1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "Interpreter.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/IntrinsicLowering.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
30
31 #define DEBUG_TYPE "interpreter"
32
33 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
34
35 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
36 cl::desc("make the interpreter print every volatile load and store"));
37
38 //===----------------------------------------------------------------------===//
39 // Various Helper Functions
40 //===----------------------------------------------------------------------===//
41
SetValue(Value * V,GenericValue Val,ExecutionContext & SF)42 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
43 SF.Values[V] = Val;
44 }
45
46 //===----------------------------------------------------------------------===//
47 // Binary Instruction Implementations
48 //===----------------------------------------------------------------------===//
49
50 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
51 case Type::TY##TyID: \
52 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
53 break
54
executeFAddInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)55 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
56 GenericValue Src2, Type *Ty) {
57 switch (Ty->getTypeID()) {
58 IMPLEMENT_BINARY_OPERATOR(+, Float);
59 IMPLEMENT_BINARY_OPERATOR(+, Double);
60 default:
61 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
62 llvm_unreachable(nullptr);
63 }
64 }
65
executeFSubInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)66 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
67 GenericValue Src2, Type *Ty) {
68 switch (Ty->getTypeID()) {
69 IMPLEMENT_BINARY_OPERATOR(-, Float);
70 IMPLEMENT_BINARY_OPERATOR(-, Double);
71 default:
72 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
73 llvm_unreachable(nullptr);
74 }
75 }
76
executeFMulInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)77 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
78 GenericValue Src2, Type *Ty) {
79 switch (Ty->getTypeID()) {
80 IMPLEMENT_BINARY_OPERATOR(*, Float);
81 IMPLEMENT_BINARY_OPERATOR(*, Double);
82 default:
83 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
84 llvm_unreachable(nullptr);
85 }
86 }
87
executeFDivInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)88 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
89 GenericValue Src2, Type *Ty) {
90 switch (Ty->getTypeID()) {
91 IMPLEMENT_BINARY_OPERATOR(/, Float);
92 IMPLEMENT_BINARY_OPERATOR(/, Double);
93 default:
94 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
95 llvm_unreachable(nullptr);
96 }
97 }
98
executeFRemInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)99 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
100 GenericValue Src2, Type *Ty) {
101 switch (Ty->getTypeID()) {
102 case Type::FloatTyID:
103 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
104 break;
105 case Type::DoubleTyID:
106 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
107 break;
108 default:
109 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
110 llvm_unreachable(nullptr);
111 }
112 }
113
114 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
115 case Type::IntegerTyID: \
116 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
117 break;
118
119 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
120 case Type::VectorTyID: { \
121 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
122 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
123 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
124 Dest.AggregateVal[_i].IntVal = APInt(1, \
125 Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
126 } break;
127
128 // Handle pointers specially because they must be compared with only as much
129 // width as the host has. We _do not_ want to be comparing 64 bit values when
130 // running on a 32-bit target, otherwise the upper 32 bits might mess up
131 // comparisons if they contain garbage.
132 #define IMPLEMENT_POINTER_ICMP(OP) \
133 case Type::PointerTyID: \
134 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
135 (void*)(intptr_t)Src2.PointerVal); \
136 break;
137
executeICMP_EQ(GenericValue Src1,GenericValue Src2,Type * Ty)138 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
139 Type *Ty) {
140 GenericValue Dest;
141 switch (Ty->getTypeID()) {
142 IMPLEMENT_INTEGER_ICMP(eq,Ty);
143 IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
144 IMPLEMENT_POINTER_ICMP(==);
145 default:
146 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
147 llvm_unreachable(nullptr);
148 }
149 return Dest;
150 }
151
executeICMP_NE(GenericValue Src1,GenericValue Src2,Type * Ty)152 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
153 Type *Ty) {
154 GenericValue Dest;
155 switch (Ty->getTypeID()) {
156 IMPLEMENT_INTEGER_ICMP(ne,Ty);
157 IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
158 IMPLEMENT_POINTER_ICMP(!=);
159 default:
160 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
161 llvm_unreachable(nullptr);
162 }
163 return Dest;
164 }
165
executeICMP_ULT(GenericValue Src1,GenericValue Src2,Type * Ty)166 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
167 Type *Ty) {
168 GenericValue Dest;
169 switch (Ty->getTypeID()) {
170 IMPLEMENT_INTEGER_ICMP(ult,Ty);
171 IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
172 IMPLEMENT_POINTER_ICMP(<);
173 default:
174 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
175 llvm_unreachable(nullptr);
176 }
177 return Dest;
178 }
179
executeICMP_SLT(GenericValue Src1,GenericValue Src2,Type * Ty)180 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
181 Type *Ty) {
182 GenericValue Dest;
183 switch (Ty->getTypeID()) {
184 IMPLEMENT_INTEGER_ICMP(slt,Ty);
185 IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
186 IMPLEMENT_POINTER_ICMP(<);
187 default:
188 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
189 llvm_unreachable(nullptr);
190 }
191 return Dest;
192 }
193
executeICMP_UGT(GenericValue Src1,GenericValue Src2,Type * Ty)194 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
195 Type *Ty) {
196 GenericValue Dest;
197 switch (Ty->getTypeID()) {
198 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
199 IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
200 IMPLEMENT_POINTER_ICMP(>);
201 default:
202 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
203 llvm_unreachable(nullptr);
204 }
205 return Dest;
206 }
207
executeICMP_SGT(GenericValue Src1,GenericValue Src2,Type * Ty)208 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
209 Type *Ty) {
210 GenericValue Dest;
211 switch (Ty->getTypeID()) {
212 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
213 IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
214 IMPLEMENT_POINTER_ICMP(>);
215 default:
216 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
217 llvm_unreachable(nullptr);
218 }
219 return Dest;
220 }
221
executeICMP_ULE(GenericValue Src1,GenericValue Src2,Type * Ty)222 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
223 Type *Ty) {
224 GenericValue Dest;
225 switch (Ty->getTypeID()) {
226 IMPLEMENT_INTEGER_ICMP(ule,Ty);
227 IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
228 IMPLEMENT_POINTER_ICMP(<=);
229 default:
230 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
231 llvm_unreachable(nullptr);
232 }
233 return Dest;
234 }
235
executeICMP_SLE(GenericValue Src1,GenericValue Src2,Type * Ty)236 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
237 Type *Ty) {
238 GenericValue Dest;
239 switch (Ty->getTypeID()) {
240 IMPLEMENT_INTEGER_ICMP(sle,Ty);
241 IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
242 IMPLEMENT_POINTER_ICMP(<=);
243 default:
244 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
245 llvm_unreachable(nullptr);
246 }
247 return Dest;
248 }
249
executeICMP_UGE(GenericValue Src1,GenericValue Src2,Type * Ty)250 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
251 Type *Ty) {
252 GenericValue Dest;
253 switch (Ty->getTypeID()) {
254 IMPLEMENT_INTEGER_ICMP(uge,Ty);
255 IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
256 IMPLEMENT_POINTER_ICMP(>=);
257 default:
258 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
259 llvm_unreachable(nullptr);
260 }
261 return Dest;
262 }
263
executeICMP_SGE(GenericValue Src1,GenericValue Src2,Type * Ty)264 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
265 Type *Ty) {
266 GenericValue Dest;
267 switch (Ty->getTypeID()) {
268 IMPLEMENT_INTEGER_ICMP(sge,Ty);
269 IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
270 IMPLEMENT_POINTER_ICMP(>=);
271 default:
272 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
273 llvm_unreachable(nullptr);
274 }
275 return Dest;
276 }
277
visitICmpInst(ICmpInst & I)278 void Interpreter::visitICmpInst(ICmpInst &I) {
279 ExecutionContext &SF = ECStack.back();
280 Type *Ty = I.getOperand(0)->getType();
281 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
282 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
283 GenericValue R; // Result
284
285 switch (I.getPredicate()) {
286 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
287 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
288 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
289 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
290 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
291 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
292 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
293 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
294 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
295 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
296 default:
297 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
298 llvm_unreachable(nullptr);
299 }
300
301 SetValue(&I, R, SF);
302 }
303
304 #define IMPLEMENT_FCMP(OP, TY) \
305 case Type::TY##TyID: \
306 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
307 break
308
309 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
310 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
311 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
312 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
313 Dest.AggregateVal[_i].IntVal = APInt(1, \
314 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
315 break;
316
317 #define IMPLEMENT_VECTOR_FCMP(OP) \
318 case Type::VectorTyID: \
319 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
320 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
