition
78 tok_var = -13
79 };
80
81 static std::string IdentifierStr; // Filled in if tok_identifier
82 static double NumVal; // Filled in if tok_number
83
84 /// gettok - Return the next token from standard input.
gettok()85 static int gettok() {
86 static int LastChar = ' ';
87
88 // Skip any whitespace.
89 while (isspace(LastChar))
90 LastChar = getchar();
91
92 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
93 IdentifierStr = LastChar;
94 while (isalnum((LastChar = getchar())))
95 IdentifierStr += LastChar;
96
97 if (IdentifierStr == "def")
98 return tok_def;
99 if (IdentifierStr == "extern")
100 return tok_extern;
101 if (IdentifierStr == "if")
102 return tok_if;
103 if (IdentifierStr == "then")
104 return tok_then;
105 if (IdentifierStr == "else")
106 return tok_else;
107 if (IdentifierStr == "for")
108 return tok_for;
109 if (IdentifierStr == "in")
110 return tok_in;
111 if (IdentifierStr == "binary")
112 return tok_binary;
113 if (IdentifierStr == "unary")
114 return tok_unary;
115 if (IdentifierStr == "var")
116 return tok_var;
117 return tok_identifier;
118 }
119
120 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
121 std::string NumStr;
122 do {
123 NumStr += LastChar;
124 LastChar = getchar();
125 } while (isdigit(LastChar) || LastChar == '.');
126
127 NumVal = strtod(NumStr.c_str(), nullptr);
128 return tok_number;
129 }
130
131 if (LastChar == '#') {
132 // Comment until end of line.
133 do
134 LastChar = getchar();
135 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
136
137 if (LastChar != EOF)
138 return gettok();
139 }
140
141 // Check for end of file. Don't eat the EOF.
142 if (LastChar == EOF)
143 return tok_eof;
144
145 // Otherwise, just return the character as its ascii value.
146 int ThisChar = LastChar;
147 LastChar = getchar();
148 return ThisChar;
149 }
150
151 //===----------------------------------------------------------------------===//
152 // Abstract Syntax Tree (aka Parse Tree)
153 //===----------------------------------------------------------------------===//
154
155 /// ExprAST - Base class for all expression nodes.
156 class ExprAST {
157 public:
~ExprAST()158 virtual ~ExprAST() {}
159 virtual Value *codegen() = 0;
160 };
161
162 /// NumberExprAST - Expression class for numeric literals like "1.0".
163 class NumberExprAST : public ExprAST {
164 double Val;
165
166 public:
NumberExprAST(double Val)167 NumberExprAST(double Val) : Val(Val) {}
168 Value *codegen() override;
169 };
170
171 /// VariableExprAST - Expression class for referencing a variable, like "a".
172 class VariableExprAST : public ExprAST {
173 std::string Name;
174
175 public:
VariableExprAST(const std::string & Name)176 VariableExprAST(const std::string &Name) : Name(Name) {}
getName() const177 const std::string &getName() const { return Name; }
178 Value *codegen() override;
179 };
180
181 /// UnaryExprAST - Expression class for a unary operator.
182 class UnaryExprAST : public ExprAST {
183 char Opcode;
184 std::unique_ptr<ExprAST> Operand;
185
186 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)187 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
188 : Opcode(Opcode), Operand(std::move(Operand)) {}
189 Value *codegen() override;
190 };
191
192 /// BinaryExprAST - Expression class for a binary operator.
193 class BinaryExprAST : public ExprAST {
194 char Op;
195 std::unique_ptr<ExprAST> LHS, RHS;
196
197 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)198 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
199 std::unique_ptr<ExprAST> RHS)
200 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
201 Value *codegen() override;
202 };
203
204 /// CallExprAST - Expression class for function calls.
205 class CallExprAST : public ExprAST {
206 std::string Callee;
207 std::vector<std::unique_ptr<ExprAST>> Args;
208
209 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)210 CallExprAST(const std::string &Callee,
211 std::vector<std::unique_ptr<ExprAST>> Args)
212 : Callee(Callee), Args(std::move(Args)) {}
213 Value *codegen() override;
214 };
215
216 /// IfExprAST - Expression class for if/then/else.
217 class IfExprAST : public ExprAST {
218 std::unique_ptr<ExprAST> Cond, Then, Else;
219
220 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)221 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
222 std::unique_ptr<ExprAST> Else)
223 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
224 Value *codegen() override;
225 };
226
227 /// ForExprAST - Expression class for for/in.
