1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a demanded bits analysis. A demanded bit is one that
11 // contributes to a result; bits that are not demanded can be either zero or
12 // one without affecting control or data flow. For example in this sequence:
13 //
14 // %1 = add i32 %x, %y
15 // %2 = trunc i32 %1 to i16
16 //
17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18 // trunc.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Analysis/DemandedBits.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "demanded-bits"
44
45 char DemandedBitsWrapperPass::ID = 0;
46 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
47 "Demanded bits analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
50 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
51 "Demanded bits analysis", false, false)
52
53 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
54 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
55 }
56
getAnalysisUsage(AnalysisUsage & AU) const57 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
58 AU.setPreservesCFG();
59 AU.addRequired<AssumptionCacheTracker>();
60 AU.addRequired<DominatorTreeWrapperPass>();
61 AU.setPreservesAll();
62 }
63
print(raw_ostream & OS,const Module * M) const64 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
65 DB->print(OS);
66 }
67
isAlwaysLive(Instruction * I)68 static bool isAlwaysLive(Instruction *I) {
69 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
70 I->isEHPad() || I->mayHaveSideEffects();
71 }
72
determineLiveOperandBits(const Instruction * UserI,const Instruction * I,unsigned OperandNo,const APInt & AOut,APInt & AB,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2)73 void DemandedBits::determineLiveOperandBits(
74 const Instruction *UserI, const Instruction *I, unsigned OperandNo,
75 const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
76 APInt &KnownZero2, APInt &KnownOne2) {
77 unsigned BitWidth = AB.getBitWidth();
78
79 // We're called once per operand, but for some instructions, we need to
80 // compute known bits of both operands in order to determine the live bits of
81 // either (when both operands are instructions themselves). We don't,
82 // however, want to do this twice, so we cache the result in APInts that live
83 // in the caller. For the two-relevant-operands case, both operand values are
84 // provided here.
85 auto ComputeKnownBits =
86 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
87 const DataLayout &DL = I->getModule()->getDataLayout();
88 KnownZero = APInt(BitWidth, 0);
89 KnownOne = APInt(BitWidth, 0);
90 computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
91 &AC, UserI, &DT);
92
93 if (V2) {
94 KnownZero2 = APInt(BitWidth, 0);
95 KnownOne2 = APInt(BitWidth, 0);
96 computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
97 0, &AC, UserI, &DT);
98 }
99 };
100
101 switch (UserI->getOpcode()) {
102 default: break;
103 case Instruction::Call:
104 case Instruction::Invoke:
105 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
106 switch (II->getIntrinsicID()) {
107 default: break;
108 case Intrinsic::bswap:
109 // The alive bits of the input are the swapped alive bits of
110 // the output.
111 AB = AOut.byteSwap();
112 break;
113 case Intrinsic::ctlz:
114 if (OperandNo == 0) {
115 // We need some output bits, so we need all bits of the
116 // input to the left of, and including, the leftmost bit
117 // known to be one.
118 ComputeKnownBits(BitWidth, I, nullptr);
119 AB = APInt::getHighBitsSet(BitWidth,
120 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
121 }
122 break;
123 case Intrinsic::cttz:
124 if (OperandNo == 0) {
125 // We need some output bits, so we need all bits of the
126 // input to the right of, and including, the rightmost bit
127 // known to be one.
128 ComputeKnownBits(BitWidth, I, nullptr);
129 AB = APInt::getLowBitsSet(BitWidth,
130 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
131 }
132 break;
133 }
134 break;
135 case Instruction::Add:
136 case Instruction::Sub:
137 case Instruction::Mul:
138 // Find the highest live output bit. We don't need any more input
139 // bits than that (adds, and thus subtracts, ripple only to the
140 // left).
141 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
142 break;
143 case Instruction::Shl:
144 if (OperandNo == 0)
145 if (ConstantInt *CI =
146 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
147 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
148 AB = AOut.lshr(ShiftAmt);
149
150 // If the shift is nuw/nsw, then the high bits are not dead
151 // (because we've promised that they *must* be zero).
