1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Type.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Target/TargetMachine.h"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "../include/KaleidoscopeJIT.h"
19 #include <cassert>
20 #include <cctype>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstdlib>
24 #include <map>
25 #include <memory>
26 #include <string>
27 #include <vector>
28
29 using namespace llvm;
30 using namespace llvm::orc;
31
32 //===----------------------------------------------------------------------===//
33 // Lexer
34 //===----------------------------------------------------------------------===//
35
36 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
37 // of these for known things.
38 enum Token {
39 tok_eof = -1,
40
41 // commands
42 tok_def = -2,
43 tok_extern = -3,
44
45 // primary
46 tok_identifier = -4,
47 tok_number = -5,
48
49 // control
50 tok_if = -6,
51 tok_then = -7,
52 tok_else = -8,
53 tok_for = -9,
54 tok_in = -10
55 };
56
57 static std::string IdentifierStr; // Filled in if tok_identifier
58 static double NumVal; // Filled in if tok_number
59
60 /// gettok - Return the next token from standard input.
gettok()61 static int gettok() {
62 static int LastChar = ' ';
63
64 // Skip any whitespace.
65 while (isspace(LastChar))
66 LastChar = getchar();
67
68 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
69 IdentifierStr = LastChar;
70 while (isalnum((LastChar = getchar())))
71 IdentifierStr += LastChar;
72
73 if (IdentifierStr == "def")
74 return tok_def;
75 if (IdentifierStr == "extern")
76 return tok_extern;
77 if (IdentifierStr == "if")
78 return tok_if;
79 if (IdentifierStr == "then")
80 return tok_then;
81 if (IdentifierStr == "else")
82 return tok_else;
83 if (IdentifierStr == "for")
84 return tok_for;
85 if (IdentifierStr == "in")
86 return tok_in;
87 return tok_identifier;
88 }
89
90 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
91 std::string NumStr;
92 do {
93 NumStr += LastChar;
94 LastChar = getchar();
95 } while (isdigit(LastChar) || LastChar == '.');
96
97 NumVal = strtod(NumStr.c_str(), nullptr);
98 return tok_number;
99 }
100
101 if (LastChar == '#') {
102 // Comment until end of line.
103 do
104 LastChar = getchar();
105 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
106
107 if (LastChar != EOF)
108 return gettok();
109 }
110
111 // Check for end of file. Don't eat the EOF.
112 if (LastChar == EOF)
113 return tok_eof;
114
115 // Otherwise, just return the character as its ascii value.
116 int ThisChar = LastChar;
117 LastChar = getchar();
118 return ThisChar;
119 }
120
121 //===----------------------------------------------------------------------===//
122 // Abstract Syntax Tree (aka Parse Tree)
123 //===----------------------------------------------------------------------===//
124 namespace {
125 /// ExprAST - Base class for all expression nodes.
126 class ExprAST {
127 public:
~ExprAST()128 virtual ~ExprAST() {}
129 virtual Value *codegen() = 0;
130 };
131
132 /// NumberExprAST - Expression class for numeric literals like "1.0".
133 class NumberExprAST : public ExprAST {
134 double Val;
135
136 public:
NumberExprAST(double Val)137 NumberExprAST(double Val) : Val(Val) {}
138 Value *codegen() override;
139 };
140
141 /// VariableExprAST - Expression class for referencing a variable, like "a".
142 class VariableExprAST : public ExprAST {
143 std::string Name;
144
145 public:
VariableExprAST(const std::string & Name)146 VariableExprAST(const std::string &Name) : Name(Name) {}
147 Value *codegen() override;
148 };
149
150 /// BinaryExprAST - Expression class for a binary operator.
151 class BinaryExprAST : public ExprAST {
152 char Op;
153 std::unique_ptr<ExprAST> LHS, RHS;
154
155 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)156 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
157 std::unique_ptr<ExprAST> RHS)
158 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
159 Value *codegen() override;
160 };
161
162 /// CallExprAST - Expression class for function calls.