228 class ForExprAST : public ExprAST {
229 std::string VarName;
230 std::unique_ptr<ExprAST> Start, End, Step, Body;
231
232 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)233 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
234 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
235 std::unique_ptr<ExprAST> Body)
236 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
237 Step(std::move(Step)), Body(std::move(Body)) {}
238 Value *codegen() override;
239 };
240
241 /// VarExprAST - Expression class for var/in
242 class VarExprAST : public ExprAST {
243 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
244 std::unique_ptr<ExprAST> Body;
245
246 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)247 VarExprAST(
248 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
249 std::unique_ptr<ExprAST> Body)
250 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
251 Value *codegen() override;
252 };
253
254 /// PrototypeAST - This class represents the "prototype" for a function,
255 /// which captures its name, and its argument names (thus implicitly the number
256 /// of arguments the function takes), as well as if it is an operator.
257 class PrototypeAST {
258 std::string Name;
259 std::vector<std::string> Args;
260 bool IsOperator;
261 unsigned Precedence; // Precedence if a binary op.
262
263 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)264 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
265 bool IsOperator = false, unsigned Prec = 0)
266 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
267 Precedence(Prec) {}
268 Function *codegen();
getName() const269 const std::string &getName() const { return Name; }
270
isUnaryOp() const271 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const272 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
273
getOperatorName() const274 char getOperatorName() const {
275 assert(isUnaryOp() || isBinaryOp());
276 return Name[Name.size() - 1];
277 }
278
getBinaryPrecedence() const279 unsigned getBinaryPrecedence() const { return Precedence; }
280 };
281
282 //===----------------------------------------------------------------------===//
283 // Parser
284 //===----------------------------------------------------------------------===//
285
286 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
287 /// token the parser is looking at. getNextToken reads another token from the
288 /// lexer and updates CurTok with its results.
289 static int CurTok;
getNextToken()290 static int getNextToken() { return CurTok = gettok(); }
291
292 /// BinopPrecedence - This holds the precedence for each binary operator that is
293 /// defined.
294 static std::map<char, int> BinopPrecedence;
295
296 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()297 static int GetTokPrecedence() {
298 if (!isascii(CurTok))
299 return -1;
300
301 // Make sure it's a declared binop.
302 int TokPrec = BinopPrecedence[CurTok];
303 if (TokPrec <= 0)
304 return -1;
305 return TokPrec;
306 }
307
308 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)309 std::unique_ptr<ExprAST> LogError(const char *Str) {
310 fprintf(stderr, "Error: %s\n", Str);
311 return nullptr;
312 }
313
LogErrorP(const char * Str)314 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
315 LogError(Str);
316 return nullptr;
317 }
318
319 static std::unique_ptr<ExprAST> ParseExpression();
320
321 /// numberexpr ::= number
ParseNumberExpr()322 static std::unique_ptr<ExprAST> ParseNumberExpr() {
323 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
324 getNextToken(); // consume the number
325 return std::move(Result);
326 }
327
328 /// parenexpr ::= '(' expression ')'
ParseParenExpr()329 static std::unique_ptr<ExprAST> ParseParenExpr() {
330 getNextToken(); // eat (.
331 auto V = ParseExpression();
332 if (!V)
333 return nullptr;
334
335 if (CurTok != ')')
336 return LogError("expected ')'");
337 getNextToken(); // eat ).
338 return V;
339 }
340
341 /// identifierexpr
342 /// ::= identifier
343 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()344 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
345 std::string IdName = IdentifierStr;
346
347 getNextToken(); // eat identifier.
348
349 if (CurTok != '(') // Simple variable ref.
350 return llvm::make_unique<VariableExprAST>(IdName);
351
352 // Call.
353 getNextToken(); // eat (
354 std::vector<std::unique_ptr<ExprAST>> Args;
355 if (CurTok != ')') {
356 while (true) {
357 if (auto Arg = ParseExpression())
358 Args.push_back(std::move(Arg));
359 else
360 return nullptr;
361
362 if (CurTok == ')')
363 break;
364
365 if (CurTok != ',')
366 return LogError("Expected ')' or ',' in argument list");
367 getNextToken();
368 }
369 }
370
371 // Eat the ')'.
372 getNextToken();
373
374 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
375 }
376
377 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()378 static std::unique_ptr<ExprAST> ParseIfExpr() {
379 getNextToken(); // eat the if.
380
381 // condition.
382 auto Cond = ParseExpression();
383 if (!Cond)
384 return nullptr;
385
386 if (CurTok != tok_then)
387 return LogError("expected then");
388 getNextToken(); // eat the then
389
390 auto Then = ParseExpression();
391 if (!Then)
392 return nullptr;
393
394 if (CurTok != tok_else)
395 return LogError("expected else");
396
397 getNextToken();
398
399 auto Else = ParseExpression();
400 if (!Else)
401 return nullptr;
402
403 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
404 std::move(Else));
405 }
406
407 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()408 static std::unique_ptr<ExprAST> ParseForExpr() {
409 getNextToken(); // eat the for.
