1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Type.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Target/TargetMachine.h"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "../include/KaleidoscopeJIT.h"
19 #include <cassert>
20 #include <cctype>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstdlib>
24 #include <map>
25 #include <memory>
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 using namespace llvm;
31 using namespace llvm::orc;
32
33 //===----------------------------------------------------------------------===//
34 // Lexer
35 //===----------------------------------------------------------------------===//
36
37 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
38 // of these for known things.
39 enum Token {
40 tok_eof = -1,
41
42 // commands
43 tok_def = -2,
44 tok_extern = -3,
45
46 // primary
47 tok_identifier = -4,
48 tok_number = -5,
49
50 // control
51 tok_if = -6,
52 tok_then = -7,
53 tok_else = -8,
54 tok_for = -9,
55 tok_in = -10,
56
57 // operators
58 tok_binary = -11,
59 tok_unary = -12,
60
61 // var definition
62 tok_var = -13
63 };
64
65 static std::string IdentifierStr; // Filled in if tok_identifier
66 static double NumVal; // Filled in if tok_number
67
68 /// gettok - Return the next token from standard input.
gettok()69 static int gettok() {
70 static int LastChar = ' ';
71
72 // Skip any whitespace.
73 while (isspace(LastChar))
74 LastChar = getchar();
75
76 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
77 IdentifierStr = LastChar;
78 while (isalnum((LastChar = getchar())))
79 IdentifierStr += LastChar;
80
81 if (IdentifierStr == "def")
82 return tok_def;
83 if (IdentifierStr == "extern")
84 return tok_extern;
85 if (IdentifierStr == "if")
86 return tok_if;
87 if (IdentifierStr == "then")
88 return tok_then;
89 if (IdentifierStr == "else")
90 return tok_else;
91 if (IdentifierStr == "for")
92 return tok_for;
93 if (IdentifierStr == "in")
94 return tok_in;
95 if (IdentifierStr == "binary")
96 return tok_binary;
97 if (IdentifierStr == "unary")
98 return tok_unary;
99 if (IdentifierStr == "var")
100 return tok_var;
101 return tok_identifier;
102 }
103
104 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
105 std::string NumStr;
106 do {
107 NumStr += LastChar;
108 LastChar = getchar();
109 } while (isdigit(LastChar) || LastChar == '.');
110
111 NumVal = strtod(NumStr.c_str(), nullptr);
112 return tok_number;
113 }
114
115 if (LastChar == '#') {
116 // Comment until end of line.
117 do
118 LastChar = getchar();
119 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
120
121 if (LastChar != EOF)
122 return gettok();
123 }
124
125 // Check for end of file. Don't eat the EOF.
126 if (LastChar == EOF)
127 return tok_eof;
128
129 // Otherwise, just return the character as its ascii value.
130 int ThisChar = LastChar;
131 LastChar = getchar();
132 return ThisChar;
133 }
134
135 //===----------------------------------------------------------------------===//
136 // Abstract Syntax Tree (aka Parse Tree)
137 //===----------------------------------------------------------------------===//
138 namespace {
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
~ExprAST()142 virtual ~ExprAST() {}
143 virtual Value *codegen() = 0;
144 };
145
146 /// NumberExprAST - Expression class for numeric literals like "1.0".
147 class NumberExprAST : public ExprAST {
148 double Val;
149
150 public:
NumberExprAST(double Val)151 NumberExprAST(double Val) : Val(Val) {}
152 Value *codegen() override;
153 };
154
155 /// VariableExprAST - Expression class for referencing a variable, like "a".
156 class VariableExprAST : public ExprAST {
157 std::string Name;
158
159 public:
VariableExprAST(const std::string & Name)160 VariableExprAST(const std::string &Name) : Name(Name) {}
getName() const161 const std::string &getName() const { return Name; }
162 Value *codegen() override;
163 };
164
165 /// UnaryExprAST - Expression class for a unary operator.
166 class UnaryExprAST : public ExprAST {
167 char Opcode;
168 std::unique_ptr<ExprAST> Operand;
169
170 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)171 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
172 : Opcode(Opcode), Operand(std::move(Operand)) {}
173 Value *codegen() override;
174 };
175
176 /// BinaryExprAST - Expression class for a binary operator.
177 class BinaryExprAST : public ExprAST {
178 char Op;
179 std::unique_ptr<ExprAST> LHS, RHS;
180
181 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)182 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
183 std::unique_ptr<ExprAST> RHS)
184 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
185 Value *codegen() override;
186 };
187
188 /// CallExprAST - Expression class for function calls.