321 } else { \
322 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
323 }
324
executeFCMP_OEQ(GenericValue Src1,GenericValue Src2,Type * Ty)325 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
326 Type *Ty) {
327 GenericValue Dest;
328 switch (Ty->getTypeID()) {
329 IMPLEMENT_FCMP(==, Float);
330 IMPLEMENT_FCMP(==, Double);
331 IMPLEMENT_VECTOR_FCMP(==);
332 default:
333 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
334 llvm_unreachable(nullptr);
335 }
336 return Dest;
337 }
338
339 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
340 if (TY->isFloatTy()) { \
341 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
342 Dest.IntVal = APInt(1,false); \
343 return Dest; \
344 } \
345 } else { \
346 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
347 Dest.IntVal = APInt(1,false); \
348 return Dest; \
349 } \
350 }
351
352 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
353 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
354 Dest.AggregateVal.resize( X.AggregateVal.size() ); \
355 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
356 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
357 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
358 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
359 else { \
360 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
361 } \
362 }
363
364 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
365 if (TY->isVectorTy()) { \
366 if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
367 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
368 } else { \
369 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
370 } \
371 } \
372
373
374
executeFCMP_ONE(GenericValue Src1,GenericValue Src2,Type * Ty)375 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
376 Type *Ty)
377 {
378 GenericValue Dest;
379 // if input is scalar value and Src1 or Src2 is NaN return false
380 IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
381 // if vector input detect NaNs and fill mask
382 MASK_VECTOR_NANS(Ty, Src1, Src2, false)
383 GenericValue DestMask = Dest;
384 switch (Ty->getTypeID()) {
385 IMPLEMENT_FCMP(!=, Float);
386 IMPLEMENT_FCMP(!=, Double);
387 IMPLEMENT_VECTOR_FCMP(!=);
388 default:
389 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
390 llvm_unreachable(nullptr);
391 }
392 // in vector case mask out NaN elements
393 if (Ty->isVectorTy())
394 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
395 if (DestMask.AggregateVal[_i].IntVal == false)
396 Dest.AggregateVal[_i].IntVal = APInt(1,false);
397
398 return Dest;
399 }
400
executeFCMP_OLE(GenericValue Src1,GenericValue Src2,Type * Ty)401 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
402 Type *Ty) {
403 GenericValue Dest;
404 switch (Ty->getTypeID()) {
405 IMPLEMENT_FCMP(<=, Float);
406 IMPLEMENT_FCMP(<=, Double);
407 IMPLEMENT_VECTOR_FCMP(<=);
408 default:
409 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
410 llvm_unreachable(nullptr);
411 }
412 return Dest;
413 }
414
executeFCMP_OGE(GenericValue Src1,GenericValue Src2,Type * Ty)415 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
416 Type *Ty) {
417 GenericValue Dest;
418 switch (Ty->getTypeID()) {
419 IMPLEMENT_FCMP(>=, Float);
420 IMPLEMENT_FCMP(>=, Double);
421 IMPLEMENT_VECTOR_FCMP(>=);
422 default:
423 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
424 llvm_unreachable(nullptr);
425 }
426 return Dest;
427 }
428
executeFCMP_OLT(GenericValue Src1,GenericValue Src2,Type * Ty)429 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
430 Type *Ty) {
431 GenericValue Dest;
432 switch (Ty->getTypeID()) {
433 IMPLEMENT_FCMP(<, Float);
434 IMPLEMENT_FCMP(<, Double);
435 IMPLEMENT_VECTOR_FCMP(<);
436 default:
437 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
438 llvm_unreachable(nullptr);
439 }
440 return Dest;
441 }
442
executeFCMP_OGT(GenericValue Src1,GenericValue Src2,Type * Ty)443 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
444 Type *Ty) {
445 GenericValue Dest;
446 switch (Ty->getTypeID()) {
447 IMPLEMENT_FCMP(>, Float);
448 IMPLEMENT_FCMP(>, Double);
449 IMPLEMENT_VECTOR_FCMP(>);
450 default:
451 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
452 llvm_unreachable(nullptr);
453 }
454 return Dest;
455 }
456
457 #define IMPLEMENT_UNORDERED(TY, X,Y) \
458 if (TY->isFloatTy()) { \
459 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
460 Dest.IntVal = APInt(1,true); \
461 return Dest; \
462 } \
463 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
464 Dest.IntVal = APInt(1,true); \
465 return Dest; \
466 }
467
468 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
469 if (TY->isVectorTy()) { \
470 GenericValue DestMask = Dest; \
471 Dest = FUNC(Src1, Src2, Ty); \
472 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
473 if (DestMask.AggregateVal[_i].IntVal == true) \
474 Dest.AggregateVal[_i].IntVal = APInt(1, true); \
475 return Dest; \
476 }
477
executeFCMP_UEQ(GenericValue Src1,GenericValue Src2,Type * Ty)478 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
479 Type *Ty) {
480 GenericValue Dest;
481 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
482 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
483 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
484 return executeFCMP_OEQ(Src1, Src2, Ty);
485
486 }
487
executeFCMP_UNE(GenericValue Src1,GenericValue Src2,Type * Ty)488 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
489 Type *Ty) {
490 GenericValue Dest;
491 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
492 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
493 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
494 return executeFCMP_ONE(Src1, Src2, Ty);
495 }
496
executeFCMP_ULE(GenericValue Src1,GenericValue Src2,Type * Ty)497 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
498 Type *Ty) {
499 GenericValue Dest;
500 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
501 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
502 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
503 return executeFCMP_OLE(Src1, Src2, Ty);
504 }
505
executeFCMP_UGE(GenericValue Src1,GenericValue Src2,Type * Ty)506 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
507 Type *Ty) {
508 GenericValue Dest;
509 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
510 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
511 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
512 return executeFCMP_OGE(Src1, Src2, Ty);
513 }
514
executeFCMP_ULT(GenericValue Src1,GenericValue Src2,Type * Ty)515 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
516 Type *Ty) {
517 GenericValue Dest;
518 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
519 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
520 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
521 return executeFCMP_OLT(Src1, Src2, Ty);
522 }
523
executeFCMP_UGT(GenericValue Src1,GenericValue Src2,Type * Ty)524 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
525 Type *Ty) {
526 GenericValue Dest;
527 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
528 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
529 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
530 return executeFCMP_OGT(Src1, Src2, Ty);
531 }
532
executeFCMP_ORD(GenericValue Src1,GenericValue Src2,Type * Ty)533 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
534 Type *Ty) {
535 GenericValue Dest;
536 if(Ty->isVectorTy()) {
537 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
538 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
539 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
540 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
541 Dest.AggregateVal[_i].IntVal = APInt(1,
542 ( (Src1.AggregateVal[_i].FloatVal ==
543 Src1.AggregateVal[_i].FloatVal) &&
544 (Src2.AggregateVal[_i].FloatVal ==
545 Src2.AggregateVal[_i].FloatVal)));
546 } else {
547 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
548 Dest.AggregateVal[_i].IntVal = APInt(1,
549 ( (Src1.AggregateVal[_i].DoubleVal ==
550 Src1.AggregateVal[_i].DoubleVal) &&
551 (Src2.AggregateVal[_i].DoubleVal ==
552 Src2.AggregateVal[_i].DoubleVal)));
553 }
554 } else if (Ty->isFloatTy())
555 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
556 Src2.FloatVal == Src2.FloatVal));
557 else {
558 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
559 Src2.DoubleVal == Src2.DoubleVal));
560 }
561 return Dest;
562 }
563
executeFCMP_UNO(GenericValue Src1,GenericValue Src2,Type * Ty)564 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
565 Type *Ty) {
566 GenericValue Dest;
567 if(Ty->isVectorTy()) {
568 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
569 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
570 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
571 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
572 Dest.AggregateVal[_i].IntVal = APInt(1,
573 ( (Src1.AggregateVal[_i].FloatVal !=
574 Src1.AggregateVal[_i].FloatVal) ||
575 (Src2.AggregateVal[_i].FloatVal !=
576 Src2.AggregateVal[_i].FloatVal)));
577 } else {
578 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
579 Dest.AggregateVal[_i].IntVal = APInt(1,
580 ( (Src1.AggregateVal[_i].DoubleVal !=
581 Src1.AggregateVal[_i].DoubleVal) ||
582 (Src2.AggregateVal[_i].DoubleVal !=
583 Src2.AggregateVal[_i].DoubleVal)));
584 }
585 } else if (Ty->isFloatTy())
586 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
587 Src2.FloatVal != Src2.FloatVal));
588 else {
589 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
590 Src2.DoubleVal != Src2.DoubleVal));
591 }
592 return Dest;
593 }
594
executeFCMP_BOOL(GenericValue Src1,GenericValue Src2,Type * Ty,const bool val)595 static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
596 Type *Ty, const bool val) {
597 GenericValue Dest;
598 if(Ty->isVectorTy()) {
599 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
600 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
601 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
602 Dest.AggregateVal[_i].IntVal = APInt(1,val);
603 } else {
604 Dest.IntVal = APInt(1, val);
605 }
606
607 return Dest;
608 }
609
visitFCmpInst(FCmpInst & I)610 void Interpreter::visitFCmpInst(FCmpInst &I) {
611 ExecutionContext &SF = ECStack.back();
612 Type *Ty = I.getOperand(0)->getType();
613 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
614 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
615 GenericValue R; // Result
616