410
411 if (CurTok != tok_identifier)
412 return LogError("expected identifier after for");
413
414 std::string IdName = IdentifierStr;
415 getNextToken(); // eat identifier.
416
417 if (CurTok != '=')
418 return LogError("expected '=' after for");
419 getNextToken(); // eat '='.
420
421 auto Start = ParseExpression();
422 if (!Start)
423 return nullptr;
424 if (CurTok != ',')
425 return LogError("expected ',' after for start value");
426 getNextToken();
427
428 auto End = ParseExpression();
429 if (!End)
430 return nullptr;
431
432 // The step value is optional.
433 std::unique_ptr<ExprAST> Step;
434 if (CurTok == ',') {
435 getNextToken();
436 Step = ParseExpression();
437 if (!Step)
438 return nullptr;
439 }
440
441 if (CurTok != tok_in)
442 return LogError("expected 'in' after for");
443 getNextToken(); // eat 'in'.
444
445 auto Body = ParseExpression();
446 if (!Body)
447 return nullptr;
448
449 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
450 std::move(Step), std::move(Body));
451 }
452
453 /// varexpr ::= 'var' identifier ('=' expression)?
454 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()455 static std::unique_ptr<ExprAST> ParseVarExpr() {
456 getNextToken(); // eat the var.
457
458 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
459
460 // At least one variable name is required.
461 if (CurTok != tok_identifier)
462 return LogError("expected identifier after var");
463
464 while (true) {
465 std::string Name = IdentifierStr;
466 getNextToken(); // eat identifier.
467
468 // Read the optional initializer.
469 std::unique_ptr<ExprAST> Init = nullptr;
470 if (CurTok == '=') {
471 getNextToken(); // eat the '='.
472
473 Init = ParseExpression();
474 if (!Init)
475 return nullptr;
476 }
477
478 VarNames.push_back(std::make_pair(Name, std::move(Init)));
479
480 // End of var list, exit loop.
481 if (CurTok != ',')
482 break;
483 getNextToken(); // eat the ','.
484
485 if (CurTok != tok_identifier)
486 return LogError("expected identifier list after var");
487 }
488
489 // At this point, we have to have 'in'.
490 if (CurTok != tok_in)
491 return LogError("expected 'in' keyword after 'var'");
492 getNextToken(); // eat 'in'.
493
494 auto Body = ParseExpression();
495 if (!Body)
496 return nullptr;
497
498 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
499 }
500
501 /// primary
502 /// ::= identifierexpr
503 /// ::= numberexpr
504 /// ::= parenexpr
505 /// ::= ifexpr
506 /// ::= forexpr
507 /// ::= varexpr
ParsePrimary()508 static std::unique_ptr<ExprAST> ParsePrimary() {
509 switch (CurTok) {
510 default:
511 return LogError("unknown token when expecting an expression");
512 case tok_identifier:
513 return ParseIdentifierExpr();
514 case tok_number:
515 return ParseNumberExpr();
516 case '(':
517 return ParseParenExpr();
518 case tok_if:
519 return ParseIfExpr();
520 case tok_for:
521 return ParseForExpr();
522 case tok_var:
523 return ParseVarExpr();
524 }
525 }
526
527 /// unary
528 /// ::= primary
529 /// ::= '!' unary
ParseUnary()530 static std::unique_ptr<ExprAST> ParseUnary() {
531 // If the current token is not an operator, it must be a primary expr.
532 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
533 return ParsePrimary();
534
535 // If this is a unary operator, read it.
536 int Opc = CurTok;
537 getNextToken();
538 if (auto Operand = ParseUnary())
539 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
540 return nullptr;
541 }
542
543 /// binoprhs
544 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)545 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
546 std::unique_ptr<ExprAST> LHS) {
547 // If this is a binop, find its precedence.
548 while (true) {
549 int TokPrec = GetTokPrecedence();
550
551 // If this is a binop that binds at least as tightly as the current binop,
552 // consume it, otherwise we are done.
553 if (TokPrec < ExprPrec)
554 return LHS;
555
556 // Okay, we know this is a binop.
557 int BinOp = CurTok;
558 getNextToken(); // eat binop
559
560 // Parse the unary expression after the binary operator.
561 auto RHS = ParseUnary();
562 if (!RHS)
563 return nullptr;
564
565 // If BinOp binds less tightly with RHS than the operator after RHS, let
566 // the pending operator take RHS as its LHS.