189 class CallExprAST : public ExprAST {
190 std::string Callee;
191 std::vector<std::unique_ptr<ExprAST>> Args;
192
193 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)194 CallExprAST(const std::string &Callee,
195 std::vector<std::unique_ptr<ExprAST>> Args)
196 : Callee(Callee), Args(std::move(Args)) {}
197 Value *codegen() override;
198 };
199
200 /// IfExprAST - Expression class for if/then/else.
201 class IfExprAST : public ExprAST {
202 std::unique_ptr<ExprAST> Cond, Then, Else;
203
204 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)205 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
206 std::unique_ptr<ExprAST> Else)
207 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
208 Value *codegen() override;
209 };
210
211 /// ForExprAST - Expression class for for/in.
212 class ForExprAST : public ExprAST {
213 std::string VarName;
214 std::unique_ptr<ExprAST> Start, End, Step, Body;
215
216 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)217 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
218 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
219 std::unique_ptr<ExprAST> Body)
220 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
221 Step(std::move(Step)), Body(std::move(Body)) {}
222 Value *codegen() override;
223 };
224
225 /// VarExprAST - Expression class for var/in
226 class VarExprAST : public ExprAST {
227 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
228 std::unique_ptr<ExprAST> Body;
229
230 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)231 VarExprAST(
232 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
233 std::unique_ptr<ExprAST> Body)
234 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
235 Value *codegen() override;
236 };
237
238 /// PrototypeAST - This class represents the "prototype" for a function,
239 /// which captures its name, and its argument names (thus implicitly the number
240 /// of arguments the function takes), as well as if it is an operator.
241 class PrototypeAST {
242 std::string Name;
243 std::vector<std::string> Args;
244 bool IsOperator;
245 unsigned Precedence; // Precedence if a binary op.
246
247 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)248 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
249 bool IsOperator = false, unsigned Prec = 0)
250 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
251 Precedence(Prec) {}
252 Function *codegen();
getName() const253 const std::string &getName() const { return Name; }
254
isUnaryOp() const255 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const256 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
257
getOperatorName() const258 char getOperatorName() const {
259 assert(isUnaryOp() || isBinaryOp());
260 return Name[Name.size() - 1];
261 }
262
getBinaryPrecedence() const263 unsigned getBinaryPrecedence() const { return Precedence; }
264 };
265
266 /// FunctionAST - This class represents a function definition itself.
267 class FunctionAST {
268 std::unique_ptr<PrototypeAST> Proto;
269 std::unique_ptr<ExprAST> Body;
270
271 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)272 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
273 std::unique_ptr<ExprAST> Body)
274 : Proto(std::move(Proto)), Body(std::move(Body)) {}
275 Function *codegen();
276 };
277 } // end anonymous namespace
278
279 //===----------------------------------------------------------------------===//
280 // Parser
281 //===----------------------------------------------------------------------===//
282
283 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
284 /// token the parser is looking at. getNextToken reads another token from the
285 /// lexer and updates CurTok with its results.
286 static int CurTok;
getNextToken()287 static int getNextToken() { return CurTok = gettok(); }
288
289 /// BinopPrecedence - This holds the precedence for each binary operator that is
290 /// defined.
291 static std::map<char, int> BinopPrecedence;
292
293 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()294 static int GetTokPrecedence() {
295 if (!isascii(CurTok))
296 return -1;
297
298 // Make sure it's a declared binop.
299 int TokPrec = BinopPrecedence[CurTok];
300 if (TokPrec <= 0)
301 return -1;
302 return TokPrec;
303 }
304
305 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)306 std::unique_ptr<ExprAST> LogError(const char *Str) {
307 fprintf(stderr, "Error: %s\n", Str);
308 return nullptr;
309 }
310
LogErrorP(const char * Str)311 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
312 LogError(Str);
313 return nullptr;
314 }
315
316 static std::unique_ptr<ExprAST> ParseExpression();
317
318 /// numberexpr ::= number
ParseNumberExpr()319 static std::unique_ptr<ExprAST> ParseNumberExpr() {
320 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
321 getNextToken(); // consume the number
322 return std::move(Result);
323 }
324
325 /// parenexpr ::= '(' expression ')'
ParseParenExpr()326 static std::unique_ptr<ExprAST> ParseParenExpr() {
327 getNextToken(); // eat (.
328 auto V = ParseExpression();
329 if (!V)
330 return nullptr;
331
332 if (CurTok != ')')
333 return LogError("expected ')'");
334 getNextToken(); // eat ).