617 switch (I.getPredicate()) {
618 default:
619 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
620 llvm_unreachable(nullptr);
621 break;
622 case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
623 break;
624 case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
625 break;
626 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
627 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
628 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
629 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
630 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
631 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
632 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
633 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
634 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
635 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
636 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
637 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
638 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
639 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
640 }
641
642 SetValue(&I, R, SF);
643 }
644
executeCmpInst(unsigned predicate,GenericValue Src1,GenericValue Src2,Type * Ty)645 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
646 GenericValue Src2, Type *Ty) {
647 GenericValue Result;
648 switch (predicate) {
649 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
650 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
651 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
652 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
653 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
654 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
655 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
656 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
657 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
658 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
659 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
660 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
661 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
662 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
663 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
664 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
665 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
666 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
667 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
668 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
669 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
670 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
671 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
672 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
673 case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
674 case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
675 default:
676 dbgs() << "Unhandled Cmp predicate\n";
677 llvm_unreachable(nullptr);
678 }
679 }
680
visitBinaryOperator(BinaryOperator & I)681 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
682 ExecutionContext &SF = ECStack.back();
683 Type *Ty = I.getOperand(0)->getType();
684 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
685 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
686 GenericValue R; // Result
687
688 // First process vector operation
689 if (Ty->isVectorTy()) {
690 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
691 R.AggregateVal.resize(Src1.AggregateVal.size());
692
693 // Macros to execute binary operation 'OP' over integer vectors
694 #define INTEGER_VECTOR_OPERATION(OP) \
695 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
696 R.AggregateVal[i].IntVal = \
697 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
698
699 // Additional macros to execute binary operations udiv/sdiv/urem/srem since
700 // they have different notation.
701 #define INTEGER_VECTOR_FUNCTION(OP) \
702 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
703 R.AggregateVal[i].IntVal = \
704 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
705
706 // Macros to execute binary operation 'OP' over floating point type TY
707 // (float or double) vectors
708 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
709 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
710 R.AggregateVal[i].TY = \
711 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
712
713 // Macros to choose appropriate TY: float or double and run operation
714 // execution
715 #define FLOAT_VECTOR_OP(OP) { \
716 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
717 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
718 else { \
719 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
720 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
721 else { \
722 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
723 llvm_unreachable(0); \
724 } \
725 } \
726 }
727
728 switch(I.getOpcode()){
729 default:
730 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
731 llvm_unreachable(nullptr);
732 break;
733 case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
734 case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
735 case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
736 case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
737 case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
738 case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
739 case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
740 case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
741 case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
742 case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
743 case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
744 case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
745 case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
746 case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
747 case Instruction::FRem:
748 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
749 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
750 R.AggregateVal[i].FloatVal =
751 fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
752 else {
753 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
754 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
755 R.AggregateVal[i].DoubleVal =
756 fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
757 else {
758 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
759 llvm_unreachable(nullptr);
760 }
761 }
762 break;
763 }
764 } else {
765 switch (I.getOpcode()) {
766 default:
767 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
768 llvm_unreachable(nullptr);
769 break;
770 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
771 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
772 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
773 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
774 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
775 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
776 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
777 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
778 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
779 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
780 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
781 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
782 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
783 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
784 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
785 }
786 }
787 SetValue(&I, R, SF);
788 }
789
executeSelectInst(GenericValue Src1,GenericValue Src2,GenericValue Src3,Type * Ty)790 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
791 GenericValue Src3, Type *Ty) {
792 GenericValue Dest;
793 if(Ty->isVectorTy()) {
794 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
795 assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
796 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
797 for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
798 Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
799 Src3.AggregateVal[i] : Src2.AggregateVal[i];
800 } else {
801 Dest = (Src1.IntVal == 0) ? Src3 : Src2;
802 }
803 return Dest;
804 }
805
visitSelectInst(SelectInst & I)806 void Interpreter::visitSelectInst(SelectInst &I) {
807 ExecutionContext &SF = ECStack.back();
808 Type * Ty = I.getOperand(0)->getType();
809 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
810 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
811 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
812 GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
813 SetValue(&I, R, SF);
814 }
815
816 //===----------------------------------------------------------------------===//
817 // Terminator Instruction Implementations
818 //===----------------------------------------------------------------------===//
819
exitCalled(GenericValue GV)820 void Interpreter::exitCalled(GenericValue GV) {
821 // runAtExitHandlers() assumes there are no stack frames, but
822 // if exit() was called, then it had a stack frame. Blow away
823 // the stack before interpreting atexit handlers.
824 ECStack.clear();
825 runAtExitHandlers();
826 exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
827 }
828
829 /// Pop the last stack frame off of ECStack and then copy the result
830 /// back into the result variable if we are not returning void. The
831 /// result variable may be the ExitValue, or the Value of the calling
832 /// CallInst if there was a previous stack frame. This method may
833 /// invalidate any ECStack iterators you have. This method also takes
834 /// care of switching to the normal destination BB, if we are returning
835 /// from an invoke.
836 ///
popStackAndReturnValueToCaller(Type * RetTy,GenericValue Result)837 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
838 GenericValue Result) {
839 // Pop the current stack frame.
840 ECStack.pop_back();
841
842 if (ECStack.empty()) { // Finished main. Put result into exit code...
843 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
844 ExitValue = Result; // Capture the exit value of the program
845 } else {
846 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
847 }
848 } else {
849 // If we have a previous stack frame, and we have a previous call,
850 // fill in the return value...
851 ExecutionContext &CallingSF = ECStack.back();
852 if (Instruction *I = CallingSF.Caller.getInstruction()) {
853 // Save result...