567 int NextPrec = GetTokPrecedence();
568 if (TokPrec < NextPrec) {
569 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
570 if (!RHS)
571 return nullptr;
572 }
573
574 // Merge LHS/RHS.
575 LHS =
576 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
577 }
578 }
579
580 /// expression
581 /// ::= unary binoprhs
582 ///
ParseExpression()583 static std::unique_ptr<ExprAST> ParseExpression() {
584 auto LHS = ParseUnary();
585 if (!LHS)
586 return nullptr;
587
588 return ParseBinOpRHS(0, std::move(LHS));
589 }
590
591 /// prototype
592 /// ::= id '(' id* ')'
593 /// ::= binary LETTER number? (id, id)
594 /// ::= unary LETTER (id)
ParsePrototype()595 static std::unique_ptr<PrototypeAST> ParsePrototype() {
596 std::string FnName;
597
598 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
599 unsigned BinaryPrecedence = 30;
600
601 switch (CurTok) {
602 default:
603 return LogErrorP("Expected function name in prototype");
604 case tok_identifier:
605 FnName = IdentifierStr;
606 Kind = 0;
607 getNextToken();
608 break;
609 case tok_unary:
610 getNextToken();
611 if (!isascii(CurTok))
612 return LogErrorP("Expected unary operator");
613 FnName = "unary";
614 FnName += (char)CurTok;
615 Kind = 1;
616 getNextToken();
617 break;
618 case tok_binary:
619 getNextToken();
620 if (!isascii(CurTok))
621 return LogErrorP("Expected binary operator");
622 FnName = "binary";
623 FnName += (char)CurTok;
624 Kind = 2;
625 getNextToken();
626
627 // Read the precedence if present.
628 if (CurTok == tok_number) {
629 if (NumVal < 1 || NumVal > 100)
630 return LogErrorP("Invalid precedecnce: must be 1..100");
631 BinaryPrecedence = (unsigned)NumVal;
632 getNextToken();
633 }
634 break;
635 }
636
637 if (CurTok != '(')
638 return LogErrorP("Expected '(' in prototype");
639
640 std::vector<std::string> ArgNames;
641 while (getNextToken() == tok_identifier)
642 ArgNames.push_back(IdentifierStr);
643 if (CurTok != ')')
644 return LogErrorP("Expected ')' in prototype");
645
646 // success.
647 getNextToken(); // eat ')'.
648
649 // Verify right number of names for operator.
650 if (Kind && ArgNames.size() != Kind)
651 return LogErrorP("Invalid number of operands for operator");
652
653 return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
654 BinaryPrecedence);
655 }
656
657 /// definition ::= 'def' prototype expression
ParseDefinition()658 static std::unique_ptr<FunctionAST> ParseDefinition() {
659 getNextToken(); // eat def.
660 auto Proto = ParsePrototype();
661 if (!Proto)
662 return nullptr;
663
664 if (auto E = ParseExpression())
665 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
666 return nullptr;
667 }
668
669 /// toplevelexpr ::= expression
ParseTopLevelExpr()670 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
671 if (auto E = ParseExpression()) {
672
673 auto PEArgs = std::vector<std::unique_ptr<ExprAST>>();
674 PEArgs.push_back(std::move(E));
675 auto PrintExpr =
676 llvm::make_unique<CallExprAST>("printExprResult", std::move(PEArgs));
677
678 // Make an anonymous proto.
679 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
680 std::vector<std::string>());
681 return llvm::make_unique<FunctionAST>(std::move(Proto),
682 std::move(PrintExpr));
683 }
684 return nullptr;
685 }
686
687 /// external ::= 'extern' prototype
ParseExtern()688 static std::unique_ptr<PrototypeAST> ParseExtern() {
689 getNextToken(); // eat extern.
690 return ParsePrototype();
691 }
692
693 //===----------------------------------------------------------------------===//
694 // Code Generation
695 //===----------------------------------------------------------------------===//
696
697 static LLVMContext TheContext;
698 static IRBuilder<> Builder(TheContext);
699 static std::unique_ptr<Module> TheModule;
700 static std::map<std::string, AllocaInst *> NamedValues;
701 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
702 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
703 static ExitOnError ExitOnErr;
704
LogErrorV(const char * Str)705 Value *LogErrorV(const char *Str) {
706 LogError(Str);
707 return nullptr;
708 }
709
getFunction(std::string Name)710 Function *getFunction(std::string Name) {
711 // First, see if the function has already been added to the current module.
712 if (auto *F = TheModule->getFunction(Name))
713 return F;
714
715 // If not, check whether we can codegen the declaration from some existing
716 // prototype.