335 return V;
336 }
337
338 /// identifierexpr
339 /// ::= identifier
340 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()341 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
342 std::string IdName = IdentifierStr;
343
344 getNextToken(); // eat identifier.
345
346 if (CurTok != '(') // Simple variable ref.
347 return llvm::make_unique<VariableExprAST>(IdName);
348
349 // Call.
350 getNextToken(); // eat (
351 std::vector<std::unique_ptr<ExprAST>> Args;
352 if (CurTok != ')') {
353 while (true) {
354 if (auto Arg = ParseExpression())
355 Args.push_back(std::move(Arg));
356 else
357 return nullptr;
358
359 if (CurTok == ')')
360 break;
361
362 if (CurTok != ',')
363 return LogError("Expected ')' or ',' in argument list");
364 getNextToken();
365 }
366 }
367
368 // Eat the ')'.
369 getNextToken();
370
371 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
372 }
373
374 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()375 static std::unique_ptr<ExprAST> ParseIfExpr() {
376 getNextToken(); // eat the if.
377
378 // condition.
379 auto Cond = ParseExpression();
380 if (!Cond)
381 return nullptr;
382
383 if (CurTok != tok_then)
384 return LogError("expected then");
385 getNextToken(); // eat the then
386
387 auto Then = ParseExpression();
388 if (!Then)
389 return nullptr;
390
391 if (CurTok != tok_else)
392 return LogError("expected else");
393
394 getNextToken();
395
396 auto Else = ParseExpression();
397 if (!Else)
398 return nullptr;
399
400 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
401 std::move(Else));
402 }
403
404 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()405 static std::unique_ptr<ExprAST> ParseForExpr() {
406 getNextToken(); // eat the for.
407
408 if (CurTok != tok_identifier)
409 return LogError("expected identifier after for");
410
411 std::string IdName = IdentifierStr;
412 getNextToken(); // eat identifier.
413
414 if (CurTok != '=')
415 return LogError("expected '=' after for");
416 getNextToken(); // eat '='.
417
418 auto Start = ParseExpression();
419 if (!Start)
420 return nullptr;
421 if (CurTok != ',')
422 return LogError("expected ',' after for start value");
423 getNextToken();
424
425 auto End = ParseExpression();
426 if (!End)
427 return nullptr;
428
429 // The step value is optional.
430 std::unique_ptr<ExprAST> Step;
431 if (CurTok == ',') {
432 getNextToken();
433 Step = ParseExpression();
434 if (!Step)
435 return nullptr;
436 }
437
438 if (CurTok != tok_in)
439 return LogError("expected 'in' after for");
440 getNextToken(); // eat 'in'.
441
442 auto Body = ParseExpression();
443 if (!Body)
444 return nullptr;
445
446 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
447 std::move(Step), std::move(Body));
448 }
449
450 /// varexpr ::= 'var' identifier ('=' expression)?
451 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()452 static std::unique_ptr<ExprAST> ParseVarExpr() {
453 getNextToken(); // eat the var.
454
455 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
456
457 // At least one variable name is required.
458 if (CurTok != tok_identifier)
459 return LogError("expected identifier after var");
460
461 while (true) {
462 std::string Name = IdentifierStr;
463 getNextToken(); // eat identifier.
464
465 // Read the optional initializer.
466 std::unique_ptr<ExprAST> Init = nullptr;
467 if (CurTok == '=') {
468 getNextToken(); // eat the '='.
469
470 Init = ParseExpression();
471 if (!Init)
472 return nullptr;
473 }
474
475 VarNames.push_back(std::make_pair(Name, std::move(Init)));
476
477 // End of var list, exit loop.
478 if (CurTok != ',')
479 break;
480 getNextToken(); // eat the ','.
481
482 if (CurTok != tok_identifier)
483 return LogError("expected identifier list after var");
484 }
485
486 // At this point, we have to have 'in'.
487 if (CurTok != tok_in)
488 return LogError("expected 'in' keyword after 'var'");
489 getNextToken(); // eat 'in'.
