• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 /// \file
9 //===----------------------------------------------------------------------===//
10 //
11 
12 #include "AMDGPU.h"
13 #include "AMDGPUSubtarget.h"
14 #include "SIInstrInfo.h"
15 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetMachine.h"
22 
23 #define DEBUG_TYPE "si-fold-operands"
24 using namespace llvm;
25 
26 namespace {
27 
28 class SIFoldOperands : public MachineFunctionPass {
29 public:
30   static char ID;
31 
32 public:
SIFoldOperands()33   SIFoldOperands() : MachineFunctionPass(ID) {
34     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
35   }
36 
37   bool runOnMachineFunction(MachineFunction &MF) override;
38 
getPassName() const39   const char *getPassName() const override {
40     return "SI Fold Operands";
41   }
42 
getAnalysisUsage(AnalysisUsage & AU) const43   void getAnalysisUsage(AnalysisUsage &AU) const override {
44     AU.setPreservesCFG();
45     MachineFunctionPass::getAnalysisUsage(AU);
46   }
47 };
48 
49 struct FoldCandidate {
50   MachineInstr *UseMI;
51   unsigned UseOpNo;
52   MachineOperand *OpToFold;
53   uint64_t ImmToFold;
54 
FoldCandidate__anon6aeda9db0111::FoldCandidate55   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
56                 UseMI(MI), UseOpNo(OpNo) {
57 
58     if (FoldOp->isImm()) {
59       OpToFold = nullptr;
60       ImmToFold = FoldOp->getImm();
61     } else {
62       assert(FoldOp->isReg());
63       OpToFold = FoldOp;
64     }
65   }
66 
isImm__anon6aeda9db0111::FoldCandidate67   bool isImm() const {
68     return !OpToFold;
69   }
70 };
71 
72 } // End anonymous namespace.
73 
74 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
75                 "SI Fold Operands", false, false)
76 
77 char SIFoldOperands::ID = 0;
78 
79 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
80 
createSIFoldOperandsPass()81 FunctionPass *llvm::createSIFoldOperandsPass() {
82   return new SIFoldOperands();
83 }
84 
isSafeToFold(unsigned Opcode)85 static bool isSafeToFold(unsigned Opcode) {
86   switch(Opcode) {
87   case AMDGPU::V_MOV_B32_e32:
88   case AMDGPU::V_MOV_B32_e64:
89   case AMDGPU::V_MOV_B64_PSEUDO:
90   case AMDGPU::S_MOV_B32:
91   case AMDGPU::S_MOV_B64:
92   case AMDGPU::COPY:
93     return true;
94   default:
95     return false;
96   }
97 }
98 
updateOperand(FoldCandidate & Fold,const TargetRegisterInfo & TRI)99 static bool updateOperand(FoldCandidate &Fold,
100                           const TargetRegisterInfo &TRI) {
101   MachineInstr *MI = Fold.UseMI;
102   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
103   assert(Old.isReg());
104 
105   if (Fold.isImm()) {
106     Old.ChangeToImmediate(Fold.ImmToFold);
107     return true;
108   }
109 
110   MachineOperand *New = Fold.OpToFold;
111   if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
112       TargetRegisterInfo::isVirtualRegister(New->getReg())) {
113     Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
114     return true;
115   }
116 
117   // FIXME: Handle physical registers.
118 
119   return false;
120 }
121 
isUseMIInFoldList(const std::vector<FoldCandidate> & FoldList,const MachineInstr * MI)122 static bool isUseMIInFoldList(const std::vector<FoldCandidate> &FoldList,
123                               const MachineInstr *MI) {
124   for (auto Candidate : FoldList) {
125     if (Candidate.UseMI == MI)
126       return true;
127   }
128   return false;
129 }
130 
tryAddToFoldList(std::vector<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * OpToFold,const SIInstrInfo * TII)131 static bool tryAddToFoldList(std::vector<FoldCandidate> &FoldList,
132                              MachineInstr *MI, unsigned OpNo,
133                              MachineOperand *OpToFold,
134                              const SIInstrInfo *TII) {
135   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
136 
137     // Special case for v_mac_f32_e64 if we are trying to fold into src2
138     unsigned Opc = MI->getOpcode();
139     if (Opc == AMDGPU::V_MAC_F32_e64 &&
140         (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
141       // Check if changing this to a v_mad_f32 instruction will allow us to
142       // fold the operand.