717 auto FI = FunctionProtos.find(Name);
718 if (FI != FunctionProtos.end())
719 return FI->second->codegen();
720
721 // If no existing prototype exists, return null.
722 return nullptr;
723 }
724
725 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
726 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)727 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
728 const std::string &VarName) {
729 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
730 TheFunction->getEntryBlock().begin());
731 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
732 }
733
codegen()734 Value *NumberExprAST::codegen() {
735 return ConstantFP::get(TheContext, APFloat(Val));
736 }
737
codegen()738 Value *VariableExprAST::codegen() {
739 // Look this variable up in the function.
740 Value *V = NamedValues[Name];
741 if (!V)
742 return LogErrorV("Unknown variable name");
743
744 // Load the value.
745 return Builder.CreateLoad(V, Name.c_str());
746 }
747
codegen()748 Value *UnaryExprAST::codegen() {
749 Value *OperandV = Operand->codegen();
750 if (!OperandV)
751 return nullptr;
752
753 Function *F = getFunction(std::string("unary") + Opcode);
754 if (!F)
755 return LogErrorV("Unknown unary operator");
756
757 return Builder.CreateCall(F, OperandV, "unop");
758 }
759
codegen()760 Value *BinaryExprAST::codegen() {
761 // Special case '=' because we don't want to emit the LHS as an expression.
762 if (Op == '=') {
763 // Assignment requires the LHS to be an identifier.
764 // This assume we're building without RTTI because LLVM builds that way by
765 // default. If you build LLVM with RTTI this can be changed to a
766 // dynamic_cast for automatic error checking.
767 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
768 if (!LHSE)
769 return LogErrorV("destination of '=' must be a variable");
770 // Codegen the RHS.
771 Value *Val = RHS->codegen();
772 if (!Val)
773 return nullptr;
774
775 // Look up the name.
776 Value *Variable = NamedValues[LHSE->getName()];
777 if (!Variable)
778 return LogErrorV("Unknown variable name");
779
780 Builder.CreateStore(Val, Variable);
781 return Val;
782 }
783
784 Value *L = LHS->codegen();
785 Value *R = RHS->codegen();
786 if (!L || !R)
787 return nullptr;
788
789 switch (Op) {
790 case '+':
791 return Builder.CreateFAdd(L, R, "addtmp");
792 case '-':
793 return Builder.CreateFSub(L, R, "subtmp");
794 case '*':
795 return Builder.CreateFMul(L, R, "multmp");
796 case '<':
797 L = Builder.CreateFCmpULT(L, R, "cmptmp");
798 // Convert bool 0/1 to double 0.0 or 1.0
799 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
800 default:
801 break;
802 }
803
804 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
805 // a call to it.
806 Function *F = getFunction(std::string("binary") + Op);
807 assert(F && "binary operator not found!");
808
809 Value *Ops[] = {L, R};
810 return Builder.CreateCall(F, Ops, "binop");
811 }
812
codegen()813 Value *CallExprAST::codegen() {
814 // Look up the name in the global module table.
815 Function *CalleeF = getFunction(Callee);
816 if (!CalleeF)
817 return LogErrorV("Unknown function referenced");
818
819 // If argument mismatch error.
820 if (CalleeF->arg_size() != Args.size())
821 return LogErrorV("Incorrect # arguments passed");
822
823 std::vector<Value *> ArgsV;
824 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
825 ArgsV.push_back(Args[i]->codegen());
826 if (!ArgsV.back())
827 return nullptr;
828 }
829
830 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
831 }
832
codegen()833 Value *IfExprAST::codegen() {
834 Value *CondV = Cond->codegen();
835 if (!CondV)
836 return nullptr;
837
838 // Convert condition to a bool by comparing equal to 0.0.
839 CondV = Builder.CreateFCmpONE(
840 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
841
842 Function *TheFunction = Builder.GetInsertBlock()->getParent();
843
844 // Create blocks for the then and else cases. Insert the 'then' block at the
845 // end of the function.
846 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
847 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
848 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
849
850 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
851
852 // Emit then value.
853 Builder.SetInsertPoint(ThenBB);
854
855 Value *ThenV = Then->codegen();
856 if (!ThenV)
857 return nullptr;
858
859 Builder.CreateBr(MergeBB);
860 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
861 ThenBB = Builder.GetInsertBlock();
862
863 // Emit else block.
864 TheFunction->getBasicBlockList().push_back(ElseBB);
865 Builder.SetInsertPoint(ElseBB);
866
867 Value *ElseV = Else->codegen();
868 if (!ElseV)
869 return nullptr;
870
871 Builder.CreateBr(MergeBB);
872 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
873 ElseBB = Builder.GetInsertBlock();
874
875 // Emit merge block.