152 const ShlOperator *S = cast<ShlOperator>(UserI);
153 if (S->hasNoSignedWrap())
154 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
155 else if (S->hasNoUnsignedWrap())
156 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
157 }
158 break;
159 case Instruction::LShr:
160 if (OperandNo == 0)
161 if (ConstantInt *CI =
162 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
163 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
164 AB = AOut.shl(ShiftAmt);
165
166 // If the shift is exact, then the low bits are not dead
167 // (they must be zero).
168 if (cast<LShrOperator>(UserI)->isExact())
169 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
170 }
171 break;
172 case Instruction::AShr:
173 if (OperandNo == 0)
174 if (ConstantInt *CI =
175 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
176 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
177 AB = AOut.shl(ShiftAmt);
178 // Because the high input bit is replicated into the
179 // high-order bits of the result, if we need any of those
180 // bits, then we must keep the highest input bit.
181 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
182 .getBoolValue())
183 AB.setBit(BitWidth-1);
184
185 // If the shift is exact, then the low bits are not dead
186 // (they must be zero).
187 if (cast<AShrOperator>(UserI)->isExact())
188 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
189 }
190 break;
191 case Instruction::And:
192 AB = AOut;
193
194 // For bits that are known zero, the corresponding bits in the
195 // other operand are dead (unless they're both zero, in which
196 // case they can't both be dead, so just mark the LHS bits as
197 // dead).
198 if (OperandNo == 0) {
199 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
200 AB &= ~KnownZero2;
201 } else {
202 if (!isa<Instruction>(UserI->getOperand(0)))
203 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
204 AB &= ~(KnownZero & ~KnownZero2);
205 }
206 break;
207 case Instruction::Or:
208 AB = AOut;
209
210 // For bits that are known one, the corresponding bits in the
211 // other operand are dead (unless they're both one, in which
212 // case they can't both be dead, so just mark the LHS bits as
213 // dead).
214 if (OperandNo == 0) {
215 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
216 AB &= ~KnownOne2;
217 } else {
218 if (!isa<Instruction>(UserI->getOperand(0)))
219 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
220 AB &= ~(KnownOne & ~KnownOne2);
221 }
222 break;
223 case Instruction::Xor:
224 case Instruction::PHI:
225 AB = AOut;
226 break;
227 case Instruction::Trunc:
228 AB = AOut.zext(BitWidth);
229 break;
230 case Instruction::ZExt:
231 AB = AOut.trunc(BitWidth);
232 break;
233 case Instruction::SExt:
234 AB = AOut.trunc(BitWidth);
235 // Because the high input bit is replicated into the
236 // high-order bits of the result, if we need any of those
237 // bits, then we must keep the highest input bit.
238 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
239 AOut.getBitWidth() - BitWidth))
240 .getBoolValue())
241 AB.setBit(BitWidth-1);
242 break;
243 case Instruction::Select:
244 if (OperandNo != 0)
245 AB = AOut;
246 break;
247 }
248 }
249
runOnFunction(Function & F)250 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
251 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
252 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
253 DB.emplace(F, AC, DT);
254 return false;
255 }
256
releaseMemory()257 void DemandedBitsWrapperPass::releaseMemory() {
258 DB.reset();
259 }
260
performAnalysis()261 void DemandedBits::performAnalysis() {
262 if (Analyzed)
263 // Analysis already completed for this function.
264 return;
265 Analyzed = true;
266
267 Visited.clear();
268 AliveBits.clear();
269
270 SmallVector<Instruction*, 128> Worklist;
271
272 // Collect the set of "root" instructions that are known live.
273 for (Instruction &I : instructions(F)) {
274 if (!isAlwaysLive(&I))
275 continue;
276
277 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
278 // For integer-valued instructions, set up an initial empty set of alive
279 // bits and add the instruction to the work list. For other instructions
280 // add their operands to the work list (for integer values operands, mark
281 // all bits as live).
282 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
283 if (!AliveBits.count(&I)) {
284 AliveBits[&I] = APInt(IT->getBitWidth(), 0);
285 Worklist.push_back(&I);
286 }
287
288 continue;
289 }
290
291 // Non-integer-typed instructions...