854 if (!CallingSF.Caller.getType()->isVoidTy())
855 SetValue(I, Result, CallingSF);
856 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
857 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
858 CallingSF.Caller = CallSite(); // We returned from the call...
859 }
860 }
861 }
862
visitReturnInst(ReturnInst & I)863 void Interpreter::visitReturnInst(ReturnInst &I) {
864 ExecutionContext &SF = ECStack.back();
865 Type *RetTy = Type::getVoidTy(I.getContext());
866 GenericValue Result;
867
868 // Save away the return value... (if we are not 'ret void')
869 if (I.getNumOperands()) {
870 RetTy = I.getReturnValue()->getType();
871 Result = getOperandValue(I.getReturnValue(), SF);
872 }
873
874 popStackAndReturnValueToCaller(RetTy, Result);
875 }
876
visitUnreachableInst(UnreachableInst & I)877 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
878 report_fatal_error("Program executed an 'unreachable' instruction!");
879 }
880
visitBranchInst(BranchInst & I)881 void Interpreter::visitBranchInst(BranchInst &I) {
882 ExecutionContext &SF = ECStack.back();
883 BasicBlock *Dest;
884
885 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
886 if (!I.isUnconditional()) {
887 Value *Cond = I.getCondition();
888 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
889 Dest = I.getSuccessor(1);
890 }
891 SwitchToNewBasicBlock(Dest, SF);
892 }
893
visitSwitchInst(SwitchInst & I)894 void Interpreter::visitSwitchInst(SwitchInst &I) {
895 ExecutionContext &SF = ECStack.back();
896 Value* Cond = I.getCondition();
897 Type *ElTy = Cond->getType();
898 GenericValue CondVal = getOperandValue(Cond, SF);
899
900 // Check to see if any of the cases match...
901 BasicBlock *Dest = nullptr;
902 for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
903 GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
904 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
905 Dest = cast<BasicBlock>(i.getCaseSuccessor());
906 break;
907 }
908 }
909 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
910 SwitchToNewBasicBlock(Dest, SF);
911 }
912
visitIndirectBrInst(IndirectBrInst & I)913 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
914 ExecutionContext &SF = ECStack.back();
915 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
916 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
917 }
918
919
920 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
921 // This function handles the actual updating of block and instruction iterators
922 // as well as execution of all of the PHI nodes in the destination block.
923 //
924 // This method does this because all of the PHI nodes must be executed
925 // atomically, reading their inputs before any of the results are updated. Not
926 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
927 // their inputs. If the input PHI node is updated before it is read, incorrect
928 // results can happen. Thus we use a two phase approach.
929 //
SwitchToNewBasicBlock(BasicBlock * Dest,ExecutionContext & SF)930 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
931 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
932 SF.CurBB = Dest; // Update CurBB to branch destination
933 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
934
935 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
936
937 // Loop over all of the PHI nodes in the current block, reading their inputs.
938 std::vector<GenericValue> ResultValues;
939
940 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
941 // Search for the value corresponding to this previous bb...
942 int i = PN->getBasicBlockIndex(PrevBB);
943 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
944 Value *IncomingValue = PN->getIncomingValue(i);
945
946 // Save the incoming value for this PHI node...
947 ResultValues.push_back(getOperandValue(IncomingValue, SF));
948 }
949
950 // Now loop over all of the PHI nodes setting their values...
951 SF.CurInst = SF.CurBB->begin();
952 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
953 PHINode *PN = cast<PHINode>(SF.CurInst);
954 SetValue(PN, ResultValues[i], SF);
955 }
956 }
957
958 //===----------------------------------------------------------------------===//
959 // Memory Instruction Implementations
960 //===----------------------------------------------------------------------===//
961
visitAllocaInst(AllocaInst & I)962 void Interpreter::visitAllocaInst(AllocaInst &I) {
963 ExecutionContext &SF = ECStack.back();
964
965 Type *Ty = I.getType()->getElementType(); // Type to be allocated
966
967 // Get the number of elements being allocated by the array...
968 unsigned NumElements =
969 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
970
971 unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
972
973 // Avoid malloc-ing zero bytes, use max()...
974 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
975
976 // Allocate enough memory to hold the type...
977 void *Memory = malloc(MemToAlloc);
978
979 DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
980 << NumElements << " (Total: " << MemToAlloc << ") at "
981 << uintptr_t(Memory) << '\n');
982
983 GenericValue Result = PTOGV(Memory);
984 assert(Result.PointerVal && "Null pointer returned by malloc!");
985 SetValue(&I, Result, SF);
986
987 if (I.getOpcode() == Instruction::Alloca)
988 ECStack.back().Allocas.add(Memory);
989 }
990
991 // getElementOffset - The workhorse for getelementptr.
992 //
executeGEPOperation(Value * Ptr,gep_type_iterator I,gep_type_iterator E,ExecutionContext & SF)993 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
994 gep_type_iterator E,
995 ExecutionContext &SF) {
996 assert(Ptr->getType()->isPointerTy() &&
997 "Cannot getElementOffset of a nonpointer type!");
998
999 uint64_t Total = 0;
1000
1001 for (; I != E; ++I) {
1002 if (StructType *STy = dyn_cast<StructType>(*I)) {
1003 const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1004
1005 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1006 unsigned Index = unsigned(CPU->getZExtValue());
1007
1008 Total += SLO->getElementOffset(Index);
1009 } else {
1010 SequentialType *ST = cast<SequentialType>(*I);
1011 // Get the index number for the array... which must be long type...
1012 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1013
1014 int64_t Idx;
1015 unsigned BitWidth =
1016 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1017 if (BitWidth == 32)
1018 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1019 else {
1020 assert(BitWidth == 64 && "Invalid index type for getelementptr");
1021 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1022 }
1023 Total += getDataLayout().getTypeAllocSize(ST->getElementType()) * Idx;
1024 }
1025 }
1026
1027 GenericValue Result;
1028 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1029 DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1030 return Result;
1031 }
1032
visitGetElementPtrInst(GetElementPtrInst & I)1033 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1034 ExecutionContext &SF = ECStack.back();
1035 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1036 gep_type_begin(I), gep_type_end(I), SF), SF);
1037 }
1038
visitLoadInst(LoadInst & I)1039 void Interpreter::visitLoadInst(LoadInst &I) {
1040 ExecutionContext &SF = ECStack.back();
1041 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1042 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1043 GenericValue Result;
1044 LoadValueFromMemory(Result, Ptr, I.getType());
1045 SetValue(&I, Result, SF);
1046 if (I.isVolatile() && PrintVolatile)
1047 dbgs() << "Volatile load " << I;
1048 }
1049
visitStoreInst(StoreInst & I)1050 void Interpreter::visitStoreInst(StoreInst &I) {
1051 ExecutionContext &SF = ECStack.back();
1052 GenericValue Val = getOperandValue(I.getOperand(0), SF);
1053 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1054 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1055 I.getOperand(0)->getType());
1056 if (I.isVolatile() && PrintVolatile)
1057 dbgs() << "Volatile store: " << I;
1058 }
1059
1060 //===----------------------------------------------------------------------===//
1061 // Miscellaneous Instruction Implementations
1062 //===----------------------------------------------------------------------===//
1063
visitCallSite(CallSite CS)1064 void Interpreter::visitCallSite(CallSite CS) {
1065 ExecutionContext &SF = ECStack.back();
1066
1067 // Check to see if this is an intrinsic function call...
1068 Function *F = CS.getCalledFunction();
1069 if (F && F->isDeclaration())
1070 switch (F->getIntrinsicID()) {
1071 case Intrinsic::not_intrinsic:
1072 break;
1073 case Intrinsic::vastart: { // va_start
1074 GenericValue ArgIndex;
1075 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1076 ArgIndex.UIntPairVal.second = 0;
1077 SetValue(CS.getInstruction(), ArgIndex, SF);
1078 return;
1079 }
1080 case Intrinsic::vaend: // va_end is a noop for the interpreter
1081 return;
1082 case Intrinsic::vacopy: // va_copy: dest = src
1083 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1084 return;
1085 default:
1086 // If it is an unknown intrinsic function, use the intrinsic lowering
1087 // class to transform it into hopefully tasty LLVM code.
1088 //
1089 BasicBlock::iterator me(CS.getInstruction());
1090 BasicBlock *Parent = CS.getInstruction()->getParent();
1091 bool atBegin(Parent->begin() == me);
1092 if (!atBegin)
1093 --me;
1094 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1095
1096 // Restore the CurInst pointer to the first instruction newly inserted, if
1097 // any.
1098 if (atBegin) {
1099 SF.CurInst = Parent->begin();
1100 } else {
1101 SF.CurInst = me;
1102 ++SF.CurInst;
1103 }
1104 return;
1105 }
1106
1107
1108 SF.Caller = CS;
1109 std::vector<GenericValue> ArgVals;
1110 const unsigned NumArgs = SF.Caller.arg_size();
1111 ArgVals.reserve(NumArgs);
1112 uint16_t pNum = 1;
1113 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1114 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1115 Value *V = *i;
1116 ArgVals.push_back(getOperandValue(V, SF));
1117 }
1118
1119 // To handle indirect calls, we must get the pointer value from the argument
1120 // and treat it as a function pointer.