876 TheFunction->getBasicBlockList().push_back(MergeBB);
877 Builder.SetInsertPoint(MergeBB);
878 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
879
880 PN->addIncoming(ThenV, ThenBB);
881 PN->addIncoming(ElseV, ElseBB);
882 return PN;
883 }
884
885 // Output for-loop as:
886 // var = alloca double
887 // ...
888 // start = startexpr
889 // store start -> var
890 // goto loop
891 // loop:
892 // ...
893 // bodyexpr
894 // ...
895 // loopend:
896 // step = stepexpr
897 // endcond = endexpr
898 //
899 // curvar = load var
900 // nextvar = curvar + step
901 // store nextvar -> var
902 // br endcond, loop, endloop
903 // outloop:
codegen()904 Value *ForExprAST::codegen() {
905 Function *TheFunction = Builder.GetInsertBlock()->getParent();
906
907 // Create an alloca for the variable in the entry block.
908 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
909
910 // Emit the start code first, without 'variable' in scope.
911 Value *StartVal = Start->codegen();
912 if (!StartVal)
913 return nullptr;
914
915 // Store the value into the alloca.
916 Builder.CreateStore(StartVal, Alloca);
917
918 // Make the new basic block for the loop header, inserting after current
919 // block.
920 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
921
922 // Insert an explicit fall through from the current block to the LoopBB.
923 Builder.CreateBr(LoopBB);
924
925 // Start insertion in LoopBB.
926 Builder.SetInsertPoint(LoopBB);
927
928 // Within the loop, the variable is defined equal to the PHI node. If it
929 // shadows an existing variable, we have to restore it, so save it now.
930 AllocaInst *OldVal = NamedValues[VarName];
931 NamedValues[VarName] = Alloca;
932
933 // Emit the body of the loop. This, like any other expr, can change the
934 // current BB. Note that we ignore the value computed by the body, but don't
935 // allow an error.
936 if (!Body->codegen())
937 return nullptr;
938
939 // Emit the step value.
940 Value *StepVal = nullptr;
941 if (Step) {
942 StepVal = Step->codegen();
943 if (!StepVal)
944 return nullptr;
945 } else {
946 // If not specified, use 1.0.
947 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
948 }
949
950 // Compute the end condition.
951 Value *EndCond = End->codegen();
952 if (!EndCond)
953 return nullptr;
954
955 // Reload, increment, and restore the alloca. This handles the case where
956 // the body of the loop mutates the variable.
957 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
958 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
959 Builder.CreateStore(NextVar, Alloca);
960
961 // Convert condition to a bool by comparing equal to 0.0.
962 EndCond = Builder.CreateFCmpONE(
963 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
964
965 // Create the "after loop" block and insert it.
966 BasicBlock *AfterBB =
967 BasicBlock::Create(TheContext, "afterloop", TheFunction);
968
969 // Insert the conditional branch into the end of LoopEndBB.
970 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
971
972 // Any new code will be inserted in AfterBB.
973 Builder.SetInsertPoint(AfterBB);
974
975 // Restore the unshadowed variable.
976 if (OldVal)
977 NamedValues[VarName] = OldVal;
978 else
979 NamedValues.erase(VarName);
980
981 // for expr always returns 0.0.
982 return Constant::getNullValue(Type::getDoubleTy(TheContext));
983 }
984
codegen()985 Value *VarExprAST::codegen() {
986 std::vector<AllocaInst *> OldBindings;
987
988 Function *TheFunction = Builder.GetInsertBlock()->getParent();
989
990 // Register all variables and emit their initializer.
991 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
992 const std::string &VarName = VarNames[i].first;
993 ExprAST *Init = VarNames[i].second.get();
994
995 // Emit the initializer before adding the variable to scope, this prevents
996 // the initializer from referencing the variable itself, and permits stuff
997 // like this:
998 // var a = 1 in
999 // var a = a in ... # refers to outer 'a'.
1000 Value *InitVal;
1001 if (Init) {
1002 InitVal = Init->codegen();
1003 if (!InitVal)
1004 return nullptr;
1005 } else { // If not specified, use 0.0.
1006 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
1007 }
1008
1009 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1010 Builder.CreateStore(InitVal, Alloca);
1011
1012 // Remember the old variable binding so that we can restore the binding when
1013 // we unrecurse.
1014 OldBindings.push_back(NamedValues[VarName]);
1015
1016 // Remember this binding.
1017 NamedValues[VarName] = Alloca;
1018 }
1019
1020 // Codegen the body, now that all vars are in scope.