163 class CallExprAST : public ExprAST {
164 std::string Callee;
165 std::vector<std::unique_ptr<ExprAST>> Args;
166
167 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)168 CallExprAST(const std::string &Callee,
169 std::vector<std::unique_ptr<ExprAST>> Args)
170 : Callee(Callee), Args(std::move(Args)) {}
171 Value *codegen() override;
172 };
173
174 /// IfExprAST - Expression class for if/then/else.
175 class IfExprAST : public ExprAST {
176 std::unique_ptr<ExprAST> Cond, Then, Else;
177
178 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)179 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
180 std::unique_ptr<ExprAST> Else)
181 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
182 Value *codegen() override;
183 };
184
185 /// ForExprAST - Expression class for for/in.
186 class ForExprAST : public ExprAST {
187 std::string VarName;
188 std::unique_ptr<ExprAST> Start, End, Step, Body;
189
190 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)191 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
192 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
193 std::unique_ptr<ExprAST> Body)
194 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
195 Step(std::move(Step)), Body(std::move(Body)) {}
196 Value *codegen() override;
197 };
198
199 /// PrototypeAST - This class represents the "prototype" for a function,
200 /// which captures its name, and its argument names (thus implicitly the number
201 /// of arguments the function takes).
202 class PrototypeAST {
203 std::string Name;
204 std::vector<std::string> Args;
205
206 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args)207 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
208 : Name(Name), Args(std::move(Args)) {}
209 Function *codegen();
getName() const210 const std::string &getName() const { return Name; }
211 };
212
213 /// FunctionAST - This class represents a function definition itself.
214 class FunctionAST {
215 std::unique_ptr<PrototypeAST> Proto;
216 std::unique_ptr<ExprAST> Body;
217
218 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)219 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
220 std::unique_ptr<ExprAST> Body)
221 : Proto(std::move(Proto)), Body(std::move(Body)) {}
222 Function *codegen();
223 };
224 } // end anonymous namespace
225
226 //===----------------------------------------------------------------------===//
227 // Parser
228 //===----------------------------------------------------------------------===//
229
230 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
231 /// token the parser is looking at. getNextToken reads another token from the
232 /// lexer and updates CurTok with its results.
233 static int CurTok;
getNextToken()234 static int getNextToken() { return CurTok = gettok(); }
235
236 /// BinopPrecedence - This holds the precedence for each binary operator that is
237 /// defined.
238 static std::map<char, int> BinopPrecedence;
239
240 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()241 static int GetTokPrecedence() {
242 if (!isascii(CurTok))
243 return -1;
244
245 // Make sure it's a declared binop.
246 int TokPrec = BinopPrecedence[CurTok];
247 if (TokPrec <= 0)
248 return -1;
249 return TokPrec;
250 }
251
252 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)253 std::unique_ptr<ExprAST> LogError(const char *Str) {
254 fprintf(stderr, "Error: %s\n", Str);
255 return nullptr;
256 }
257
LogErrorP(const char * Str)258 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
259 LogError(Str);
260 return nullptr;
261 }
262
263 static std::unique_ptr<ExprAST> ParseExpression();
264
265 /// numberexpr ::= number
ParseNumberExpr()266 static std::unique_ptr<ExprAST> ParseNumberExpr() {
267 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
268 getNextToken(); // consume the number
269 return std::move(Result);
270 }
271
272 /// parenexpr ::= '(' expression ')'
ParseParenExpr()273 static std::unique_ptr<ExprAST> ParseParenExpr() {
274 getNextToken(); // eat (.
275 auto V = ParseExpression();
276 if (!V)
277 return nullptr;
278
279 if (CurTok != ')')
280 return LogError("expected ')'");
281 getNextToken(); // eat ).
282 return V;
283 }
284
285 /// identifierexpr
286 /// ::= identifier
287 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()288 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
289 std::string IdName = IdentifierStr;
290
291 getNextToken(); // eat identifier.