1121 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1122 callFunction((Function*)GVTOP(SRC), ArgVals);
1123 }
1124
1125 // auxiliary function for shift operations
getShiftAmount(uint64_t orgShiftAmount,llvm::APInt valueToShift)1126 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1127 llvm::APInt valueToShift) {
1128 unsigned valueWidth = valueToShift.getBitWidth();
1129 if (orgShiftAmount < (uint64_t)valueWidth)
1130 return orgShiftAmount;
1131 // according to the llvm documentation, if orgShiftAmount > valueWidth,
1132 // the result is undfeined. but we do shift by this rule:
1133 return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1134 }
1135
1136
visitShl(BinaryOperator & I)1137 void Interpreter::visitShl(BinaryOperator &I) {
1138 ExecutionContext &SF = ECStack.back();
1139 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1140 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1141 GenericValue Dest;
1142 Type *Ty = I.getType();
1143
1144 if (Ty->isVectorTy()) {
1145 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1146 assert(src1Size == Src2.AggregateVal.size());
1147 for (unsigned i = 0; i < src1Size; i++) {
1148 GenericValue Result;
1149 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1150 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1151 Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1152 Dest.AggregateVal.push_back(Result);
1153 }
1154 } else {
1155 // scalar
1156 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1157 llvm::APInt valueToShift = Src1.IntVal;
1158 Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1159 }
1160
1161 SetValue(&I, Dest, SF);
1162 }
1163
visitLShr(BinaryOperator & I)1164 void Interpreter::visitLShr(BinaryOperator &I) {
1165 ExecutionContext &SF = ECStack.back();
1166 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1167 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1168 GenericValue Dest;
1169 Type *Ty = I.getType();
1170
1171 if (Ty->isVectorTy()) {
1172 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1173 assert(src1Size == Src2.AggregateVal.size());
1174 for (unsigned i = 0; i < src1Size; i++) {
1175 GenericValue Result;
1176 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1177 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1178 Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1179 Dest.AggregateVal.push_back(Result);
1180 }
1181 } else {
1182 // scalar
1183 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1184 llvm::APInt valueToShift = Src1.IntVal;
1185 Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1186 }
1187
1188 SetValue(&I, Dest, SF);
1189 }
1190
visitAShr(BinaryOperator & I)1191 void Interpreter::visitAShr(BinaryOperator &I) {
1192 ExecutionContext &SF = ECStack.back();
1193 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1194 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1195 GenericValue Dest;
1196 Type *Ty = I.getType();
1197
1198 if (Ty->isVectorTy()) {
1199 size_t src1Size = Src1.AggregateVal.size();
1200 assert(src1Size == Src2.AggregateVal.size());
1201 for (unsigned i = 0; i < src1Size; i++) {
1202 GenericValue Result;
1203 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1204 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1205 Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1206 Dest.AggregateVal.push_back(Result);
1207 }
1208 } else {
1209 // scalar
1210 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1211 llvm::APInt valueToShift = Src1.IntVal;
1212 Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1213 }
1214
1215 SetValue(&I, Dest, SF);
1216 }
1217
executeTruncInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1218 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1219 ExecutionContext &SF) {
1220 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1221 Type *SrcTy = SrcVal->getType();
1222 if (SrcTy->isVectorTy()) {
1223 Type *DstVecTy = DstTy->getScalarType();
1224 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1225 unsigned NumElts = Src.AggregateVal.size();
1226 // the sizes of src and dst vectors must be equal
1227 Dest.AggregateVal.resize(NumElts);
1228 for (unsigned i = 0; i < NumElts; i++)
1229 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1230 } else {
1231 IntegerType *DITy = cast<IntegerType>(DstTy);
1232 unsigned DBitWidth = DITy->getBitWidth();
1233 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1234 }
1235 return Dest;
1236 }
1237
executeSExtInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1238 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1239 ExecutionContext &SF) {
1240 Type *SrcTy = SrcVal->getType();
1241 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1242 if (SrcTy->isVectorTy()) {
1243 Type *DstVecTy = DstTy->getScalarType();
1244 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1245 unsigned size = Src.AggregateVal.size();
1246 // the sizes of src and dst vectors must be equal.
1247 Dest.AggregateVal.resize(size);
1248 for (unsigned i = 0; i < size; i++)
1249 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1250 } else {
1251 auto *DITy = cast<IntegerType>(DstTy);
1252 unsigned DBitWidth = DITy->getBitWidth();
1253 Dest.IntVal = Src.IntVal.sext(DBitWidth);
1254 }
1255 return Dest;
1256 }
1257
executeZExtInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1258 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1259 ExecutionContext &SF) {
1260 Type *SrcTy = SrcVal->getType();
1261 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1262 if (SrcTy->isVectorTy()) {
1263 Type *DstVecTy = DstTy->getScalarType();
1264 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1265
1266 unsigned size = Src.AggregateVal.size();
1267 // the sizes of src and dst vectors must be equal.
1268 Dest.AggregateVal.resize(size);
1269 for (unsigned i = 0; i < size; i++)
1270 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1271 } else {
1272 auto *DITy = cast<IntegerType>(DstTy);
1273 unsigned DBitWidth = DITy->getBitWidth();
1274 Dest.IntVal = Src.IntVal.zext(DBitWidth);
1275 }
1276 return Dest;
1277 }
1278
executeFPTruncInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1279 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1280 ExecutionContext &SF) {
1281 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1282
1283 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1284 assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1285 DstTy->getScalarType()->isFloatTy() &&
1286 "Invalid FPTrunc instruction");
1287
1288 unsigned size = Src.AggregateVal.size();
1289 // the sizes of src and dst vectors must be equal.
1290 Dest.AggregateVal.resize(size);
1291 for (unsigned i = 0; i < size; i++)
1292 Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1293 } else {
1294 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1295 "Invalid FPTrunc instruction");
1296 Dest.FloatVal = (float)Src.DoubleVal;
1297 }
1298
1299 return Dest;
1300 }
1301
executeFPExtInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1302 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1303 ExecutionContext &SF) {
1304 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1305
1306 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1307 assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1308 DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1309
1310 unsigned size = Src.AggregateVal.size();
1311 // the sizes of src and dst vectors must be equal.
1312 Dest.AggregateVal.resize(size);
1313 for (unsigned i = 0; i < size; i++)
1314 Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1315 } else {
1316 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1317 "Invalid FPExt instruction");
1318 Dest.DoubleVal = (double)Src.FloatVal;
1319 }
1320
1321 return Dest;
1322 }
1323
executeFPToUIInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1324 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1325 ExecutionContext &SF) {
1326 Type *SrcTy = SrcVal->getType();
1327 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1328
1329 if (SrcTy->getTypeID() == Type::VectorTyID) {
1330 Type *DstVecTy = DstTy->getScalarType();
1331 Type *SrcVecTy = SrcTy->getScalarType();
1332 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1333 unsigned size = Src.AggregateVal.size();
1334 // the sizes of src and dst vectors must be equal.