143       MI->setDesc(TII->get(AMDGPU::V_MAD_F32));
144       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
145       if (FoldAsMAD) {
146         MI->untieRegOperand(OpNo);
147         return true;
148       }
149       MI->setDesc(TII->get(Opc));
150     }
151 
152     // If we are already folding into another operand of MI, then
153     // we can't commute the instruction, otherwise we risk making the
154     // other fold illegal.
155     if (isUseMIInFoldList(FoldList, MI))
156       return false;
157 
158     // Operand is not legal, so try to commute the instruction to
159     // see if this makes it possible to fold.
160     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
161     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
162     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
163 
164     if (CanCommute) {
165       if (CommuteIdx0 == OpNo)
166         OpNo = CommuteIdx1;
167       else if (CommuteIdx1 == OpNo)
168         OpNo = CommuteIdx0;
169     }
170 
171     // One of operands might be an Imm operand, and OpNo may refer to it after
172     // the call of commuteInstruction() below. Such situations are avoided
173     // here explicitly as OpNo must be a register operand to be a candidate
174     // for memory folding.
175     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
176                        !MI->getOperand(CommuteIdx1).isReg()))
177       return false;
178 
179     if (!CanCommute ||
180         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
181       return false;
182 
183     if (!TII->isOperandLegal(*MI, OpNo, OpToFold))
184       return false;
185   }
186 
187   FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
188   return true;
189 }
190 
foldOperand(MachineOperand & OpToFold,MachineInstr * UseMI,unsigned UseOpIdx,std::vector<FoldCandidate> & FoldList,SmallVectorImpl<MachineInstr * > & CopiesToReplace,const SIInstrInfo * TII,const SIRegisterInfo & TRI,MachineRegisterInfo & MRI)191 static void foldOperand(MachineOperand &OpToFold, MachineInstr *UseMI,
192                         unsigned UseOpIdx,
193                         std::vector<FoldCandidate> &FoldList,
194                         SmallVectorImpl<MachineInstr *> &CopiesToReplace,
195                         const SIInstrInfo *TII, const SIRegisterInfo &TRI,
196                         MachineRegisterInfo &MRI) {
197   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
198 
199   // FIXME: Fold operands with subregs.
200   if (UseOp.isReg() && ((UseOp.getSubReg() && OpToFold.isReg()) ||
201       UseOp.isImplicit())) {
202     return;
203   }
204 
205   bool FoldingImm = OpToFold.isImm();
206   APInt Imm;
207 
208   if (FoldingImm) {
209     unsigned UseReg = UseOp.getReg();
210     const TargetRegisterClass *UseRC
211       = TargetRegisterInfo::isVirtualRegister(UseReg) ?
212       MRI.getRegClass(UseReg) :
213       TRI.getPhysRegClass(UseReg);
214 
215     Imm = APInt(64, OpToFold.getImm());
216 
217     const MCInstrDesc &FoldDesc = TII->get(OpToFold.getParent()->getOpcode());
218     const TargetRegisterClass *FoldRC =
219         TRI.getRegClass(FoldDesc.OpInfo[0].RegClass);
220 
221     // Split 64-bit constants into 32-bits for folding.
222     if (FoldRC->getSize() == 8 && UseOp.getSubReg()) {
223       if (UseRC->getSize() != 8)
224         return;
225 
226       if (UseOp.getSubReg() == AMDGPU::sub0) {
227         Imm = Imm.getLoBits(32);
228       } else {
229         assert(UseOp.getSubReg() == AMDGPU::sub1);
230         Imm = Imm.getHiBits(32);
231       }
232     }
233 
234     // In order to fold immediates into copies, we need to change the
235     // copy to a MOV.
236     if (UseMI->getOpcode() == AMDGPU::COPY) {
237       unsigned DestReg = UseMI->getOperand(0).getReg();
238       const TargetRegisterClass *DestRC
239         = TargetRegisterInfo::isVirtualRegister(DestReg) ?
240         MRI.getRegClass(DestReg) :
241         TRI.getPhysRegClass(DestReg);
242 
243       unsigned MovOp = TII->getMovOpcode(DestRC);
244       if (MovOp == AMDGPU::COPY)
245         return;
246 
247       UseMI->setDesc(TII->get(MovOp));
248       CopiesToReplace.push_back(UseMI);
249     }
250   }
251 
252   // Special case for REG_SEQUENCE: We can't fold literals into
253   // REG_SEQUENCE instructions, so we have to fold them into the
254   // uses of REG_SEQUENCE.