292
293 if (CurTok != '(') // Simple variable ref.
294 return llvm::make_unique<VariableExprAST>(IdName);
295
296 // Call.
297 getNextToken(); // eat (
298 std::vector<std::unique_ptr<ExprAST>> Args;
299 if (CurTok != ')') {
300 while (true) {
301 if (auto Arg = ParseExpression())
302 Args.push_back(std::move(Arg));
303 else
304 return nullptr;
305
306 if (CurTok == ')')
307 break;
308
309 if (CurTok != ',')
310 return LogError("Expected ')' or ',' in argument list");
311 getNextToken();
312 }
313 }
314
315 // Eat the ')'.
316 getNextToken();
317
318 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
319 }
320
321 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()322 static std::unique_ptr<ExprAST> ParseIfExpr() {
323 getNextToken(); // eat the if.
324
325 // condition.
326 auto Cond = ParseExpression();
327 if (!Cond)
328 return nullptr;
329
330 if (CurTok != tok_then)
331 return LogError("expected then");
332 getNextToken(); // eat the then
333
334 auto Then = ParseExpression();
335 if (!Then)
336 return nullptr;
337
338 if (CurTok != tok_else)
339 return LogError("expected else");
340
341 getNextToken();
342
343 auto Else = ParseExpression();
344 if (!Else)
345 return nullptr;
346
347 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
348 std::move(Else));
349 }
350
351 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()352 static std::unique_ptr<ExprAST> ParseForExpr() {
353 getNextToken(); // eat the for.
354
355 if (CurTok != tok_identifier)
356 return LogError("expected identifier after for");
357
358 std::string IdName = IdentifierStr;
359 getNextToken(); // eat identifier.
360
361 if (CurTok != '=')
362 return LogError("expected '=' after for");
363 getNextToken(); // eat '='.
364
365 auto Start = ParseExpression();
366 if (!Start)
367 return nullptr;
368 if (CurTok != ',')
369 return LogError("expected ',' after for start value");
370 getNextToken();
371
372 auto End = ParseExpression();
373 if (!End)
374 return nullptr;
375
376 // The step value is optional.
377 std::unique_ptr<ExprAST> Step;
378 if (CurTok == ',') {
379 getNextToken();
380 Step = ParseExpression();
381 if (!Step)
382 return nullptr;
383 }
384
385 if (CurTok != tok_in)
386 return LogError("expected 'in' after for");
387 getNextToken(); // eat 'in'.
388
389 auto Body = ParseExpression();
390 if (!Body)
391 return nullptr;
392
393 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
394 std::move(Step), std::move(Body));
395 }
396
397 /// primary
398 /// ::= identifierexpr
399 /// ::= numberexpr
400 /// ::= parenexpr
401 /// ::= ifexpr
402 /// ::= forexpr
ParsePrimary()403 static std::unique_ptr<ExprAST> ParsePrimary() {
404 switch (CurTok) {
405 default:
406 return LogError("unknown token when expecting an expression");
407 case tok_identifier:
408 return ParseIdentifierExpr();
409 case tok_number:
410 return ParseNumberExpr();
411 case '(':
412 return ParseParenExpr();
413 case tok_if:
414 return ParseIfExpr();
415 case tok_for:
416 return ParseForExpr();
417 }
418 }
419
420 /// binoprhs
421 /// ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)422 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
423 std::unique_ptr<ExprAST> LHS) {
424 // If this is a binop, find its precedence.
425 while (true) {
426 int TokPrec = GetTokPrecedence();
427
428 // If this is a binop that binds at least as tightly as the current binop,
429 // consume it, otherwise we are done.
430 if (TokPrec < ExprPrec)
431 return LHS;
432
433 // Okay, we know this is a binop.
434 int BinOp = CurTok;
435 getNextToken(); // eat binop
436
437 // Parse the primary expression after the binary operator.
