• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
12 //
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified.  This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
18 //
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation.  Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
31 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
32 #include "llvm/Analysis/CaptureTracking.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Pass.h"
49 using namespace llvm;
50 
51 /// Allow disabling BasicAA from the AA results. This is particularly useful
52 /// when testing to isolate a single AA implementation.
53 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
54                                     cl::init(false));
55 
AAResults(AAResults && Arg)56 AAResults::AAResults(AAResults &&Arg) : TLI(Arg.TLI), AAs(std::move(Arg.AAs)) {
57   for (auto &AA : AAs)
58     AA->setAAResults(this);
59 }
60 
~AAResults()61 AAResults::~AAResults() {
62 // FIXME; It would be nice to at least clear out the pointers back to this
63 // aggregation here, but we end up with non-nesting lifetimes in the legacy
64 // pass manager that prevent this from working. In the legacy pass manager
65 // we'll end up with dangling references here in some cases.
66 #if 0
67   for (auto &AA : AAs)
68     AA->setAAResults(nullptr);
69 #endif
70 }
71 
72 //===----------------------------------------------------------------------===//
73 // Default chaining methods
74 //===----------------------------------------------------------------------===//
75 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)76 AliasResult AAResults::alias(const MemoryLocation &LocA,
77                              const MemoryLocation &LocB) {
78   for (const auto &AA : AAs) {
79     auto Result = AA->alias(LocA, LocB);
80     if (Result != MayAlias)
81       return Result;
82   }
83   return MayAlias;
84 }
85 
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)86 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
87                                        bool OrLocal) {
88   for (const auto &AA : AAs)
89     if (AA->pointsToConstantMemory(Loc, OrLocal))
90       return true;
91 
92   return false;
93 }
94 
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)95 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
96   ModRefInfo Result = MRI_ModRef;
97 
98   for (const auto &AA : AAs) {
99     Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
100 
101     // Early-exit the moment we reach the bottom of the lattice.
102     if (Result == MRI_NoModRef)
103       return Result;
104   }
105 
106   return Result;
107 }
108 
getModRefInfo(Instruction * I,ImmutableCallSite Call)109 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
110   // We may have two calls
111   if (auto CS = ImmutableCallSite(I)) {
112     // Check if the two calls modify the same memory
113     return getModRefInfo(CS, Call);
114   } else {
115     // Otherwise, check if the call modifies or references the
116     // location this memory access defines.  The best we can say
117     // is that if the call references what this instruction
118     // defines, it must be clobbered by this location.
119     const MemoryLocation DefLoc = MemoryLocation::get(I);
120     if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
121       return MRI_ModRef;
122   }
123   return MRI_NoModRef;
124 }
125 
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)126 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
127                                     const MemoryLocation &Loc) {
128   ModRefInfo Result = MRI_ModRef;
129 
130   for (const auto &AA : AAs) {
131     Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
132 
133     // Early-exit the moment we reach the bottom of the lattice.
134     if (Result == MRI_NoModRef)
135       return Result;
136   }
137 
138   // Try to refine the mod-ref info further using other API entry points to the
139   // aggregate set of AA results.
140   auto MRB = getModRefBehavior(CS);
141   if (MRB == FMRB_DoesNotAccessMemory)
142     return MRI_NoModRef;
143 
144   if (onlyReadsMemory(MRB))
145     Result = ModRefInfo(Result & MRI_Ref);
146   else if (doesNotReadMemory(MRB))
147     Result = ModRefInfo(Result & MRI_Mod);
148 
149   if (onlyAccessesArgPointees(MRB)) {
150     bool DoesAlias = false;
151     ModRefInfo AllArgsMask = MRI_NoModRef;
152     if (doesAccessArgPointees(MRB)) {
153       for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
154         const Value *Arg = *AI;
155         if (!Arg->getType()->isPointerTy())
156           continue;
157         unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
158         MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
159         AliasResult ArgAlias = alias(ArgLoc, Loc);
160         if (ArgAlias != NoAlias) {
161           ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
162           DoesAlias = true;
163           AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
164         }
165       }
166     }
167     if (!DoesAlias)
168       return MRI_NoModRef;
169     Result = ModRefInfo(Result & AllArgsMask);
170   }
171 
172   // If Loc is a constant memory location, the call definitely could not
173   // modify the memory location.