1335 Dest.AggregateVal.resize(size);
1336
1337 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1338 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1339 for (unsigned i = 0; i < size; i++)
1340 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1341 Src.AggregateVal[i].FloatVal, DBitWidth);
1342 } else {
1343 for (unsigned i = 0; i < size; i++)
1344 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1345 Src.AggregateVal[i].DoubleVal, DBitWidth);
1346 }
1347 } else {
1348 // scalar
1349 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1350 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1351
1352 if (SrcTy->getTypeID() == Type::FloatTyID)
1353 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1354 else {
1355 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1356 }
1357 }
1358
1359 return Dest;
1360 }
1361
executeFPToSIInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1362 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1363 ExecutionContext &SF) {
1364 Type *SrcTy = SrcVal->getType();
1365 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1366
1367 if (SrcTy->getTypeID() == Type::VectorTyID) {
1368 Type *DstVecTy = DstTy->getScalarType();
1369 Type *SrcVecTy = SrcTy->getScalarType();
1370 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1371 unsigned size = Src.AggregateVal.size();
1372 // the sizes of src and dst vectors must be equal
1373 Dest.AggregateVal.resize(size);
1374
1375 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1376 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1377 for (unsigned i = 0; i < size; i++)
1378 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1379 Src.AggregateVal[i].FloatVal, DBitWidth);
1380 } else {
1381 for (unsigned i = 0; i < size; i++)
1382 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1383 Src.AggregateVal[i].DoubleVal, DBitWidth);
1384 }
1385 } else {
1386 // scalar
1387 unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1388 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1389
1390 if (SrcTy->getTypeID() == Type::FloatTyID)
1391 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1392 else {
1393 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1394 }
1395 }
1396 return Dest;
1397 }
1398
executeUIToFPInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1399 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1400 ExecutionContext &SF) {
1401 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1402
1403 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1404 Type *DstVecTy = DstTy->getScalarType();
1405 unsigned size = Src.AggregateVal.size();
1406 // the sizes of src and dst vectors must be equal
1407 Dest.AggregateVal.resize(size);
1408
1409 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1410 assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1411 for (unsigned i = 0; i < size; i++)
1412 Dest.AggregateVal[i].FloatVal =
1413 APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1414 } else {
1415 for (unsigned i = 0; i < size; i++)
1416 Dest.AggregateVal[i].DoubleVal =
1417 APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1418 }
1419 } else {
1420 // scalar
1421 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1422 if (DstTy->getTypeID() == Type::FloatTyID)
1423 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1424 else {
1425 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1426 }
1427 }
1428 return Dest;
1429 }
1430
executeSIToFPInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1431 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1432 ExecutionContext &SF) {
1433 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1434
1435 if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1436 Type *DstVecTy = DstTy->getScalarType();
1437 unsigned size = Src.AggregateVal.size();
1438 // the sizes of src and dst vectors must be equal
1439 Dest.AggregateVal.resize(size);
1440
1441 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1442 assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1443 for (unsigned i = 0; i < size; i++)
1444 Dest.AggregateVal[i].FloatVal =
1445 APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1446 } else {
1447 for (unsigned i = 0; i < size; i++)
1448 Dest.AggregateVal[i].DoubleVal =
1449 APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1450 }
1451 } else {
1452 // scalar
1453 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1454
1455 if (DstTy->getTypeID() == Type::FloatTyID)
1456 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1457 else {
1458 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1459 }
1460 }
1461
1462 return Dest;
1463 }
1464
executePtrToIntInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1465 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1466 ExecutionContext &SF) {
1467 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1468 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1469 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1470
1471 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1472 return Dest;
1473 }
1474
executeIntToPtrInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1475 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1476 ExecutionContext &SF) {
1477 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1478 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1479
1480 uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1481 if (PtrSize != Src.IntVal.getBitWidth())
1482 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1483
1484 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1485 return Dest;
1486 }
1487
executeBitCastInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1488 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1489 ExecutionContext &SF) {
1490
1491 // This instruction supports bitwise conversion of vectors to integers and
1492 // to vectors of other types (as long as they have the same size)
1493 Type *SrcTy = SrcVal->getType();
1494 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1495
1496 if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1497 (DstTy->getTypeID() == Type::VectorTyID)) {
1498 // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1499 // scalar src bitcast to vector dst
1500 bool isLittleEndian = getDataLayout().isLittleEndian();
1501 GenericValue TempDst, TempSrc, SrcVec;
1502 Type *SrcElemTy;
1503 Type *DstElemTy;
1504 unsigned SrcBitSize;
1505 unsigned DstBitSize;
1506 unsigned SrcNum;
1507 unsigned DstNum;
1508
1509 if (SrcTy->getTypeID() == Type::VectorTyID) {
1510 SrcElemTy = SrcTy->getScalarType();
1511 SrcBitSize = SrcTy->getScalarSizeInBits();
1512 SrcNum = Src.AggregateVal.size();
1513 SrcVec = Src;
1514 } else {
1515 // if src is scalar value, make it vector <1 x type>
1516 SrcElemTy = SrcTy;
1517 SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1518 SrcNum = 1;
1519 SrcVec.AggregateVal.push_back(Src);
1520 }
1521
1522 if (DstTy->getTypeID() == Type::VectorTyID) {
1523 DstElemTy = DstTy->getScalarType();
1524 DstBitSize = DstTy->getScalarSizeInBits();
1525 DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1526 } else {
1527 DstElemTy = DstTy;
1528 DstBitSize = DstTy->getPrimitiveSizeInBits();
1529 DstNum = 1;
1530 }
1531
1532 if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1533 llvm_unreachable("Invalid BitCast");
1534
1535 // If src is floating point, cast to integer first.
1536 TempSrc.AggregateVal.resize(SrcNum);
1537 if (SrcElemTy->isFloatTy()) {
1538 for (unsigned i = 0; i < SrcNum; i++)
1539 TempSrc.AggregateVal[i].IntVal =
1540 APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1541
1542 } else if (SrcElemTy->isDoubleTy()) {
1543 for (unsigned i = 0; i < SrcNum; i++)
1544 TempSrc.AggregateVal[i].IntVal =
1545 APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1546 } else if (SrcElemTy->isIntegerTy()) {
1547 for (unsigned i = 0; i < SrcNum; i++)
1548 TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1549 } else {
1550 // Pointers are not allowed as the element type of vector.
1551 llvm_unreachable("Invalid Bitcast");
1552 }
1553
1554 // now TempSrc is integer type vector
1555 if (DstNum < SrcNum) {
1556 // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1557 unsigned Ratio = SrcNum / DstNum;
1558 unsigned SrcElt = 0;
1559 for (unsigned i = 0; i < DstNum; i++) {
1560 GenericValue Elt;
1561 Elt.IntVal = 0;
1562 Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1563 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1564 for (unsigned j = 0; j < Ratio; j++) {
1565 APInt Tmp;
1566 Tmp = Tmp.zext(SrcBitSize);
1567 Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1568 Tmp = Tmp.zext(DstBitSize);
1569 Tmp = Tmp.shl(ShiftAmt);
1570 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1571 Elt.IntVal |= Tmp;
1572 }
1573 TempDst.AggregateVal.push_back(Elt);
1574 }
1575 } else {
1576 // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1577 unsigned Ratio = DstNum / SrcNum;
1578 for (unsigned i = 0; i < SrcNum; i++) {
