• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions.  This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "PHIEliminationUtils.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetSubtargetInfo.h"
34 #include <algorithm>
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "phielim"
38 
39 static cl::opt<bool>
40 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
41                      cl::Hidden, cl::desc("Disable critical edge splitting "
42                                           "during PHI elimination"));
43 
44 static cl::opt<bool>
45 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
46                       cl::Hidden, cl::desc("Split all critical edges during "
47                                            "PHI elimination"));
48 
49 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
50     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
51     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
52 
53 namespace {
54   class PHIElimination : public MachineFunctionPass {
55     MachineRegisterInfo *MRI; // Machine register information
56     LiveVariables *LV;
57     LiveIntervals *LIS;
58 
59   public:
60     static char ID; // Pass identification, replacement for typeid
PHIElimination()61     PHIElimination() : MachineFunctionPass(ID) {
62       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
63     }
64 
65     bool runOnMachineFunction(MachineFunction &Fn) override;
66     void getAnalysisUsage(AnalysisUsage &AU) const override;
67 
68   private:
69     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
70     /// in predecessor basic blocks.
71     ///
72     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
73     void LowerPHINode(MachineBasicBlock &MBB,
74                       MachineBasicBlock::iterator LastPHIIt);
75 
76     /// analyzePHINodes - Gather information about the PHI nodes in
77     /// here. In particular, we want to map the number of uses of a virtual
78     /// register which is used in a PHI node. We map that to the BB the
79     /// vreg is coming from. This is used later to determine when the vreg
80     /// is killed in the BB.
81     ///
82     void analyzePHINodes(const MachineFunction& Fn);
83 
84     /// Split critical edges where necessary for good coalescer performance.
85     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
86                        MachineLoopInfo *MLI);
87 
88     // These functions are temporary abstractions around LiveVariables and
89     // LiveIntervals, so they can go away when LiveVariables does.
90     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
91     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
92 
93     typedef std::pair<unsigned, unsigned> BBVRegPair;
94     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
95 
96     VRegPHIUse VRegPHIUseCount;
97 
98     // Defs of PHI sources which are implicit_def.
99     SmallPtrSet<MachineInstr*, 4> ImpDefs;
100 
101     // Map reusable lowered PHI node -> incoming join register.
102     typedef DenseMap<MachineInstr*, unsigned,
103                      MachineInstrExpressionTrait> LoweredPHIMap;
104     LoweredPHIMap LoweredPHIs;
105   };
106 }
107 
108 STATISTIC(NumLowered, "Number of phis lowered");
109 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
110 STATISTIC(NumReused, "Number of reused lowered phis");
111 
112 char PHIElimination::ID = 0;
113 char& llvm::PHIEliminationID = PHIElimination::ID;
114 
115 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
116                       "Eliminate PHI nodes for register allocation",
117                       false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)118 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
119 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
120                     "Eliminate PHI nodes for register allocation", false, false)
121 
122 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
123   AU.addUsedIfAvailable<LiveVariables>();
124   AU.addPreserved<LiveVariables>();
125   AU.addPreserved<SlotIndexes>();
126   AU.addPreserved<LiveIntervals>();
127   AU.addPreserved<MachineDominatorTree>();
128   AU.addPreserved<MachineLoopInfo>();
129   MachineFunctionPass::getAnalysisUsage(AU);
130 }
131 
runOnMachineFunction(MachineFunction & MF)132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
133   MRI = &MF.getRegInfo();
134   LV = getAnalysisIfAvailable<LiveVariables>();
135   LIS = getAnalysisIfAvailable<LiveIntervals>();
136 
137   bool Changed = false;
138 
139   // This pass takes the function out of SSA form.
140   MRI->leaveSSA();
141 
142   // Split critical edges to help the coalescer. This does not yet support
143   // updating LiveIntervals, so we disable it.
144   if (!DisableEdgeSplitting && (LV || LIS)) {
145     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
146     for (auto &MBB : MF)
147       Changed |= SplitPHIEdges(MF, MBB, MLI);
148   }
149 
150   // Populate VRegPHIUseCount
151   analyzePHINodes(MF);
152 
153   // Eliminate PHI instructions by inserting copies into predecessor blocks.