174   if ((Result & MRI_Mod) &&
175       pointsToConstantMemory(Loc, /*OrLocal*/ false))
176     Result = ModRefInfo(Result & ~MRI_Mod);
177 
178   return Result;
179 }
180 
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)181 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
182                                     ImmutableCallSite CS2) {
183   ModRefInfo Result = MRI_ModRef;
184 
185   for (const auto &AA : AAs) {
186     Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
187 
188     // Early-exit the moment we reach the bottom of the lattice.
189     if (Result == MRI_NoModRef)
190       return Result;
191   }
192 
193   // Try to refine the mod-ref info further using other API entry points to the
194   // aggregate set of AA results.
195 
196   // If CS1 or CS2 are readnone, they don't interact.
197   auto CS1B = getModRefBehavior(CS1);
198   if (CS1B == FMRB_DoesNotAccessMemory)
199     return MRI_NoModRef;
200 
201   auto CS2B = getModRefBehavior(CS2);
202   if (CS2B == FMRB_DoesNotAccessMemory)
203     return MRI_NoModRef;
204 
205   // If they both only read from memory, there is no dependence.
206   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
207     return MRI_NoModRef;
208 
209   // If CS1 only reads memory, the only dependence on CS2 can be
210   // from CS1 reading memory written by CS2.
211   if (onlyReadsMemory(CS1B))
212     Result = ModRefInfo(Result & MRI_Ref);
213   else if (doesNotReadMemory(CS1B))
214     Result = ModRefInfo(Result & MRI_Mod);
215 
216   // If CS2 only access memory through arguments, accumulate the mod/ref
217   // information from CS1's references to the memory referenced by
218   // CS2's arguments.
219   if (onlyAccessesArgPointees(CS2B)) {
220     ModRefInfo R = MRI_NoModRef;
221     if (doesAccessArgPointees(CS2B)) {
222       for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
223         const Value *Arg = *I;
224         if (!Arg->getType()->isPointerTy())
225           continue;
226         unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
227         auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
228 
229         // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
230         // of CS1 on that location is the inverse.
231         ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
232         if (ArgMask == MRI_Mod)
233           ArgMask = MRI_ModRef;
234         else if (ArgMask == MRI_Ref)
235           ArgMask = MRI_Mod;
236 
237         ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc));
238 
239         R = ModRefInfo((R | ArgMask) & Result);
240         if (R == Result)
241           break;
242       }
243     }
244     return R;
245   }
246 
247   // If CS1 only accesses memory through arguments, check if CS2 references
248   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
249   if (onlyAccessesArgPointees(CS1B)) {
250     ModRefInfo R = MRI_NoModRef;
251     if (doesAccessArgPointees(CS1B)) {
252       for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
253         const Value *Arg = *I;
254         if (!Arg->getType()->isPointerTy())
255           continue;
256         unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
257         auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
258 
259         // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
260         // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
261         // might Ref, then we care only about a Mod by CS2.
262         ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
263         ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
264         if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
265              (ArgR & MRI_ModRef) != MRI_NoModRef) ||
266             ((ArgMask & MRI_Ref) != MRI_NoModRef &&
267              (ArgR & MRI_Mod) != MRI_NoModRef))
268           R = ModRefInfo((R | ArgMask) & Result);
269 
270         if (R == Result)
271           break;
272       }
273     }
274     return R;
275   }
276 
277   return Result;
278 }
279 
getModRefBehavior(ImmutableCallSite CS)280 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
281   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
282 
283   for (const auto &AA : AAs) {
284     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
285 
286     // Early-exit the moment we reach the bottom of the lattice.
287     if (Result == FMRB_DoesNotAccessMemory)
288       return Result;
289   }
290 
291   return Result;
292 }
293 
getModRefBehavior(const Function * F)294 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
295   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
296 
297   for (const auto &AA : AAs) {
298     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
299 
300     // Early-exit the moment we reach the bottom of the lattice.
301     if (Result == FMRB_DoesNotAccessMemory)
302       return Result;
303   }
304 
305   return Result;
306 }
307 
308 //===----------------------------------------------------------------------===//
309 // Helper method implementation
310 //===----------------------------------------------------------------------===//
311 
getModRefInfo(const LoadInst * L,const MemoryLocation & Loc)312 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
313                                     const MemoryLocation &Loc) {
314   // Be conservative in the face of volatile/atomic.
315   if (!L->isUnordered())
316     return MRI_ModRef;
317 
318   // If the load address doesn't alias the given address, it doesn't read
319   // or write the specified memory.
320   if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
321     return MRI_NoModRef;
322 
323   // Otherwise, a load just reads.