490
491 auto Body = ParseExpression();
492 if (!Body)
493 return nullptr;
494
495 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
496 }
497
498 /// primary
499 /// ::= identifierexpr
500 /// ::= numberexpr
501 /// ::= parenexpr
502 /// ::= ifexpr
503 /// ::= forexpr
504 /// ::= varexpr
ParsePrimary()505 static std::unique_ptr<ExprAST> ParsePrimary() {
506 switch (CurTok) {
507 default:
508 return LogError("unknown token when expecting an expression");
509 case tok_identifier:
510 return ParseIdentifierExpr();
511 case tok_number:
512 return ParseNumberExpr();
513 case '(':
514 return ParseParenExpr();
515 case tok_if:
516 return ParseIfExpr();
517 case tok_for:
518 return ParseForExpr();
519 case tok_var:
520 return ParseVarExpr();
521 }
522 }
523
524 /// unary
525 /// ::= primary
526 /// ::= '!' unary
ParseUnary()527 static std::unique_ptr<ExprAST> ParseUnary() {
528 // If the current token is not an operator, it must be a primary expr.
529 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
530 return ParsePrimary();
531
532 // If this is a unary operator, read it.
533 int Opc = CurTok;
534 getNextToken();
535 if (auto Operand = ParseUnary())
536 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
537 return nullptr;
538 }
539
540 /// binoprhs
541 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)542 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
543 std::unique_ptr<ExprAST> LHS) {
544 // If this is a binop, find its precedence.
545 while (true) {
546 int TokPrec = GetTokPrecedence();
547
548 // If this is a binop that binds at least as tightly as the current binop,
549 // consume it, otherwise we are done.
550 if (TokPrec < ExprPrec)
551 return LHS;
552
553 // Okay, we know this is a binop.
554 int BinOp = CurTok;
555 getNextToken(); // eat binop
556
557 // Parse the unary expression after the binary operator.
558 auto RHS = ParseUnary();
559 if (!RHS)
560 return nullptr;
561
562 // If BinOp binds less tightly with RHS than the operator after RHS, let
563 // the pending operator take RHS as its LHS.
564 int NextPrec = GetTokPrecedence();
565 if (TokPrec < NextPrec) {
566 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
567 if (!RHS)
568 return nullptr;
569 }
570
571 // Merge LHS/RHS.
572 LHS =
573 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
574 }
575 }
576
577 /// expression
578 /// ::= unary binoprhs
579 ///
ParseExpression()580 static std::unique_ptr<ExprAST> ParseExpression() {
581 auto LHS = ParseUnary();
582 if (!LHS)
583 return nullptr;
584
585 return ParseBinOpRHS(0, std::move(LHS));
586 }
587
588 /// prototype
589 /// ::= id '(' id* ')'
590 /// ::= binary LETTER number? (id, id)
591 /// ::= unary LETTER (id)
ParsePrototype()592 static std::unique_ptr<PrototypeAST> ParsePrototype() {
593 std::string FnName;
594
595 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
596 unsigned BinaryPrecedence = 30;
597
598 switch (CurTok) {
599 default:
600 return LogErrorP("Expected function name in prototype");
601 case tok_identifier:
602 FnName = IdentifierStr;
603 Kind = 0;
604 getNextToken();
605 break;
606 case tok_unary:
607 getNextToken();
608 if (!isascii(CurTok))
609 return LogErrorP("Expected unary operator");
610 FnName = "unary";
611 FnName += (char)CurTok;
612 Kind = 1;
613 getNextToken();
614 break;
615 case tok_binary:
616 getNextToken();
617 if (!isascii(CurTok))
618 return LogErrorP("Expected binary operator");
619 FnName = "binary";
620 FnName += (char)CurTok;
621 Kind = 2;
622 getNextToken();
623
624 // Read the precedence if present.
625 if (CurTok == tok_number) {
626 if (NumVal < 1 || NumVal > 100)
627 return LogErrorP("Invalid precedecnce: must be 1..100");
628 BinaryPrecedence = (unsigned)NumVal;
629 getNextToken();
630 }
631 break;
632 }
633
634 if (CurTok != '(')
635 return LogErrorP("Expected '(' in prototype");
636
637 std::vector<std::string> ArgNames;
638 while (getNextToken() == tok_identifier)
639 ArgNames.push_back(IdentifierStr);
640 if (CurTok != ')')
641 return LogErrorP("Expected ')' in prototype");
642
643 // success.
644 getNextToken(); // eat ')'.
645
646 // Verify right number of names for operator.
647 if (Kind && ArgNames.size() != Kind)
648 return LogErrorP("Invalid number of operands for operator");
649
650 return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
651 BinaryPrecedence);
652 }
653
654 /// definition ::= 'def' prototype expression
ParseDefinition()655 static std::unique_ptr<FunctionAST> ParseDefinition() {
656 getNextToken(); // eat def.