438 auto RHS = ParsePrimary();
439 if (!RHS)
440 return nullptr;
441
442 // If BinOp binds less tightly with RHS than the operator after RHS, let
443 // the pending operator take RHS as its LHS.
444 int NextPrec = GetTokPrecedence();
445 if (TokPrec < NextPrec) {
446 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
447 if (!RHS)
448 return nullptr;
449 }
450
451 // Merge LHS/RHS.
452 LHS =
453 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
454 }
455 }
456
457 /// expression
458 /// ::= primary binoprhs
459 ///
ParseExpression()460 static std::unique_ptr<ExprAST> ParseExpression() {
461 auto LHS = ParsePrimary();
462 if (!LHS)
463 return nullptr;
464
465 return ParseBinOpRHS(0, std::move(LHS));
466 }
467
468 /// prototype
469 /// ::= id '(' id* ')'
ParsePrototype()470 static std::unique_ptr<PrototypeAST> ParsePrototype() {
471 if (CurTok != tok_identifier)
472 return LogErrorP("Expected function name in prototype");
473
474 std::string FnName = IdentifierStr;
475 getNextToken();
476
477 if (CurTok != '(')
478 return LogErrorP("Expected '(' in prototype");
479
480 std::vector<std::string> ArgNames;
481 while (getNextToken() == tok_identifier)
482 ArgNames.push_back(IdentifierStr);
483 if (CurTok != ')')
484 return LogErrorP("Expected ')' in prototype");
485
486 // success.
487 getNextToken(); // eat ')'.
488
489 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
490 }
491
492 /// definition ::= 'def' prototype expression
ParseDefinition()493 static std::unique_ptr<FunctionAST> ParseDefinition() {
494 getNextToken(); // eat def.
495 auto Proto = ParsePrototype();
496 if (!Proto)
497 return nullptr;
498
499 if (auto E = ParseExpression())
500 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
501 return nullptr;
502 }
503
504 /// toplevelexpr ::= expression
ParseTopLevelExpr()505 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
506 if (auto E = ParseExpression()) {
507 // Make an anonymous proto.
508 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
509 std::vector<std::string>());
510 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
511 }
512 return nullptr;
513 }
514
515 /// external ::= 'extern' prototype
ParseExtern()516 static std::unique_ptr<PrototypeAST> ParseExtern() {
517 getNextToken(); // eat extern.
518 return ParsePrototype();
519 }
520
521 //===----------------------------------------------------------------------===//
522 // Code Generation
523 //===----------------------------------------------------------------------===//
524
525 static LLVMContext TheContext;
526 static IRBuilder<> Builder(TheContext);
527 static std::unique_ptr<Module> TheModule;
528 static std::map<std::string, Value *> NamedValues;
529 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
530 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
531 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
532
LogErrorV(const char * Str)533 Value *LogErrorV(const char *Str) {
534 LogError(Str);
535 return nullptr;
536 }
537
getFunction(std::string Name)538 Function *getFunction(std::string Name) {
539 // First, see if the function has already been added to the current module.
540 if (auto *F = TheModule->getFunction(Name))
541 return F;
542
543 // If not, check whether we can codegen the declaration from some existing
544 // prototype.
545 auto FI = FunctionProtos.find(Name);
546 if (FI != FunctionProtos.end())
547 return FI->second->codegen();
548
549 // If no existing prototype exists, return null.
550 return nullptr;
551 }
552
codegen()553 Value *NumberExprAST::codegen() {
554 return ConstantFP::get(TheContext, APFloat(Val));
555 }
556
codegen()557 Value *VariableExprAST::codegen() {
558 // Look this variable up in the function.