292 for (Use &OI : I.operands()) {
293 if (Instruction *J = dyn_cast<Instruction>(OI)) {
294 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
295 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
296 Worklist.push_back(J);
297 }
298 }
299 // To save memory, we don't add I to the Visited set here. Instead, we
300 // check isAlwaysLive on every instruction when searching for dead
301 // instructions later (we need to check isAlwaysLive for the
302 // integer-typed instructions anyway).
303 }
304
305 // Propagate liveness backwards to operands.
306 while (!Worklist.empty()) {
307 Instruction *UserI = Worklist.pop_back_val();
308
309 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
310 APInt AOut;
311 if (UserI->getType()->isIntegerTy()) {
312 AOut = AliveBits[UserI];
313 DEBUG(dbgs() << " Alive Out: " << AOut);
314 }
315 DEBUG(dbgs() << "\n");
316
317 if (!UserI->getType()->isIntegerTy())
318 Visited.insert(UserI);
319
320 APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
321 // Compute the set of alive bits for each operand. These are anded into the
322 // existing set, if any, and if that changes the set of alive bits, the
323 // operand is added to the work-list.
324 for (Use &OI : UserI->operands()) {
325 if (Instruction *I = dyn_cast<Instruction>(OI)) {
326 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
327 unsigned BitWidth = IT->getBitWidth();
328 APInt AB = APInt::getAllOnesValue(BitWidth);
329 if (UserI->getType()->isIntegerTy() && !AOut &&
330 !isAlwaysLive(UserI)) {
331 AB = APInt(BitWidth, 0);
332 } else {
333 // If all bits of the output are dead, then all bits of the input
334 // Bits of each operand that are used to compute alive bits of the
335 // output are alive, all others are dead.
336 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
337 KnownZero, KnownOne,
338 KnownZero2, KnownOne2);
339 }
340
341 // If we've added to the set of alive bits (or the operand has not
342 // been previously visited), then re-queue the operand to be visited
343 // again.
344 APInt ABPrev(BitWidth, 0);
345 auto ABI = AliveBits.find(I);
346 if (ABI != AliveBits.end())
347 ABPrev = ABI->second;
348
349 APInt ABNew = AB | ABPrev;
350 if (ABNew != ABPrev || ABI == AliveBits.end()) {
351 AliveBits[I] = std::move(ABNew);
352 Worklist.push_back(I);
353 }
354 } else if (!Visited.count(I)) {
355 Worklist.push_back(I);
356 }
357 }
358 }
359 }
360 }
361
getDemandedBits(Instruction * I)362 APInt DemandedBits::getDemandedBits(Instruction *I) {
363 performAnalysis();
364
365 const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
366 if (AliveBits.count(I))
367 return AliveBits[I];
368 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
369 }
370
isInstructionDead(Instruction * I)371 bool DemandedBits::isInstructionDead(Instruction *I) {
372 performAnalysis();
373
374 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
375 !isAlwaysLive(I);
376 }
377
print(raw_ostream & OS)378 void DemandedBits::print(raw_ostream &OS) {
379 performAnalysis();
380 for (auto &KV : AliveBits) {
381 OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
382 << *KV.first << "\n";
383 }
384 }
385
createDemandedBitsWrapperPass()386 FunctionPass *llvm::createDemandedBitsWrapperPass() {
387 return new DemandedBitsWrapperPass();
388 }
389
390 char DemandedBitsAnalysis::PassID;
391
run(Function & F,AnalysisManager<Function> & AM)392 DemandedBits DemandedBitsAnalysis::run(Function &F,
393 AnalysisManager<Function> &AM) {
394 auto &AC = AM.getResult<AssumptionAnalysis>(F);
395 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
396 return DemandedBits(F, AC, DT);
397 }
398
run(Function & F,FunctionAnalysisManager & AM)399 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
400 FunctionAnalysisManager &AM) {
401 AM.getResult<DemandedBitsAnalysis>(F).print(OS);
402 return PreservedAnalyses::all();
403 }
404