1579 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1580 for (unsigned j = 0; j < Ratio; j++) {
1581 GenericValue Elt;
1582 Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1583 Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1584 Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
1585 // it could be DstBitSize == SrcBitSize, so check it
1586 if (DstBitSize < SrcBitSize)
1587 Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1588 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1589 TempDst.AggregateVal.push_back(Elt);
1590 }
1591 }
1592 }
1593
1594 // convert result from integer to specified type
1595 if (DstTy->getTypeID() == Type::VectorTyID) {
1596 if (DstElemTy->isDoubleTy()) {
1597 Dest.AggregateVal.resize(DstNum);
1598 for (unsigned i = 0; i < DstNum; i++)
1599 Dest.AggregateVal[i].DoubleVal =
1600 TempDst.AggregateVal[i].IntVal.bitsToDouble();
1601 } else if (DstElemTy->isFloatTy()) {
1602 Dest.AggregateVal.resize(DstNum);
1603 for (unsigned i = 0; i < DstNum; i++)
1604 Dest.AggregateVal[i].FloatVal =
1605 TempDst.AggregateVal[i].IntVal.bitsToFloat();
1606 } else {
1607 Dest = TempDst;
1608 }
1609 } else {
1610 if (DstElemTy->isDoubleTy())
1611 Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1612 else if (DstElemTy->isFloatTy()) {
1613 Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1614 } else {
1615 Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1616 }
1617 }
1618 } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1619 // (DstTy->getTypeID() == Type::VectorTyID))
1620
1621 // scalar src bitcast to scalar dst
1622 if (DstTy->isPointerTy()) {
1623 assert(SrcTy->isPointerTy() && "Invalid BitCast");
1624 Dest.PointerVal = Src.PointerVal;
1625 } else if (DstTy->isIntegerTy()) {
1626 if (SrcTy->isFloatTy())
1627 Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1628 else if (SrcTy->isDoubleTy()) {
1629 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1630 } else if (SrcTy->isIntegerTy()) {
1631 Dest.IntVal = Src.IntVal;
1632 } else {
1633 llvm_unreachable("Invalid BitCast");
1634 }
1635 } else if (DstTy->isFloatTy()) {
1636 if (SrcTy->isIntegerTy())
1637 Dest.FloatVal = Src.IntVal.bitsToFloat();
1638 else {
1639 Dest.FloatVal = Src.FloatVal;
1640 }
1641 } else if (DstTy->isDoubleTy()) {
1642 if (SrcTy->isIntegerTy())
1643 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1644 else {
1645 Dest.DoubleVal = Src.DoubleVal;
1646 }
1647 } else {
1648 llvm_unreachable("Invalid Bitcast");
1649 }
1650 }
1651
1652 return Dest;
1653 }
1654
visitTruncInst(TruncInst & I)1655 void Interpreter::visitTruncInst(TruncInst &I) {
1656 ExecutionContext &SF = ECStack.back();
1657 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1658 }
1659
visitSExtInst(SExtInst & I)1660 void Interpreter::visitSExtInst(SExtInst &I) {
1661 ExecutionContext &SF = ECStack.back();
1662 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1663 }
1664
visitZExtInst(ZExtInst & I)1665 void Interpreter::visitZExtInst(ZExtInst &I) {
1666 ExecutionContext &SF = ECStack.back();
1667 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1668 }
1669
visitFPTruncInst(FPTruncInst & I)1670 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1671 ExecutionContext &SF = ECStack.back();
1672 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1673 }
1674
visitFPExtInst(FPExtInst & I)1675 void Interpreter::visitFPExtInst(FPExtInst &I) {
1676 ExecutionContext &SF = ECStack.back();
1677 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1678 }
1679
visitUIToFPInst(UIToFPInst & I)1680 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1681 ExecutionContext &SF = ECStack.back();
1682 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1683 }
1684
visitSIToFPInst(SIToFPInst & I)1685 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1686 ExecutionContext &SF = ECStack.back();
1687 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1688 }
1689
visitFPToUIInst(FPToUIInst & I)1690 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1691 ExecutionContext &SF = ECStack.back();
1692 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1693 }
1694
visitFPToSIInst(FPToSIInst & I)1695 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1696 ExecutionContext &SF = ECStack.back();
1697 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1698 }
1699
visitPtrToIntInst(PtrToIntInst & I)1700 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1701 ExecutionContext &SF = ECStack.back();
1702 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1703 }
1704
visitIntToPtrInst(IntToPtrInst & I)1705 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1706 ExecutionContext &SF = ECStack.back();
1707 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1708 }
1709
visitBitCastInst(BitCastInst & I)1710 void Interpreter::visitBitCastInst(BitCastInst &I) {
1711 ExecutionContext &SF = ECStack.back();
1712 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1713 }
1714
1715 #define IMPLEMENT_VAARG(TY) \
1716 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1717
visitVAArgInst(VAArgInst & I)1718 void Interpreter::visitVAArgInst(VAArgInst &I) {
1719 ExecutionContext &SF = ECStack.back();
1720
1721 // Get the incoming valist parameter. LLI treats the valist as a
1722 // (ec-stack-depth var-arg-index) pair.
1723 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1724 GenericValue Dest;
1725 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1726 .VarArgs[VAList.UIntPairVal.second];
1727 Type *Ty = I.getType();
1728 switch (Ty->getTypeID()) {
1729 case Type::IntegerTyID:
1730 Dest.IntVal = Src.IntVal;
1731 break;
1732 IMPLEMENT_VAARG(Pointer);
1733 IMPLEMENT_VAARG(Float);
1734 IMPLEMENT_VAARG(Double);
1735 default:
1736 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1737 llvm_unreachable(nullptr);
1738 }
1739
1740 // Set the Value of this Instruction.
1741 SetValue(&I, Dest, SF);
1742
1743 // Move the pointer to the next vararg.
1744 ++VAList.UIntPairVal.second;
1745 }
1746
visitExtractElementInst(ExtractElementInst & I)1747 void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1748 ExecutionContext &SF = ECStack.back();
1749 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1750 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1751 GenericValue Dest;
1752
1753 Type *Ty = I.getType();
1754 const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1755
1756 if(Src1.AggregateVal.size() > indx) {
1757 switch (Ty->getTypeID()) {
1758 default:
1759 dbgs() << "Unhandled destination type for extractelement instruction: "
1760 << *Ty << "\n";
1761 llvm_unreachable(nullptr);
1762 break;
1763 case Type::IntegerTyID:
1764 Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1765 break;
1766 case Type::FloatTyID:
1767 Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1768 break;
1769 case Type::DoubleTyID:
1770 Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1771 break;
1772 }
1773 } else {
1774 dbgs() << "Invalid index in extractelement instruction\n";
1775 }
1776
1777 SetValue(&I, Dest, SF);
1778 }
1779
visitInsertElementInst(InsertElementInst & I)1780 void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1781 ExecutionContext &SF = ECStack.back();
1782 Type *Ty = I.getType();
1783
1784 if(!(Ty->isVectorTy()) )
1785 llvm_unreachable("Unhandled dest type for insertelement instruction");
1786
1787 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1788 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1789 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1790 GenericValue Dest;
1791
1792 Type *TyContained = Ty->getContainedType(0);
1793
1794 const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1795 Dest.AggregateVal = Src1.AggregateVal;
1796
1797 if(Src1.AggregateVal.size() <= indx)
1798 llvm_unreachable("Invalid index in insertelement instruction");
1799 switch (TyContained->getTypeID()) {
1800 default:
1801 llvm_unreachable("Unhandled dest type for insertelement instruction");
1802 case Type::IntegerTyID:
1803 Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1804 break;
1805 case Type::FloatTyID:
1806 Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1807 break;
1808 case Type::DoubleTyID:
1809 Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1810 break;
1811 }
1812 SetValue(&I, Dest, SF);
1813 }
1814
visitShuffleVectorInst(ShuffleVectorInst & I)1815 void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1816 ExecutionContext &SF = ECStack.back();
1817
1818 Type *Ty = I.getType();
1819 if(!(Ty->isVectorTy()))
1820 llvm_unreachable("Unhandled dest type for shufflevector instruction");
1821
1822 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1823 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1824 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1825 GenericValue Dest;
1826
1827 // There is no need to check types of src1 and src2, because the compiled
1828 // bytecode can't contain different types for src1 and src2 for a
1829 // shufflevector instruction.