324   return MRI_Ref;
325 }
326 
getModRefInfo(const StoreInst * S,const MemoryLocation & Loc)327 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
328                                     const MemoryLocation &Loc) {
329   // Be conservative in the face of volatile/atomic.
330   if (!S->isUnordered())
331     return MRI_ModRef;
332 
333   if (Loc.Ptr) {
334     // If the store address cannot alias the pointer in question, then the
335     // specified memory cannot be modified by the store.
336     if (!alias(MemoryLocation::get(S), Loc))
337       return MRI_NoModRef;
338 
339     // If the pointer is a pointer to constant memory, then it could not have
340     // been modified by this store.
341     if (pointsToConstantMemory(Loc))
342       return MRI_NoModRef;
343   }
344 
345   // Otherwise, a store just writes.
346   return MRI_Mod;
347 }
348 
getModRefInfo(const VAArgInst * V,const MemoryLocation & Loc)349 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
350                                     const MemoryLocation &Loc) {
351 
352   if (Loc.Ptr) {
353     // If the va_arg address cannot alias the pointer in question, then the
354     // specified memory cannot be accessed by the va_arg.
355     if (!alias(MemoryLocation::get(V), Loc))
356       return MRI_NoModRef;
357 
358     // If the pointer is a pointer to constant memory, then it could not have
359     // been modified by this va_arg.
360     if (pointsToConstantMemory(Loc))
361       return MRI_NoModRef;
362   }
363 
364   // Otherwise, a va_arg reads and writes.
365   return MRI_ModRef;
366 }
367 
getModRefInfo(const CatchPadInst * CatchPad,const MemoryLocation & Loc)368 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
369                                     const MemoryLocation &Loc) {
370   if (Loc.Ptr) {
371     // If the pointer is a pointer to constant memory,
372     // then it could not have been modified by this catchpad.
373     if (pointsToConstantMemory(Loc))
374       return MRI_NoModRef;
375   }
376 
377   // Otherwise, a catchpad reads and writes.
378   return MRI_ModRef;
379 }
380 
getModRefInfo(const CatchReturnInst * CatchRet,const MemoryLocation & Loc)381 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
382                                     const MemoryLocation &Loc) {
383   if (Loc.Ptr) {
384     // If the pointer is a pointer to constant memory,
385     // then it could not have been modified by this catchpad.
386     if (pointsToConstantMemory(Loc))
387       return MRI_NoModRef;
388   }
389 
390   // Otherwise, a catchret reads and writes.
391   return MRI_ModRef;
392 }
393 
getModRefInfo(const AtomicCmpXchgInst * CX,const MemoryLocation & Loc)394 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
395                                     const MemoryLocation &Loc) {
396   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
397   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
398     return MRI_ModRef;
399 
400   // If the cmpxchg address does not alias the location, it does not access it.
401   if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
402     return MRI_NoModRef;
403 
404   return MRI_ModRef;
405 }
406 
getModRefInfo(const AtomicRMWInst * RMW,const MemoryLocation & Loc)407 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
408                                     const MemoryLocation &Loc) {
409   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
410   if (isStrongerThanMonotonic(RMW->getOrdering()))
411     return MRI_ModRef;
412 
413   // If the atomicrmw address does not alias the location, it does not access it.
414   if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
415     return MRI_NoModRef;
416 
417   return MRI_ModRef;
418 }
419 
420 /// \brief Return information about whether a particular call site modifies
421 /// or reads the specified memory location \p MemLoc before instruction \p I
422 /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
423 /// instruction-ordering queries inside the BasicBlock containing \p I.
424 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
425 /// BasicAA isn't willing to spend linear time determining whether an alloca
426 /// was captured before or after this particular call, while we are. However,
427 /// with a smarter AA in place, this test is just wasting compile time.
callCapturesBefore(const Instruction * I,const MemoryLocation & MemLoc,DominatorTree * DT,OrderedBasicBlock * OBB)428 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
429                                          const MemoryLocation &MemLoc,
430                                          DominatorTree *DT,
431                                          OrderedBasicBlock *OBB) {
432   if (!DT)
433     return MRI_ModRef;
434 
435   const Value *Object =
436       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
437   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
438       isa<Constant>(Object))
439     return MRI_ModRef;
440 
441   ImmutableCallSite CS(I);
442   if (!CS.getInstruction() || CS.getInstruction() == Object)
443     return MRI_ModRef;
444 
445   if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
446                                        /* StoreCaptures */ true, I, DT,
447                                        /* include Object */ true,
448                                        /* OrderedBasicBlock */ OBB))
449     return MRI_ModRef;
450 
451   unsigned ArgNo = 0;
452   ModRefInfo R = MRI_NoModRef;
453   for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
454        CI != CE; ++CI, ++ArgNo) {
455     // Only look at the no-capture or byval pointer arguments.  If this
456     // pointer were passed to arguments that were neither of these, then it
457     // couldn't be no-capture.