154   for (auto &MBB : MF)
155     Changed |= EliminatePHINodes(MF, MBB);
156 
157   // Remove dead IMPLICIT_DEF instructions.
158   for (MachineInstr *DefMI : ImpDefs) {
159     unsigned DefReg = DefMI->getOperand(0).getReg();
160     if (MRI->use_nodbg_empty(DefReg)) {
161       if (LIS)
162         LIS->RemoveMachineInstrFromMaps(*DefMI);
163       DefMI->eraseFromParent();
164     }
165   }
166 
167   // Clean up the lowered PHI instructions.
168   for (auto &I : LoweredPHIs) {
169     if (LIS)
170       LIS->RemoveMachineInstrFromMaps(*I.first);
171     MF.DeleteMachineInstr(I.first);
172   }
173 
174   LoweredPHIs.clear();
175   ImpDefs.clear();
176   VRegPHIUseCount.clear();
177 
178   return Changed;
179 }
180 
181 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
182 /// predecessor basic blocks.
183 ///
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)184 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
185                                              MachineBasicBlock &MBB) {
186   if (MBB.empty() || !MBB.front().isPHI())
187     return false;   // Quick exit for basic blocks without PHIs.
188 
189   // Get an iterator to the first instruction after the last PHI node (this may
190   // also be the end of the basic block).
191   MachineBasicBlock::iterator LastPHIIt =
192     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
193 
194   while (MBB.front().isPHI())
195     LowerPHINode(MBB, LastPHIIt);
196 
197   return true;
198 }
199 
200 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
201 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo * MRI)202 static bool isImplicitlyDefined(unsigned VirtReg,
203                                 const MachineRegisterInfo *MRI) {
204   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
205     if (!DI.isImplicitDef())
206       return false;
207   return true;
208 }
209 
210 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
211 /// are implicit_def's.
isSourceDefinedByImplicitDef(const MachineInstr * MPhi,const MachineRegisterInfo * MRI)212 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
213                                          const MachineRegisterInfo *MRI) {
214   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
215     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
216       return false;
217   return true;
218 }
219 
220 
221 /// LowerPHINode - Lower the PHI node at the top of the specified block,
222 ///
LowerPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator LastPHIIt)223 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
224                                   MachineBasicBlock::iterator LastPHIIt) {
225   ++NumLowered;
226 
227   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
228 
229   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
230   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
231 
232   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
233   unsigned DestReg = MPhi->getOperand(0).getReg();
234   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
235   bool isDead = MPhi->getOperand(0).isDead();
236 
237   // Create a new register for the incoming PHI arguments.
238   MachineFunction &MF = *MBB.getParent();
239   unsigned IncomingReg = 0;
240   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
241 
242   // Insert a register to register copy at the top of the current block (but
243   // after any remaining phi nodes) which copies the new incoming register
244   // into the phi node destination.
245   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
246   if (isSourceDefinedByImplicitDef(MPhi, MRI))
247     // If all sources of a PHI node are implicit_def, just emit an
248     // implicit_def instead of a copy.
249     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
250             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
251   else {
252     // Can we reuse an earlier PHI node? This only happens for critical edges,
253     // typically those created by tail duplication.
254     unsigned &entry = LoweredPHIs[MPhi];
255     if (entry) {
256       // An identical PHI node was already lowered. Reuse the incoming register.
257       IncomingReg = entry;
258       reusedIncoming = true;
259       ++NumReused;
260       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
261     } else {
262       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
263       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
264     }
265     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
266             TII->get(TargetOpcode::COPY), DestReg)
267       .addReg(IncomingReg);
268   }
269 
270   // Update live variable information if there is any.
271   if (LV) {
272     MachineInstr &PHICopy = *std::prev(AfterPHIsIt);
273 
274     if (IncomingReg) {
275       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
276 
277       // Increment use count of the newly created virtual register.