657 auto Proto = ParsePrototype();
658 if (!Proto)
659 return nullptr;
660
661 if (auto E = ParseExpression())
662 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
663 return nullptr;
664 }
665
666 /// toplevelexpr ::= expression
ParseTopLevelExpr()667 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
668 if (auto E = ParseExpression()) {
669 // Make an anonymous proto.
670 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
671 std::vector<std::string>());
672 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
673 }
674 return nullptr;
675 }
676
677 /// external ::= 'extern' prototype
ParseExtern()678 static std::unique_ptr<PrototypeAST> ParseExtern() {
679 getNextToken(); // eat extern.
680 return ParsePrototype();
681 }
682
683 //===----------------------------------------------------------------------===//
684 // Code Generation
685 //===----------------------------------------------------------------------===//
686
687 static LLVMContext TheContext;
688 static IRBuilder<> Builder(TheContext);
689 static std::unique_ptr<Module> TheModule;
690 static std::map<std::string, AllocaInst *> NamedValues;
691 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
692 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
693 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
694
LogErrorV(const char * Str)695 Value *LogErrorV(const char *Str) {
696 LogError(Str);
697 return nullptr;
698 }
699
getFunction(std::string Name)700 Function *getFunction(std::string Name) {
701 // First, see if the function has already been added to the current module.
702 if (auto *F = TheModule->getFunction(Name))
703 return F;
704
705 // If not, check whether we can codegen the declaration from some existing
706 // prototype.
707 auto FI = FunctionProtos.find(Name);
708 if (FI != FunctionProtos.end())
709 return FI->second->codegen();
710
711 // If no existing prototype exists, return null.
712 return nullptr;
713 }
714
715 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
716 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)717 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
718 const std::string &VarName) {
719 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
720 TheFunction->getEntryBlock().begin());
721 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
722 }
723
codegen()724 Value *NumberExprAST::codegen() {
725 return ConstantFP::get(TheContext, APFloat(Val));
726 }
727
codegen()728 Value *VariableExprAST::codegen() {
729 // Look this variable up in the function.
730 Value *V = NamedValues[Name];
731 if (!V)
732 return LogErrorV("Unknown variable name");
733
734 // Load the value.
735 return Builder.CreateLoad(V, Name.c_str());
736 }
737
codegen()738 Value *UnaryExprAST::codegen() {
739 Value *OperandV = Operand->codegen();
740 if (!OperandV)
741 return nullptr;
742
743 Function *F = getFunction(std::string("unary") + Opcode);
744 if (!F)
745 return LogErrorV("Unknown unary operator");
746
747 return Builder.CreateCall(F, OperandV, "unop");
748 }
749
codegen()750 Value *BinaryExprAST::codegen() {
751 // Special case '=' because we don't want to emit the LHS as an expression.
752 if (Op == '=') {
753 // Assignment requires the LHS to be an identifier.
754 // This assume we're building without RTTI because LLVM builds that way by
755 // default. If you build LLVM with RTTI this can be changed to a
756 // dynamic_cast for automatic error checking.
757 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
758 if (!LHSE)
759 return LogErrorV("destination of '=' must be a variable");
760 // Codegen the RHS.
761 Value *Val = RHS->codegen();
762 if (!Val)
763 return nullptr;
764
765 // Look up the name.
766 Value *Variable = NamedValues[LHSE->getName()];
767 if (!Variable)
768 return LogErrorV("Unknown variable name");
769
770 Builder.CreateStore(Val, Variable);
771 return Val;
772 }
773
774 Value *L = LHS->codegen();
775 Value *R = RHS->codegen();
776 if (!L || !R)
777 return nullptr;
778
779 switch (Op) {
780 case '+':
781 return Builder.CreateFAdd(L, R, "addtmp");
782 case '-':
783 return Builder.CreateFSub(L, R, "subtmp");
784 case '*':
785 return Builder.CreateFMul(L, R, "multmp");
786 case '<':
787 L = Builder.CreateFCmpULT(L, R, "cmptmp");
788 // Convert bool 0/1 to double 0.0 or 1.0
789 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
790 default:
791 break;
792 }
793
794 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
795 // a call to it.
796 Function *F = getFunction(std::string("binary") + Op);
797 assert(F && "binary operator not found!");
798
799 Value *Ops[] = {L, R};
800 return Builder.CreateCall(F, Ops, "binop");
801 }
802
codegen()803 Value *CallExprAST::codegen() {
804 // Look up the name in the global module table.