1021 Value *BodyVal = Body->codegen();
1022 if (!BodyVal)
1023 return nullptr;
1024
1025 // Pop all our variables from scope.
1026 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1027 NamedValues[VarNames[i].first] = OldBindings[i];
1028
1029 // Return the body computation.
1030 return BodyVal;
1031 }
1032
codegen()1033 Function *PrototypeAST::codegen() {
1034 // Make the function type: double(double,double) etc.
1035 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1036 FunctionType *FT =
1037 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1038
1039 Function *F =
1040 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1041
1042 // Set names for all arguments.
1043 unsigned Idx = 0;
1044 for (auto &Arg : F->args())
1045 Arg.setName(Args[Idx++]);
1046
1047 return F;
1048 }
1049
getProto() const1050 const PrototypeAST& FunctionAST::getProto() const {
1051 return *Proto;
1052 }
1053
getName() const1054 const std::string& FunctionAST::getName() const {
1055 return Proto->getName();
1056 }
1057
codegen()1058 Function *FunctionAST::codegen() {
1059 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1060 // reference to it for use below.
1061 auto &P = *Proto;
1062 Function *TheFunction = getFunction(P.getName());
1063 if (!TheFunction)
1064 return nullptr;
1065
1066 // If this is an operator, install it.
1067 if (P.isBinaryOp())
1068 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1069
1070 // Create a new basic block to start insertion into.
1071 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1072 Builder.SetInsertPoint(BB);
1073
1074 // Record the function arguments in the NamedValues map.
1075 NamedValues.clear();
1076 for (auto &Arg : TheFunction->args()) {
1077 // Create an alloca for this variable.
1078 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1079
1080 // Store the initial value into the alloca.
1081 Builder.CreateStore(&Arg, Alloca);
1082
1083 // Add arguments to variable symbol table.
1084 NamedValues[Arg.getName()] = Alloca;
1085 }
1086
1087 if (Value *RetVal = Body->codegen()) {
1088 // Finish off the function.
1089 Builder.CreateRet(RetVal);
1090
1091 // Validate the generated code, checking for consistency.
1092 verifyFunction(*TheFunction);
1093
1094 return TheFunction;
1095 }
1096
1097 // Error reading body, remove function.
1098 TheFunction->eraseFromParent();
1099
1100 if (P.isBinaryOp())
1101 BinopPrecedence.erase(Proto->getOperatorName());
1102 return nullptr;
1103 }
1104
1105 //===----------------------------------------------------------------------===//
1106 // Top-Level parsing and JIT Driver
1107 //===----------------------------------------------------------------------===//
1108
InitializeModule()1109 static void InitializeModule() {
1110 // Open a new module.
1111 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1112 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1113 }
1114
1115 std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST & FnAST,const std::string & Suffix)1116 irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix) {
1117 if (auto *F = FnAST.codegen()) {
1118 F->setName(F->getName() + Suffix);
1119 auto M = std::move(TheModule);
1120 // Start a new module.
1121 InitializeModule();
1122 return M;
1123 } else
1124 report_fatal_error("Couldn't compile lazily JIT'd function");
1125 }
1126
HandleDefinition()1127 static void HandleDefinition() {
1128 if (auto FnAST = ParseDefinition()) {
1129 FunctionProtos[FnAST->getProto().getName()] =
1130 llvm::make_unique<PrototypeAST>(FnAST->getProto());
1131 ExitOnErr(TheJIT->addFunctionAST(std::move(FnAST)));
1132 } else {
1133 // Skip token for error recovery.
1134 getNextToken();
1135 }
1136 }
1137
HandleExtern()1138 static void HandleExtern() {
1139 if (auto ProtoAST = ParseExtern()) {
1140 if (auto *FnIR = ProtoAST->codegen()) {
1141 fprintf(stderr, "Read extern: ");
1142 FnIR->dump();
1143 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1144 }
1145 } else {
1146 // Skip token for error recovery.
1147 getNextToken();
1148 }
1149 }
1150
HandleTopLevelExpression()1151 static void HandleTopLevelExpression() {
1152 // Evaluate a top-level expression into an anonymous function.
1153 if (auto FnAST = ParseTopLevelExpr()) {
1154 FunctionProtos[FnAST->getName()] =
1155 llvm::make_unique<PrototypeAST>(FnAST->getProto());
1156 if (FnAST->codegen()) {
1157 // JIT the module containing the anonymous expression, keeping a handle so
1158 // we can free it later.
1159 auto H = TheJIT->addModule(std::move(TheModule));
1160 InitializeModule();
1161
1162 // Search the JIT for the __anon_expr symbol.