278       LV->setPHIJoin(IncomingReg);
279 
280       // When we are reusing the incoming register, it may already have been
281       // killed in this block. The old kill will also have been inserted at
282       // AfterPHIsIt, so it appears before the current PHICopy.
283       if (reusedIncoming)
284         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
285           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
286           LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
287           DEBUG(MBB.dump());
288         }
289 
290       // Add information to LiveVariables to know that the incoming value is
291       // killed.  Note that because the value is defined in several places (once
292       // each for each incoming block), the "def" block and instruction fields
293       // for the VarInfo is not filled in.
294       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
295     }
296 
297     // Since we are going to be deleting the PHI node, if it is the last use of
298     // any registers, or if the value itself is dead, we need to move this
299     // information over to the new copy we just inserted.
300     LV->removeVirtualRegistersKilled(*MPhi);
301 
302     // If the result is dead, update LV.
303     if (isDead) {
304       LV->addVirtualRegisterDead(DestReg, PHICopy);
305       LV->removeVirtualRegisterDead(DestReg, *MPhi);
306     }
307   }
308 
309   // Update LiveIntervals for the new copy or implicit def.
310   if (LIS) {
311     SlotIndex DestCopyIndex =
312         LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt));
313 
314     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
315     if (IncomingReg) {
316       // Add the region from the beginning of MBB to the copy instruction to
317       // IncomingReg's live interval.
318       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
319       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
320       if (!IncomingVNI)
321         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
322                                               LIS->getVNInfoAllocator());
323       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
324                                                   DestCopyIndex.getRegSlot(),
325                                                   IncomingVNI));
326     }
327 
328     LiveInterval &DestLI = LIS->getInterval(DestReg);
329     assert(DestLI.begin() != DestLI.end() &&
330            "PHIs should have nonempty LiveIntervals.");
331     if (DestLI.endIndex().isDead()) {
332       // A dead PHI's live range begins and ends at the start of the MBB, but
333       // the lowered copy, which will still be dead, needs to begin and end at
334       // the copy instruction.
335       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
336       assert(OrigDestVNI && "PHI destination should be live at block entry.");
337       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
338       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
339                            LIS->getVNInfoAllocator());
340       DestLI.removeValNo(OrigDestVNI);
341     } else {
342       // Otherwise, remove the region from the beginning of MBB to the copy
343       // instruction from DestReg's live interval.
344       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
345       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
346       assert(DestVNI && "PHI destination should be live at its definition.");
347       DestVNI->def = DestCopyIndex.getRegSlot();
348     }
349   }
350 
351   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
352   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
353     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
354                                  MPhi->getOperand(i).getReg())];
355 
356   // Now loop over all of the incoming arguments, changing them to copy into the
357   // IncomingReg register in the corresponding predecessor basic block.
358   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
359   for (int i = NumSrcs - 1; i >= 0; --i) {
360     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
361     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
362     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
363       isImplicitlyDefined(SrcReg, MRI);
364     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
365            "Machine PHI Operands must all be virtual registers!");
366 
367     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
368     // path the PHI.
369     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
370 
371     // Check to make sure we haven't already emitted the copy for this block.
372     // This can happen because PHI nodes may have multiple entries for the same
373     // basic block.
374     if (!MBBsInsertedInto.insert(&opBlock).second)
375       continue;  // If the copy has already been emitted, we're done.
376 
377     // Find a safe location to insert the copy, this may be the first terminator
378     // in the block (or end()).
379     MachineBasicBlock::iterator InsertPos =
380       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
381 
382     // Insert the copy.
383     MachineInstr *NewSrcInstr = nullptr;
384     if (!reusedIncoming && IncomingReg) {
385       if (SrcUndef) {
386         // The source register is undefined, so there is no need for a real
387         // COPY, but we still need to ensure joint dominance by defs.
388         // Insert an IMPLICIT_DEF instruction.
389         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
390                               TII->get(TargetOpcode::IMPLICIT_DEF),
391                               IncomingReg);
392 
393         // Clean up the old implicit-def, if there even was one.