559 Value *V = NamedValues[Name];
560 if (!V)
561 return LogErrorV("Unknown variable name");
562 return V;
563 }
564
codegen()565 Value *BinaryExprAST::codegen() {
566 Value *L = LHS->codegen();
567 Value *R = RHS->codegen();
568 if (!L || !R)
569 return nullptr;
570
571 switch (Op) {
572 case '+':
573 return Builder.CreateFAdd(L, R, "addtmp");
574 case '-':
575 return Builder.CreateFSub(L, R, "subtmp");
576 case '*':
577 return Builder.CreateFMul(L, R, "multmp");
578 case '<':
579 L = Builder.CreateFCmpULT(L, R, "cmptmp");
580 // Convert bool 0/1 to double 0.0 or 1.0
581 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
582 default:
583 return LogErrorV("invalid binary operator");
584 }
585 }
586
codegen()587 Value *CallExprAST::codegen() {
588 // Look up the name in the global module table.
589 Function *CalleeF = getFunction(Callee);
590 if (!CalleeF)
591 return LogErrorV("Unknown function referenced");
592
593 // If argument mismatch error.
594 if (CalleeF->arg_size() != Args.size())
595 return LogErrorV("Incorrect # arguments passed");
596
597 std::vector<Value *> ArgsV;
598 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
599 ArgsV.push_back(Args[i]->codegen());
600 if (!ArgsV.back())
601 return nullptr;
602 }
603
604 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
605 }
606
codegen()607 Value *IfExprAST::codegen() {
608 Value *CondV = Cond->codegen();
609 if (!CondV)
610 return nullptr;
611
612 // Convert condition to a bool by comparing equal to 0.0.
613 CondV = Builder.CreateFCmpONE(
614 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
615
616 Function *TheFunction = Builder.GetInsertBlock()->getParent();
617
618 // Create blocks for the then and else cases. Insert the 'then' block at the
619 // end of the function.
620 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
621 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
622 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
623
624 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
625
626 // Emit then value.
627 Builder.SetInsertPoint(ThenBB);
628
629 Value *ThenV = Then->codegen();
630 if (!ThenV)
631 return nullptr;
632
633 Builder.CreateBr(MergeBB);
634 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
635 ThenBB = Builder.GetInsertBlock();
636
637 // Emit else block.
638 TheFunction->getBasicBlockList().push_back(ElseBB);
639 Builder.SetInsertPoint(ElseBB);
640
641 Value *ElseV = Else->codegen();
642 if (!ElseV)
643 return nullptr;
644
645 Builder.CreateBr(MergeBB);
646 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
647 ElseBB = Builder.GetInsertBlock();
648
649 // Emit merge block.
650 TheFunction->getBasicBlockList().push_back(MergeBB);
651 Builder.SetInsertPoint(MergeBB);
652 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
653
654 PN->addIncoming(ThenV, ThenBB);
655 PN->addIncoming(ElseV, ElseBB);
656 return PN;
657 }
658
659 // Output for-loop as:
660 // ...
661 // start = startexpr
662 // goto loop
663 // loop:
664 // variable = phi [start, loopheader], [nextvariable, loopend]
665 // ...
666 // bodyexpr
667 // ...
668 // loopend:
669 // step = stepexpr
670 // nextvariable = variable + step
671 // endcond = endexpr
672 // br endcond, loop, endloop
673 // outloop:
codegen()674 Value *ForExprAST::codegen() {
675 // Emit the start code first, without 'variable' in scope.
676 Value *StartVal = Start->codegen();
677 if (!StartVal)
678 return nullptr;
679
680 // Make the new basic block for the loop header, inserting after current
681 // block.
682 Function *TheFunction = Builder.GetInsertBlock()->getParent();
683 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
684 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
685
686 // Insert an explicit fall through from the current block to the LoopBB.
687 Builder.CreateBr(LoopBB);
688
689 // Start insertion in LoopBB.
690 Builder.SetInsertPoint(LoopBB);
691
692 // Start the PHI node with an entry for Start.