805 Function *CalleeF = getFunction(Callee);
806 if (!CalleeF)
807 return LogErrorV("Unknown function referenced");
808
809 // If argument mismatch error.
810 if (CalleeF->arg_size() != Args.size())
811 return LogErrorV("Incorrect # arguments passed");
812
813 std::vector<Value *> ArgsV;
814 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
815 ArgsV.push_back(Args[i]->codegen());
816 if (!ArgsV.back())
817 return nullptr;
818 }
819
820 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
821 }
822
codegen()823 Value *IfExprAST::codegen() {
824 Value *CondV = Cond->codegen();
825 if (!CondV)
826 return nullptr;
827
828 // Convert condition to a bool by comparing equal to 0.0.
829 CondV = Builder.CreateFCmpONE(
830 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
831
832 Function *TheFunction = Builder.GetInsertBlock()->getParent();
833
834 // Create blocks for the then and else cases. Insert the 'then' block at the
835 // end of the function.
836 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
837 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
838 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
839
840 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
841
842 // Emit then value.
843 Builder.SetInsertPoint(ThenBB);
844
845 Value *ThenV = Then->codegen();
846 if (!ThenV)
847 return nullptr;
848
849 Builder.CreateBr(MergeBB);
850 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
851 ThenBB = Builder.GetInsertBlock();
852
853 // Emit else block.
854 TheFunction->getBasicBlockList().push_back(ElseBB);
855 Builder.SetInsertPoint(ElseBB);
856
857 Value *ElseV = Else->codegen();
858 if (!ElseV)
859 return nullptr;
860
861 Builder.CreateBr(MergeBB);
862 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
863 ElseBB = Builder.GetInsertBlock();
864
865 // Emit merge block.
866 TheFunction->getBasicBlockList().push_back(MergeBB);
867 Builder.SetInsertPoint(MergeBB);
868 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
869
870 PN->addIncoming(ThenV, ThenBB);
871 PN->addIncoming(ElseV, ElseBB);
872 return PN;
873 }
874
875 // Output for-loop as:
876 // var = alloca double
877 // ...
878 // start = startexpr
879 // store start -> var
880 // goto loop
881 // loop:
882 // ...
883 // bodyexpr
884 // ...
885 // loopend:
886 // step = stepexpr
887 // endcond = endexpr
888 //
889 // curvar = load var
890 // nextvar = curvar + step
891 // store nextvar -> var
892 // br endcond, loop, endloop
893 // outloop:
codegen()894 Value *ForExprAST::codegen() {
895 Function *TheFunction = Builder.GetInsertBlock()->getParent();
896
897 // Create an alloca for the variable in the entry block.
898 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
899
900 // Emit the start code first, without 'variable' in scope.
901 Value *StartVal = Start->codegen();
902 if (!StartVal)
903 return nullptr;
904
905 // Store the value into the alloca.
906 Builder.CreateStore(StartVal, Alloca);
907
908 // Make the new basic block for the loop header, inserting after current
909 // block.
910 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
911
912 // Insert an explicit fall through from the current block to the LoopBB.
913 Builder.CreateBr(LoopBB);
914
915 // Start insertion in LoopBB.
916 Builder.SetInsertPoint(LoopBB);
917
918 // Within the loop, the variable is defined equal to the PHI node. If it
919 // shadows an existing variable, we have to restore it, so save it now.
920 AllocaInst *OldVal = NamedValues[VarName];
921 NamedValues[VarName] = Alloca;
922
923 // Emit the body of the loop. This, like any other expr, can change the
924 // current BB. Note that we ignore the value computed by the body, but don't
925 // allow an error.
926 if (!Body->codegen())
927 return nullptr;
928
929 // Emit the step value.
930 Value *StepVal = nullptr;
931 if (Step) {
932 StepVal = Step->codegen();
933 if (!StepVal)
934 return nullptr;
935 } else {
936 // If not specified, use 1.0.
937 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
938 }
939
940 // Compute the end condition.
941 Value *EndCond = End->codegen();
942 if (!EndCond)
943 return nullptr;
944
945 // Reload, increment, and restore the alloca. This handles the case where
946 // the body of the loop mutates the variable.
947 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
948 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
949 Builder.CreateStore(NextVar, Alloca);
950
951 // Convert condition to a bool by comparing equal to 0.0.
952 EndCond = Builder.CreateFCmpONE(
953 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
954
955 // Create the "after loop" block and insert it.