394         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
395           if (DefMI->isImplicitDef())
396             ImpDefs.insert(DefMI);
397       } else {
398         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
399                             TII->get(TargetOpcode::COPY), IncomingReg)
400                         .addReg(SrcReg, 0, SrcSubReg);
401       }
402     }
403 
404     // We only need to update the LiveVariables kill of SrcReg if this was the
405     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
406     // out of the predecessor. We can also ignore undef sources.
407     if (LV && !SrcUndef &&
408         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
409         !LV->isLiveOut(SrcReg, opBlock)) {
410       // We want to be able to insert a kill of the register if this PHI (aka,
411       // the copy we just inserted) is the last use of the source value. Live
412       // variable analysis conservatively handles this by saying that the value
413       // is live until the end of the block the PHI entry lives in. If the value
414       // really is dead at the PHI copy, there will be no successor blocks which
415       // have the value live-in.
416 
417       // Okay, if we now know that the value is not live out of the block, we
418       // can add a kill marker in this block saying that it kills the incoming
419       // value!
420 
421       // In our final twist, we have to decide which instruction kills the
422       // register.  In most cases this is the copy, however, terminator
423       // instructions at the end of the block may also use the value. In this
424       // case, we should mark the last such terminator as being the killing
425       // block, not the copy.
426       MachineBasicBlock::iterator KillInst = opBlock.end();
427       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
428       for (MachineBasicBlock::iterator Term = FirstTerm;
429           Term != opBlock.end(); ++Term) {
430         if (Term->readsRegister(SrcReg))
431           KillInst = Term;
432       }
433 
434       if (KillInst == opBlock.end()) {
435         // No terminator uses the register.
436 
437         if (reusedIncoming || !IncomingReg) {
438           // We may have to rewind a bit if we didn't insert a copy this time.
439           KillInst = FirstTerm;
440           while (KillInst != opBlock.begin()) {
441             --KillInst;
442             if (KillInst->isDebugValue())
443               continue;
444             if (KillInst->readsRegister(SrcReg))
445               break;
446           }
447         } else {
448           // We just inserted this copy.
449           KillInst = std::prev(InsertPos);
450         }
451       }
452       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
453 
454       // Finally, mark it killed.
455       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
456 
457       // This vreg no longer lives all of the way through opBlock.
458       unsigned opBlockNum = opBlock.getNumber();
459       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
460     }
461 
462     if (LIS) {
463       if (NewSrcInstr) {
464         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
465         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
466       }
467 
468       if (!SrcUndef &&
469           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
470         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
471 
472         bool isLiveOut = false;
473         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
474              SE = opBlock.succ_end(); SI != SE; ++SI) {
475           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
476           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
477 
478           // Definitions by other PHIs are not truly live-in for our purposes.
479           if (VNI && VNI->def != startIdx) {
480             isLiveOut = true;
481             break;
482           }
483         }
484 
485         if (!isLiveOut) {
486           MachineBasicBlock::iterator KillInst = opBlock.end();
487           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
488           for (MachineBasicBlock::iterator Term = FirstTerm;
489               Term != opBlock.end(); ++Term) {
490             if (Term->readsRegister(SrcReg))
491               KillInst = Term;
492           }
493 
494           if (KillInst == opBlock.end()) {
495             // No terminator uses the register.
496 
497             if (reusedIncoming || !IncomingReg) {
498               // We may have to rewind a bit if we didn't just insert a copy.
499               KillInst = FirstTerm;
500               while (KillInst != opBlock.begin()) {
501                 --KillInst;
502                 if (KillInst->isDebugValue())
503                   continue;
504                 if (KillInst->readsRegister(SrcReg))
505                   break;
506               }
507             } else {
508               // We just inserted this copy.