693 PHINode *Variable =
694 Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, VarName);
695 Variable->addIncoming(StartVal, PreheaderBB);
696
697 // Within the loop, the variable is defined equal to the PHI node. If it
698 // shadows an existing variable, we have to restore it, so save it now.
699 Value *OldVal = NamedValues[VarName];
700 NamedValues[VarName] = Variable;
701
702 // Emit the body of the loop. This, like any other expr, can change the
703 // current BB. Note that we ignore the value computed by the body, but don't
704 // allow an error.
705 if (!Body->codegen())
706 return nullptr;
707
708 // Emit the step value.
709 Value *StepVal = nullptr;
710 if (Step) {
711 StepVal = Step->codegen();
712 if (!StepVal)
713 return nullptr;
714 } else {
715 // If not specified, use 1.0.
716 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
717 }
718
719 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
720
721 // Compute the end condition.
722 Value *EndCond = End->codegen();
723 if (!EndCond)
724 return nullptr;
725
726 // Convert condition to a bool by comparing equal to 0.0.
727 EndCond = Builder.CreateFCmpONE(
728 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
729
730 // Create the "after loop" block and insert it.
731 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
732 BasicBlock *AfterBB =
733 BasicBlock::Create(TheContext, "afterloop", TheFunction);
734
735 // Insert the conditional branch into the end of LoopEndBB.
736 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
737
738 // Any new code will be inserted in AfterBB.
739 Builder.SetInsertPoint(AfterBB);
740
741 // Add a new entry to the PHI node for the backedge.
742 Variable->addIncoming(NextVar, LoopEndBB);
743
744 // Restore the unshadowed variable.
745 if (OldVal)
746 NamedValues[VarName] = OldVal;
747 else
748 NamedValues.erase(VarName);
749
750 // for expr always returns 0.0.
751 return Constant::getNullValue(Type::getDoubleTy(TheContext));
752 }
753
codegen()754 Function *PrototypeAST::codegen() {
755 // Make the function type: double(double,double) etc.
756 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
757 FunctionType *FT =
758 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
759
760 Function *F =
761 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
762
763 // Set names for all arguments.
764 unsigned Idx = 0;
765 for (auto &Arg : F->args())
766 Arg.setName(Args[Idx++]);
767
768 return F;
769 }
770
codegen()771 Function *FunctionAST::codegen() {
772 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
773 // reference to it for use below.
774 auto &P = *Proto;
775 FunctionProtos[Proto->getName()] = std::move(Proto);
776 Function *TheFunction = getFunction(P.getName());
777 if (!TheFunction)
778 return nullptr;
779
780 // Create a new basic block to start insertion into.
781 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
782 Builder.SetInsertPoint(BB);
783
784 // Record the function arguments in the NamedValues map.
785 NamedValues.clear();
786 for (auto &Arg : TheFunction->args())
787 NamedValues[Arg.getName()] = &Arg;
788
789 if (Value *RetVal = Body->codegen()) {
790 // Finish off the function.
791 Builder.CreateRet(RetVal);
792
793 // Validate the generated code, checking for consistency.
794 verifyFunction(*TheFunction);
795
796 // Run the optimizer on the function.
797 TheFPM->run(*TheFunction);
798
799 return TheFunction;
800 }
801
802 // Error reading body, remove function.
803 TheFunction->eraseFromParent();
804 return nullptr;
805 }
806
807 //===----------------------------------------------------------------------===//
808 // Top-Level parsing and JIT Driver
809 //===----------------------------------------------------------------------===//
810
InitializeModuleAndPassManager()811 static void InitializeModuleAndPassManager() {
812 // Open a new module.
813 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
814 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
815
816 // Create a new pass manager attached to it.
817 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());
818
819 // Do simple "peephole" optimizations and bit-twiddling optzns.
820 TheFPM->add(createInstructionCombiningPass());
821 // Reassociate expressions.
822 TheFPM->add(createReassociatePass());
823 // Eliminate Common SubExpressions.