956 BasicBlock *AfterBB =
957 BasicBlock::Create(TheContext, "afterloop", TheFunction);
958
959 // Insert the conditional branch into the end of LoopEndBB.
960 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
961
962 // Any new code will be inserted in AfterBB.
963 Builder.SetInsertPoint(AfterBB);
964
965 // Restore the unshadowed variable.
966 if (OldVal)
967 NamedValues[VarName] = OldVal;
968 else
969 NamedValues.erase(VarName);
970
971 // for expr always returns 0.0.
972 return Constant::getNullValue(Type::getDoubleTy(TheContext));
973 }
974
codegen()975 Value *VarExprAST::codegen() {
976 std::vector<AllocaInst *> OldBindings;
977
978 Function *TheFunction = Builder.GetInsertBlock()->getParent();
979
980 // Register all variables and emit their initializer.
981 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
982 const std::string &VarName = VarNames[i].first;
983 ExprAST *Init = VarNames[i].second.get();
984
985 // Emit the initializer before adding the variable to scope, this prevents
986 // the initializer from referencing the variable itself, and permits stuff
987 // like this:
988 // var a = 1 in
989 // var a = a in ... # refers to outer 'a'.
990 Value *InitVal;
991 if (Init) {
992 InitVal = Init->codegen();
993 if (!InitVal)
994 return nullptr;
995 } else { // If not specified, use 0.0.
996 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
997 }
998
999 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1000 Builder.CreateStore(InitVal, Alloca);
1001
1002 // Remember the old variable binding so that we can restore the binding when
1003 // we unrecurse.
1004 OldBindings.push_back(NamedValues[VarName]);
1005
1006 // Remember this binding.
1007 NamedValues[VarName] = Alloca;
1008 }
1009
1010 // Codegen the body, now that all vars are in scope.
1011 Value *BodyVal = Body->codegen();
1012 if (!BodyVal)
1013 return nullptr;
1014
1015 // Pop all our variables from scope.
1016 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1017 NamedValues[VarNames[i].first] = OldBindings[i];
1018
1019 // Return the body computation.
1020 return BodyVal;
1021 }
1022
codegen()1023 Function *PrototypeAST::codegen() {
1024 // Make the function type: double(double,double) etc.
1025 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1026 FunctionType *FT =
1027 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1028
1029 Function *F =
1030 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1031
1032 // Set names for all arguments.
1033 unsigned Idx = 0;
1034 for (auto &Arg : F->args())
1035 Arg.setName(Args[Idx++]);
1036
1037 return F;
1038 }
1039
codegen()1040 Function *FunctionAST::codegen() {
1041 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1042 // reference to it for use below.
1043 auto &P = *Proto;
1044 FunctionProtos[Proto->getName()] = std::move(Proto);
1045 Function *TheFunction = getFunction(P.getName());
1046 if (!TheFunction)
1047 return nullptr;
1048
1049 // If this is an operator, install it.
1050 if (P.isBinaryOp())
1051 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1052
1053 // Create a new basic block to start insertion into.
1054 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1055 Builder.SetInsertPoint(BB);
1056
1057 // Record the function arguments in the NamedValues map.
1058 NamedValues.clear();
1059 for (auto &Arg : TheFunction->args()) {
1060 // Create an alloca for this variable.
1061 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1062
1063 // Store the initial value into the alloca.
1064 Builder.CreateStore(&Arg, Alloca);
1065
1066 // Add arguments to variable symbol table.
1067 NamedValues[Arg.getName()] = Alloca;
1068 }
1069
1070 if (Value *RetVal = Body->codegen()) {
1071 // Finish off the function.
1072 Builder.CreateRet(RetVal);
1073
1074 // Validate the generated code, checking for consistency.
1075 verifyFunction(*TheFunction);
1076
1077 // Run the optimizer on the function.
1078 TheFPM->run(*TheFunction);
1079
1080 return TheFunction;
1081 }
1082
1083 // Error reading body, remove function.
1084 TheFunction->eraseFromParent();
1085
1086 if (P.isBinaryOp())
1087 BinopPrecedence.erase(Proto->getOperatorName());
1088 return nullptr;
1089 }
1090
1091 //===----------------------------------------------------------------------===//
1092 // Top-Level parsing and JIT Driver
1093 //===----------------------------------------------------------------------===//
1094
InitializeModuleAndPassManager()1095 static void InitializeModuleAndPassManager() {
1096 // Open a new module.
1097 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1098 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1099
1100 // Create a new pass manager attached to it.