458     if (!(*CI)->getType()->isPointerTy() ||
459         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
460       continue;
461 
462     // If this is a no-capture pointer argument, see if we can tell that it
463     // is impossible to alias the pointer we're checking.  If not, we have to
464     // assume that the call could touch the pointer, even though it doesn't
465     // escape.
466     if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
467       continue;
468     if (CS.doesNotAccessMemory(ArgNo))
469       continue;
470     if (CS.onlyReadsMemory(ArgNo)) {
471       R = MRI_Ref;
472       continue;
473     }
474     return MRI_ModRef;
475   }
476   return R;
477 }
478 
479 /// canBasicBlockModify - Return true if it is possible for execution of the
480 /// specified basic block to modify the location Loc.
481 ///
canBasicBlockModify(const BasicBlock & BB,const MemoryLocation & Loc)482 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
483                                     const MemoryLocation &Loc) {
484   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
485 }
486 
487 /// canInstructionRangeModRef - Return true if it is possible for the
488 /// execution of the specified instructions to mod\ref (according to the
489 /// mode) the location Loc. The instructions to consider are all
490 /// of the instructions in the range of [I1,I2] INCLUSIVE.
491 /// I1 and I2 must be in the same basic block.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const MemoryLocation & Loc,const ModRefInfo Mode)492 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
493                                           const Instruction &I2,
494                                           const MemoryLocation &Loc,
495                                           const ModRefInfo Mode) {
496   assert(I1.getParent() == I2.getParent() &&
497          "Instructions not in same basic block!");
498   BasicBlock::const_iterator I = I1.getIterator();
499   BasicBlock::const_iterator E = I2.getIterator();
500   ++E;  // Convert from inclusive to exclusive range.
501 
502   for (; I != E; ++I) // Check every instruction in range
503     if (getModRefInfo(&*I, Loc) & Mode)
504       return true;
505   return false;
506 }
507 
508 // Provide a definition for the root virtual destructor.
~Concept()509 AAResults::Concept::~Concept() {}
510 
511 // Provide a definition for the static object used to identify passes.
512 char AAManager::PassID;
513 
514 namespace {
515 /// A wrapper pass for external alias analyses. This just squirrels away the
516 /// callback used to run any analyses and register their results.
517 struct ExternalAAWrapperPass : ImmutablePass {
518   typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
519 
520   CallbackT CB;
521 
522   static char ID;
523 
ExternalAAWrapperPass__anon1c3ba2bc0111::ExternalAAWrapperPass524   ExternalAAWrapperPass() : ImmutablePass(ID) {
525     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
526   }
ExternalAAWrapperPass__anon1c3ba2bc0111::ExternalAAWrapperPass527   explicit ExternalAAWrapperPass(CallbackT CB)
528       : ImmutablePass(ID), CB(std::move(CB)) {
529     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
530   }
531 
getAnalysisUsage__anon1c3ba2bc0111::ExternalAAWrapperPass532   void getAnalysisUsage(AnalysisUsage &AU) const override {
533     AU.setPreservesAll();
534   }
535 };
536 }
537 
538 char ExternalAAWrapperPass::ID = 0;
539 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
540                 false, true)
541 
542 ImmutablePass *
createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback)543 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
544   return new ExternalAAWrapperPass(std::move(Callback));
545 }
546 
AAResultsWrapperPass()547 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
548   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
549 }
550 
551 char AAResultsWrapperPass::ID = 0;
552 
553 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
554                       "Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)555 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
556 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
557 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
558 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
559 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
560 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
561 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
562 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
563 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
564 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
565                     "Function Alias Analysis Results", false, true)
566 
567 FunctionPass *llvm::createAAResultsWrapperPass() {
568   return new AAResultsWrapperPass();
569 }
570 
571 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
572 ///
573 /// This is the legacy pass manager's interface to the new-style AA results
574 /// aggregation object. Because this is somewhat shoe-horned into the legacy
575 /// pass manager, we hard code all the specific alias analyses available into
576 /// it. While the particular set enabled is configured via commandline flags,
577 /// adding a new alias analysis to LLVM will require adding support for it to
578 /// this list.
runOnFunction(Function & F)579 bool AAResultsWrapperPass::runOnFunction(Function &F) {
580   // NB! This *must* be reset before adding new AA results to the new
581   // AAResults object because in the legacy pass manager, each instance
582   // of these will refer to the *same* immutable analyses, registering and
583   // unregistering themselves with them. We need to carefully tear down the
584   // previous object first, in this case replacing it with an empty one, before
585   // registering new results.