824 TheFPM->add(createGVNPass());
825 // Simplify the control flow graph (deleting unreachable blocks, etc).
826 TheFPM->add(createCFGSimplificationPass());
827
828 TheFPM->doInitialization();
829 }
830
HandleDefinition()831 static void HandleDefinition() {
832 if (auto FnAST = ParseDefinition()) {
833 if (auto *FnIR = FnAST->codegen()) {
834 fprintf(stderr, "Read function definition:");
835 FnIR->dump();
836 TheJIT->addModule(std::move(TheModule));
837 InitializeModuleAndPassManager();
838 }
839 } else {
840 // Skip token for error recovery.
841 getNextToken();
842 }
843 }
844
HandleExtern()845 static void HandleExtern() {
846 if (auto ProtoAST = ParseExtern()) {
847 if (auto *FnIR = ProtoAST->codegen()) {
848 fprintf(stderr, "Read extern: ");
849 FnIR->dump();
850 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
851 }
852 } else {
853 // Skip token for error recovery.
854 getNextToken();
855 }
856 }
857
HandleTopLevelExpression()858 static void HandleTopLevelExpression() {
859 // Evaluate a top-level expression into an anonymous function.
860 if (auto FnAST = ParseTopLevelExpr()) {
861 if (FnAST->codegen()) {
862 // JIT the module containing the anonymous expression, keeping a handle so
863 // we can free it later.
864 auto H = TheJIT->addModule(std::move(TheModule));
865 InitializeModuleAndPassManager();
866
867 // Search the JIT for the __anon_expr symbol.
868 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
869 assert(ExprSymbol && "Function not found");
870
871 // Get the symbol's address and cast it to the right type (takes no
872 // arguments, returns a double) so we can call it as a native function.
873 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
874 fprintf(stderr, "Evaluated to %f\n", FP());
875
876 // Delete the anonymous expression module from the JIT.
877 TheJIT->removeModule(H);
878 }
879 } else {
880 // Skip token for error recovery.
881 getNextToken();
882 }
883 }
884
885 /// top ::= definition | external | expression | ';'
MainLoop()886 static void MainLoop() {
887 while (true) {
888 fprintf(stderr, "ready> ");
889 switch (CurTok) {
890 case tok_eof:
891 return;
892 case ';': // ignore top-level semicolons.
893 getNextToken();
894 break;
895 case tok_def:
896 HandleDefinition();
897 break;
898 case tok_extern:
899 HandleExtern();
900 break;
901 default:
902 HandleTopLevelExpression();
903 break;
904 }
905 }
906 }
907
908 //===----------------------------------------------------------------------===//
909 // "Library" functions that can be "extern'd" from user code.
910 //===----------------------------------------------------------------------===//
911
912 /// putchard - putchar that takes a double and returns 0.
putchard(double X)913 extern "C" double putchard(double X) {
914 fputc((char)X, stderr);
915 return 0;
916 }
917
918 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)919 extern "C" double printd(double X) {
920 fprintf(stderr, "%f\n", X);
921 return 0;
922 }
923
924 //===----------------------------------------------------------------------===//
925 // Main driver code.
926 //===----------------------------------------------------------------------===//
927
main()928 int main() {
929 InitializeNativeTarget();
930 InitializeNativeTargetAsmPrinter();
931 InitializeNativeTargetAsmParser();
932
933 // Install standard binary operators.
934 // 1 is lowest precedence.
935 BinopPrecedence['<'] = 10;
936 BinopPrecedence['+'] = 20;
937 BinopPrecedence['-'] = 20;
938 BinopPrecedence['*'] = 40; // highest.
939
940 // Prime the first token.
941 fprintf(stderr, "ready> ");
942 getNextToken();
943
944 TheJIT = llvm::make_unique<KaleidoscopeJIT>();
945
946 InitializeModuleAndPassManager();
947
948 // Run the main "interpreter loop" now.
949 MainLoop();
950
951 return 0;
952 }
953