1830
1831 Type *TyContained = Ty->getContainedType(0);
1832 unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1833 unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1834 unsigned src3Size = (unsigned)Src3.AggregateVal.size();
1835
1836 Dest.AggregateVal.resize(src3Size);
1837
1838 switch (TyContained->getTypeID()) {
1839 default:
1840 llvm_unreachable("Unhandled dest type for insertelement instruction");
1841 break;
1842 case Type::IntegerTyID:
1843 for( unsigned i=0; i<src3Size; i++) {
1844 unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1845 if(j < src1Size)
1846 Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1847 else if(j < src1Size + src2Size)
1848 Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1849 else
1850 // The selector may not be greater than sum of lengths of first and
1851 // second operands and llasm should not allow situation like
1852 // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1853 // <2 x i32> < i32 0, i32 5 >,
1854 // where i32 5 is invalid, but let it be additional check here:
1855 llvm_unreachable("Invalid mask in shufflevector instruction");
1856 }
1857 break;
1858 case Type::FloatTyID:
1859 for( unsigned i=0; i<src3Size; i++) {
1860 unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1861 if(j < src1Size)
1862 Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1863 else if(j < src1Size + src2Size)
1864 Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1865 else
1866 llvm_unreachable("Invalid mask in shufflevector instruction");
1867 }
1868 break;
1869 case Type::DoubleTyID:
1870 for( unsigned i=0; i<src3Size; i++) {
1871 unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1872 if(j < src1Size)
1873 Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1874 else if(j < src1Size + src2Size)
1875 Dest.AggregateVal[i].DoubleVal =
1876 Src2.AggregateVal[j-src1Size].DoubleVal;
1877 else
1878 llvm_unreachable("Invalid mask in shufflevector instruction");
1879 }
1880 break;
1881 }
1882 SetValue(&I, Dest, SF);
1883 }
1884
visitExtractValueInst(ExtractValueInst & I)1885 void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1886 ExecutionContext &SF = ECStack.back();
1887 Value *Agg = I.getAggregateOperand();
1888 GenericValue Dest;
1889 GenericValue Src = getOperandValue(Agg, SF);
1890
1891 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1892 unsigned Num = I.getNumIndices();
1893 GenericValue *pSrc = &Src;
1894
1895 for (unsigned i = 0 ; i < Num; ++i) {
1896 pSrc = &pSrc->AggregateVal[*IdxBegin];
1897 ++IdxBegin;
1898 }
1899
1900 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1901 switch (IndexedType->getTypeID()) {
1902 default:
1903 llvm_unreachable("Unhandled dest type for extractelement instruction");
1904 break;
1905 case Type::IntegerTyID:
1906 Dest.IntVal = pSrc->IntVal;
1907 break;
1908 case Type::FloatTyID:
1909 Dest.FloatVal = pSrc->FloatVal;
1910 break;
1911 case Type::DoubleTyID:
1912 Dest.DoubleVal = pSrc->DoubleVal;
1913 break;
1914 case Type::ArrayTyID:
1915 case Type::StructTyID:
1916 case Type::VectorTyID:
1917 Dest.AggregateVal = pSrc->AggregateVal;
1918 break;
1919 case Type::PointerTyID:
1920 Dest.PointerVal = pSrc->PointerVal;
1921 break;
1922 }
1923
1924 SetValue(&I, Dest, SF);
1925 }
1926
visitInsertValueInst(InsertValueInst & I)1927 void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1928
1929 ExecutionContext &SF = ECStack.back();
1930 Value *Agg = I.getAggregateOperand();
1931
1932 GenericValue Src1 = getOperandValue(Agg, SF);
1933 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1934 GenericValue Dest = Src1; // Dest is a slightly changed Src1
1935
1936 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1937 unsigned Num = I.getNumIndices();
1938
1939 GenericValue *pDest = &Dest;
1940 for (unsigned i = 0 ; i < Num; ++i) {
1941 pDest = &pDest->AggregateVal[*IdxBegin];
1942 ++IdxBegin;
1943 }
1944 // pDest points to the target value in the Dest now
1945
1946 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1947
1948 switch (IndexedType->getTypeID()) {
1949 default:
1950 llvm_unreachable("Unhandled dest type for insertelement instruction");
1951 break;
1952 case Type::IntegerTyID:
1953 pDest->IntVal = Src2.IntVal;
1954 break;
1955 case Type::FloatTyID:
1956 pDest->FloatVal = Src2.FloatVal;
1957 break;
1958 case Type::DoubleTyID:
1959 pDest->DoubleVal = Src2.DoubleVal;
1960 break;
1961 case Type::ArrayTyID:
1962 case Type::StructTyID:
1963 case Type::VectorTyID:
1964 pDest->AggregateVal = Src2.AggregateVal;
1965 break;
1966 case Type::PointerTyID:
1967 pDest->PointerVal = Src2.PointerVal;
1968 break;
1969 }
1970
1971 SetValue(&I, Dest, SF);
1972 }
1973
getConstantExprValue(ConstantExpr * CE,ExecutionContext & SF)1974 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1975 ExecutionContext &SF) {
1976 switch (CE->getOpcode()) {
1977 case Instruction::Trunc:
1978 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1979 case Instruction::ZExt:
1980 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1981 case Instruction::SExt:
1982 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1983 case Instruction::FPTrunc:
1984 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1985 case Instruction::FPExt:
1986 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1987 case Instruction::UIToFP:
1988 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1989 case Instruction::SIToFP:
1990 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1991 case Instruction::FPToUI:
1992 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1993 case Instruction::FPToSI:
1994 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1995 case Instruction::PtrToInt:
1996 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1997 case Instruction::IntToPtr:
1998 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1999 case Instruction::BitCast:
2000 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2001 case Instruction::GetElementPtr:
2002 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2003 gep_type_end(CE), SF);
2004 case Instruction::FCmp:
2005 case Instruction::ICmp:
2006 return executeCmpInst(CE->getPredicate(),
2007 getOperandValue(CE->getOperand(0), SF),
2008 getOperandValue(CE->getOperand(1), SF),
2009 CE->getOperand(0)->getType());
2010 case Instruction::Select:
2011 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2012 getOperandValue(CE->getOperand(1), SF),
2013 getOperandValue(CE->getOperand(2), SF),
2014 CE->getOperand(0)->getType());
2015 default :
2016 break;
2017 }
2018
2019 // The cases below here require a GenericValue parameter for the result
2020 // so we initialize one, compute it and then return it.
2021 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2022 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2023 GenericValue Dest;
2024 Type * Ty = CE->getOperand(0)->getType();
2025 switch (CE->getOpcode()) {
2026 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2027 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2028 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2029 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2030 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2031 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2032 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2033 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2034 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2035 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2036 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2037 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2038 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2039 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2040 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2041 case Instruction::Shl:
2042 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2043 break;
2044 case Instruction::LShr:
2045 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2046 break;
2047 case Instruction::AShr:
2048 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2049 break;
2050 default:
2051 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2052 llvm_unreachable("Unhandled ConstantExpr");
2053 }
2054 return Dest;
2055 }
2056
getOperandValue(Value * V,ExecutionContext & SF)2057 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2058 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2059 return getConstantExprValue(CE, SF);
2060 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2061 return getConstantValue(CPV);
2062 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2063 return PTOGV(getPointerToGlobal(GV));
2064 } else {
2065 return SF.Values[V];
2066 }
2067 }
2068
2069 //===----------------------------------------------------------------------===//
2070 // Dispatch and Execution Code
2071 //===----------------------------------------------------------------------===//
2072
2073 //===----------------------------------------------------------------------===//
2074 // callFunction - Execute the specified function...
2075 //
callFunction(Function * F,ArrayRef<GenericValue> ArgVals)2076 void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
2077 assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
2078 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
2079 "Incorrect number of arguments passed into function call!");
2080 // Make a new stack frame... and fill it in.
2081 ECStack.emplace_back();
2082 ExecutionContext &StackFrame = ECStack.back();
2083 StackFrame.CurFunction = F;
2084
2085 // Special handling for external functions.
2086 if (F->isDeclaration()) {
2087 GenericValue Result = callExternalFunction (F, ArgVals);
2088 // Simulate a 'ret' instruction of the appropriate type.
2089 popStackAndReturnValueToCaller (F->getReturnType (), Result);
2090 return;
2091 }
2092
2093 // Get pointers to first LLVM BB & Instruction in function.
2094 StackFrame.CurBB = &F->front();
2095 StackFrame.CurInst = StackFrame.CurBB->begin();
2096
2097 // Run through the function arguments and initialize their values...
2098 assert((ArgVals.size() == F->arg_size() ||
2099 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2100 "Invalid number of values passed to function invocation!");
2101
2102 // Handle non-varargs arguments...
2103 unsigned i = 0;
2104 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2105 AI != E; ++AI, ++i)
2106 SetValue(&*AI, ArgVals[i], StackFrame);
2107
2108 // Handle varargs arguments...
2109 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2110 }
2111
2112
run()2113 void Interpreter::run() {
2114 while (!ECStack.empty()) {
2115 // Interpret a single instruction & increment the "PC".
2116 ExecutionContext &SF = ECStack.back(); // Current stack frame
2117 Instruction &I = *SF.CurInst++; // Increment before execute
2118
2119 // Track the number of dynamic instructions executed.
2120 ++NumDynamicInsts;
2121
2122 DEBUG(dbgs() << "About to interpret: " << I);
2123 visit(I); // Dispatch to one of the visit* methods...
2124 }
2125 }
2126