586   AAR.reset(
587       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
588 
589   // BasicAA is always available for function analyses. Also, we add it first
590   // so that it can trump TBAA results when it proves MustAlias.
591   // FIXME: TBAA should have an explicit mode to support this and then we
592   // should reconsider the ordering here.
593   if (!DisableBasicAA)
594     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
595 
596   // Populate the results with the currently available AAs.
597   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
598     AAR->addAAResult(WrapperPass->getResult());
599   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
600     AAR->addAAResult(WrapperPass->getResult());
601   if (auto *WrapperPass =
602           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
603     AAR->addAAResult(WrapperPass->getResult());
604   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
605     AAR->addAAResult(WrapperPass->getResult());
606   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
607     AAR->addAAResult(WrapperPass->getResult());
608   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
609     AAR->addAAResult(WrapperPass->getResult());
610   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
611     AAR->addAAResult(WrapperPass->getResult());
612 
613   // If available, run an external AA providing callback over the results as
614   // well.
615   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
616     if (WrapperPass->CB)
617       WrapperPass->CB(*this, F, *AAR);
618 
619   // Analyses don't mutate the IR, so return false.
620   return false;
621 }
622 
getAnalysisUsage(AnalysisUsage & AU) const623 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
624   AU.setPreservesAll();
625   AU.addRequired<BasicAAWrapperPass>();
626   AU.addRequired<TargetLibraryInfoWrapperPass>();
627 
628   // We also need to mark all the alias analysis passes we will potentially
629   // probe in runOnFunction as used here to ensure the legacy pass manager
630   // preserves them. This hard coding of lists of alias analyses is specific to
631   // the legacy pass manager.
632   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
633   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
634   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
635   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
636   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
637   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
638   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
639 }
640 
createLegacyPMAAResults(Pass & P,Function & F,BasicAAResult & BAR)641 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
642                                         BasicAAResult &BAR) {
643   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
644 
645   // Add in our explicitly constructed BasicAA results.
646   if (!DisableBasicAA)
647     AAR.addAAResult(BAR);
648 
649   // Populate the results with the other currently available AAs.
650   if (auto *WrapperPass =
651           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
652     AAR.addAAResult(WrapperPass->getResult());
653   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
654     AAR.addAAResult(WrapperPass->getResult());
655   if (auto *WrapperPass =
656           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
657     AAR.addAAResult(WrapperPass->getResult());
658   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
659     AAR.addAAResult(WrapperPass->getResult());
660   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
661     AAR.addAAResult(WrapperPass->getResult());
662   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
663     AAR.addAAResult(WrapperPass->getResult());
664 
665   return AAR;
666 }
667 
isNoAliasCall(const Value * V)668 bool llvm::isNoAliasCall(const Value *V) {
669   if (auto CS = ImmutableCallSite(V))
670     return CS.paramHasAttr(0, Attribute::NoAlias);
671   return false;
672 }
673 
isNoAliasArgument(const Value * V)674 bool llvm::isNoAliasArgument(const Value *V) {
675   if (const Argument *A = dyn_cast<Argument>(V))
676     return A->hasNoAliasAttr();
677   return false;
678 }
679 
isIdentifiedObject(const Value * V)680 bool llvm::isIdentifiedObject(const Value *V) {
681   if (isa<AllocaInst>(V))
682     return true;
683   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
684     return true;
685   if (isNoAliasCall(V))
686     return true;
687   if (const Argument *A = dyn_cast<Argument>(V))
688     return A->hasNoAliasAttr() || A->hasByValAttr();
689   return false;
690 }
691 
isIdentifiedFunctionLocal(const Value * V)692 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
693   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
694 }
695 
getAAResultsAnalysisUsage(AnalysisUsage & AU)696 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
697   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
698   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
699   // to be added here also.
700   AU.addRequired<TargetLibraryInfoWrapperPass>();
701   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
702   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
703   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
704   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
705   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
706   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
707 }
708