509               KillInst = std::prev(InsertPos);
510             }
511           }
512           assert(KillInst->readsRegister(SrcReg) &&
513                  "Cannot find kill instruction");
514 
515           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
516           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
517                               LIS->getMBBEndIdx(&opBlock));
518         }
519       }
520     }
521   }
522 
523   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
524   if (reusedIncoming || !IncomingReg) {
525     if (LIS)
526       LIS->RemoveMachineInstrFromMaps(*MPhi);
527     MF.DeleteMachineInstr(MPhi);
528   }
529 }
530 
531 /// analyzePHINodes - Gather information about the PHI nodes in here. In
532 /// particular, we want to map the number of uses of a virtual register which is
533 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
534 /// used later to determine when the vreg is killed in the BB.
535 ///
analyzePHINodes(const MachineFunction & MF)536 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
537   for (const auto &MBB : MF)
538     for (const auto &BBI : MBB) {
539       if (!BBI.isPHI())
540         break;
541       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
542         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
543                                      BBI.getOperand(i).getReg())];
544     }
545 }
546 
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,MachineLoopInfo * MLI)547 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
548                                    MachineBasicBlock &MBB,
549                                    MachineLoopInfo *MLI) {
550   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
551     return false;   // Quick exit for basic blocks without PHIs.
552 
553   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
554   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
555 
556   bool Changed = false;
557   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
558        BBI != BBE && BBI->isPHI(); ++BBI) {
559     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
560       unsigned Reg = BBI->getOperand(i).getReg();
561       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
562       // Is there a critical edge from PreMBB to MBB?
563       if (PreMBB->succ_size() == 1)
564         continue;
565 
566       // Avoid splitting backedges of loops. It would introduce small
567       // out-of-line blocks into the loop which is very bad for code placement.
568       if (PreMBB == &MBB && !SplitAllCriticalEdges)
569         continue;
570       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
571       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
572         continue;
573 
574       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
575       // when the source register is live-out for some other reason than a phi
576       // use. That means the copy we will insert in PreMBB won't be a kill, and
577       // there is a risk it may not be coalesced away.
578       //
579       // If the copy would be a kill, there is no need to split the edge.
580       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
581       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
582         continue;
583       if (ShouldSplit) {
584         DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
585                      << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
586                      << ": " << *BBI);
587       }
588 
589       // If Reg is not live-in to MBB, it means it must be live-in to some
590       // other PreMBB successor, and we can avoid the interference by splitting
591       // the edge.
592       //
593       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
594       // is likely to be left after coalescing. If we are looking at a loop
595       // exiting edge, split it so we won't insert code in the loop, otherwise
596       // don't bother.
597       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
598 
599       // Check for a loop exiting edge.
600       if (!ShouldSplit && CurLoop != PreLoop) {
601         DEBUG({
602           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
603           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
604           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
605         });
606         // This edge could be entering a loop, exiting a loop, or it could be
607         // both: Jumping directly form one loop to the header of a sibling
608         // loop.
609         // Split unless this edge is entering CurLoop from an outer loop.
610         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
611       }
612       if (!ShouldSplit && !SplitAllCriticalEdges)
613         continue;
614       if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
615         DEBUG(dbgs() << "Failed to split critical edge.\n");
616         continue;
617       }
618       Changed = true;
619       ++NumCriticalEdgesSplit;
620     }
621   }
622   return Changed;
623 }
624 
isLiveIn(unsigned Reg,const MachineBasicBlock * MBB)625 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
626   assert((LV || LIS) &&
627          "isLiveIn() requires either LiveVariables or LiveIntervals");
628   if (LIS)
629     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
630   else
631     return LV->isLiveIn(Reg, *MBB);
632 }
633 
isLiveOutPastPHIs(unsigned Reg,const MachineBasicBlock * MBB)634 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
635                                        const MachineBasicBlock *MBB) {
636   assert((LV || LIS) &&
637          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
638   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
639   // so that a register used only in a PHI is not live out of the block. In
640   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
641   // in the predecessor basic block, so that a register used only in a PHI is live
642   // out of the block.
643   if (LIS) {
644     const LiveInterval &LI = LIS->getInterval(Reg);
645     for (const MachineBasicBlock *SI : MBB->successors())
646       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
647         return true;
648     return false;
649   } else {
650     return LV->isLiveOut(Reg, *MBB);
651   }
652 }
653