1101 TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get());
1102
1103 // Do simple "peephole" optimizations and bit-twiddling optzns.
1104 TheFPM->add(createInstructionCombiningPass());
1105 // Reassociate expressions.
1106 TheFPM->add(createReassociatePass());
1107 // Eliminate Common SubExpressions.
1108 TheFPM->add(createGVNPass());
1109 // Simplify the control flow graph (deleting unreachable blocks, etc).
1110 TheFPM->add(createCFGSimplificationPass());
1111
1112 TheFPM->doInitialization();
1113 }
1114
HandleDefinition()1115 static void HandleDefinition() {
1116 if (auto FnAST = ParseDefinition()) {
1117 if (auto *FnIR = FnAST->codegen()) {
1118 fprintf(stderr, "Read function definition:");
1119 FnIR->dump();
1120 TheJIT->addModule(std::move(TheModule));
1121 InitializeModuleAndPassManager();
1122 }
1123 } else {
1124 // Skip token for error recovery.
1125 getNextToken();
1126 }
1127 }
1128
HandleExtern()1129 static void HandleExtern() {
1130 if (auto ProtoAST = ParseExtern()) {
1131 if (auto *FnIR = ProtoAST->codegen()) {
1132 fprintf(stderr, "Read extern: ");
1133 FnIR->dump();
1134 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1135 }
1136 } else {
1137 // Skip token for error recovery.
1138 getNextToken();
1139 }
1140 }
1141
HandleTopLevelExpression()1142 static void HandleTopLevelExpression() {
1143 // Evaluate a top-level expression into an anonymous function.
1144 if (auto FnAST = ParseTopLevelExpr()) {
1145 if (FnAST->codegen()) {
1146 // JIT the module containing the anonymous expression, keeping a handle so
1147 // we can free it later.
1148 auto H = TheJIT->addModule(std::move(TheModule));
1149 InitializeModuleAndPassManager();
1150
1151 // Search the JIT for the __anon_expr symbol.
1152 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1153 assert(ExprSymbol && "Function not found");
1154
1155 // Get the symbol's address and cast it to the right type (takes no
1156 // arguments, returns a double) so we can call it as a native function.
1157 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1158 fprintf(stderr, "Evaluated to %f\n", FP());
1159
1160 // Delete the anonymous expression module from the JIT.
1161 TheJIT->removeModule(H);
1162 }
1163 } else {
1164 // Skip token for error recovery.
1165 getNextToken();
1166 }
1167 }
1168
1169 /// top ::= definition | external | expression | ';'
MainLoop()1170 static void MainLoop() {
1171 while (true) {
1172 fprintf(stderr, "ready> ");
1173 switch (CurTok) {
1174 case tok_eof:
1175 return;
1176 case ';': // ignore top-level semicolons.
1177 getNextToken();
1178 break;
1179 case tok_def:
1180 HandleDefinition();
1181 break;
1182 case tok_extern:
1183 HandleExtern();
1184 break;
1185 default:
1186 HandleTopLevelExpression();
1187 break;
1188 }
1189 }
1190 }
1191
1192 //===----------------------------------------------------------------------===//
1193 // "Library" functions that can be "extern'd" from user code.
1194 //===----------------------------------------------------------------------===//
1195
1196 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1197 extern "C" double putchard(double X) {
1198 fputc((char)X, stderr);
1199 return 0;
1200 }
1201
1202 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1203 extern "C" double printd(double X) {
1204 fprintf(stderr, "%f\n", X);
1205 return 0;
1206 }
1207
1208 //===----------------------------------------------------------------------===//
1209 // Main driver code.
1210 //===----------------------------------------------------------------------===//
1211
main()1212 int main() {
1213 InitializeNativeTarget();
1214 InitializeNativeTargetAsmPrinter();
1215 InitializeNativeTargetAsmParser();
1216
1217 // Install standard binary operators.
1218 // 1 is lowest precedence.
1219 BinopPrecedence['='] = 2;
1220 BinopPrecedence['<'] = 10;
1221 BinopPrecedence['+'] = 20;
1222 BinopPrecedence['-'] = 20;
1223 BinopPrecedence['*'] = 40; // highest.
1224
1225 // Prime the first token.
1226 fprintf(stderr, "ready> ");
1227 getNextToken();
1228
1229 TheJIT = llvm::make_unique<KaleidoscopeJIT>();
1230
1231 InitializeModuleAndPassManager();
1232
1233 // Run the main "interpreter loop" now.
1234 MainLoop();
1235
1236 return 0;
1237 }
1238