1163 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1164 assert(ExprSymbol && "Function not found");
1165
1166 // Get the symbol's address and cast it to the right type (takes no
1167 // arguments, returns a double) so we can call it as a native function.
1168 ExitOnErr(TheJIT->executeRemoteExpr(ExprSymbol.getAddress()));
1169
1170 // Delete the anonymous expression module from the JIT.
1171 TheJIT->removeModule(H);
1172 }
1173 } else {
1174 // Skip token for error recovery.
1175 getNextToken();
1176 }
1177 }
1178
1179 /// top ::= definition | external | expression | ';'
MainLoop()1180 static void MainLoop() {
1181 while (true) {
1182 fprintf(stderr, "ready> ");
1183 switch (CurTok) {
1184 case tok_eof:
1185 return;
1186 case ';': // ignore top-level semicolons.
1187 getNextToken();
1188 break;
1189 case tok_def:
1190 HandleDefinition();
1191 break;
1192 case tok_extern:
1193 HandleExtern();
1194 break;
1195 default:
1196 HandleTopLevelExpression();
1197 break;
1198 }
1199 }
1200 }
1201
1202 //===----------------------------------------------------------------------===//
1203 // "Library" functions that can be "extern'd" from user code.
1204 //===----------------------------------------------------------------------===//
1205
1206 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1207 extern "C" double putchard(double X) {
1208 fputc((char)X, stderr);
1209 return 0;
1210 }
1211
1212 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1213 extern "C" double printd(double X) {
1214 fprintf(stderr, "%f\n", X);
1215 return 0;
1216 }
1217
1218 //===----------------------------------------------------------------------===//
1219 // TCP / Connection setup code.
1220 //===----------------------------------------------------------------------===//
1221
connect()1222 std::unique_ptr<FDRPCChannel> connect() {
1223 int sockfd = socket(PF_INET, SOCK_STREAM, 0);
1224 hostent *server = gethostbyname(HostName.c_str());
1225
1226 if (!server) {
1227 errs() << "Could not find host " << HostName << "\n";
1228 exit(1);
1229 }
1230
1231 sockaddr_in servAddr;
1232 bzero(&servAddr, sizeof(servAddr));
1233 servAddr.sin_family = PF_INET;
1234 bcopy(server->h_addr, &servAddr.sin_addr.s_addr, server->h_length);
1235 servAddr.sin_port = htons(Port);
1236 if (connect(sockfd, reinterpret_cast<sockaddr*>(&servAddr),
1237 sizeof(servAddr)) < 0) {
1238 errs() << "Failure to connect.\n";
1239 exit(1);
1240 }
1241
1242 return llvm::make_unique<FDRPCChannel>(sockfd, sockfd);
1243 }
1244
1245 //===----------------------------------------------------------------------===//
1246 // Main driver code.
1247 //===----------------------------------------------------------------------===//
1248
main(int argc,char * argv[])1249 int main(int argc, char *argv[]) {
1250 // Parse the command line options.
1251 cl::ParseCommandLineOptions(argc, argv, "Building A JIT - Client.\n");
1252
1253 InitializeNativeTarget();
1254 InitializeNativeTargetAsmPrinter();
1255 InitializeNativeTargetAsmParser();
1256
1257 ExitOnErr.setBanner("Kaleidoscope: ");
1258
1259 // Install standard binary operators.
1260 // 1 is lowest precedence.
1261 BinopPrecedence['='] = 2;
1262 BinopPrecedence['<'] = 10;
1263 BinopPrecedence['+'] = 20;
1264 BinopPrecedence['-'] = 20;
1265 BinopPrecedence['*'] = 40; // highest.
1266
1267 auto TCPChannel = connect();
1268 MyRemote Remote = ExitOnErr(MyRemote::Create(*TCPChannel));
1269 TheJIT = llvm::make_unique<KaleidoscopeJIT>(Remote);
1270
1271 // Automatically inject a definition for 'printExprResult'.
1272 FunctionProtos["printExprResult"] =
1273 llvm::make_unique<PrototypeAST>("printExprResult",
1274 std::vector<std::string>({"Val"}));
1275
1276 // Prime the first token.
1277 fprintf(stderr, "ready> ");
1278 getNextToken();
1279
1280 InitializeModule();
1281
1282 // Run the main "interpreter loop" now.
1283 MainLoop();
1284
1285 // Delete the JIT before the Remote and Channel go out of scope, otherwise
1286 // we'll crash in the JIT destructor when it tries to release remote
1287 // resources over a channel that no longer exists.
1288 TheJIT = nullptr;
1289
1290 // Send a terminate message to the remote to tell it to exit cleanly.
1291 ExitOnErr(Remote.terminateSession());
1292
1293 return 0;
1294 }
1295