255   if (UseMI->getOpcode() == AMDGPU::REG_SEQUENCE) {
256     unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
257     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
258 
259     for (MachineRegisterInfo::use_iterator
260          RSUse = MRI.use_begin(RegSeqDstReg),
261          RSE = MRI.use_end(); RSUse != RSE; ++RSUse) {
262 
263       MachineInstr *RSUseMI = RSUse->getParent();
264       if (RSUse->getSubReg() != RegSeqDstSubReg)
265         continue;
266 
267       foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
268                   CopiesToReplace, TII, TRI, MRI);
269     }
270     return;
271   }
272 
273   const MCInstrDesc &UseDesc = UseMI->getDesc();
274 
275   // Don't fold into target independent nodes.  Target independent opcodes
276   // don't have defined register classes.
277   if (UseDesc.isVariadic() ||
278       UseDesc.OpInfo[UseOpIdx].RegClass == -1)
279     return;
280 
281   if (FoldingImm) {
282     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
283     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
284     return;
285   }
286 
287   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
288 
289   // FIXME: We could try to change the instruction from 64-bit to 32-bit
290   // to enable more folding opportunites.  The shrink operands pass
291   // already does this.
292   return;
293 }
294 
runOnMachineFunction(MachineFunction & MF)295 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
296   if (skipFunction(*MF.getFunction()))
297     return false;
298 
299   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
300 
301   MachineRegisterInfo &MRI = MF.getRegInfo();
302   const SIInstrInfo *TII = ST.getInstrInfo();
303   const SIRegisterInfo &TRI = TII->getRegisterInfo();
304 
305   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
306                                                   BI != BE; ++BI) {
307 
308     MachineBasicBlock &MBB = *BI;
309     MachineBasicBlock::iterator I, Next;
310     for (I = MBB.begin(); I != MBB.end(); I = Next) {
311       Next = std::next(I);
312       MachineInstr &MI = *I;
313 
314       if (!isSafeToFold(MI.getOpcode()))
315         continue;
316 
317       unsigned OpSize = TII->getOpSize(MI, 1);
318       MachineOperand &OpToFold = MI.getOperand(1);
319       bool FoldingImm = OpToFold.isImm();
320 
321       // FIXME: We could also be folding things like FrameIndexes and
322       // TargetIndexes.
323       if (!FoldingImm && !OpToFold.isReg())
324         continue;
325 
326       // Folding immediates with more than one use will increase program size.
327       // FIXME: This will also reduce register usage, which may be better
328       // in some cases.  A better heuristic is needed.
329       if (FoldingImm && !TII->isInlineConstant(OpToFold, OpSize) &&
330           !MRI.hasOneUse(MI.getOperand(0).getReg()))
331         continue;
332 
333       if (OpToFold.isReg() &&
334           !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
335         continue;
336 
337       // Prevent folding operands backwards in the function. For example,
338       // the COPY opcode must not be replaced by 1 in this example:
339       //
340       //    %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3
341       //    ...
342       //    %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use>
343       MachineOperand &Dst = MI.getOperand(0);
344       if (Dst.isReg() &&
345           !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
346         continue;
347 
348       // We need mutate the operands of new mov instructions to add implicit
349       // uses of EXEC, but adding them invalidates the use_iterator, so defer
350       // this.
351       SmallVector<MachineInstr *, 4> CopiesToReplace;
352 
353       std::vector<FoldCandidate> FoldList;
354       for (MachineRegisterInfo::use_iterator
355            Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
356            Use != E; ++Use) {
357 
358         MachineInstr *UseMI = Use->getParent();
359 
360         foldOperand(OpToFold, UseMI, Use.getOperandNo(), FoldList,
361                     CopiesToReplace, TII, TRI, MRI);
362       }
363 
364       // Make sure we add EXEC uses to any new v_mov instructions created.
365       for (MachineInstr *Copy : CopiesToReplace)
366         Copy->addImplicitDefUseOperands(MF);
367 
368       for (FoldCandidate &Fold : FoldList) {
369         if (updateOperand(Fold, TRI)) {
370           // Clear kill flags.
371           if (!Fold.isImm()) {
372             assert(Fold.OpToFold && Fold.OpToFold->isReg());
373             // FIXME: Probably shouldn't bother trying to fold if not an
374             // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
375             // copies.
376             MRI.clearKillFlags(Fold.OpToFold->getReg());
377           }
378           DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
379                 Fold.UseOpNo << " of " << *Fold.UseMI << '\n');
380         }
381       }
382     }
383   }
384   return false;
385 }
386