• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Transformation Function - get Imm - 32.
19def Subtract32 : SDNodeXForm<imm, [{
20  return getImm(N, (unsigned)N->getZExtValue() - 32);
21}]>;
22
23// shamt must fit in 6 bits.
24def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
25
26// Node immediate fits as 10-bit sign extended on target immediate.
27// e.g. seqi, snei
28def immSExt10_64 : PatLeaf<(i64 imm),
29                           [{ return isInt<10>(N->getSExtValue()); }]>;
30
31def immZExt16_64 : PatLeaf<(i64 imm),
32                           [{ return isUInt<16>(N->getZExtValue()); }]>;
33
34def immZExt5_64 : ImmLeaf<i64, [{ return Imm == (Imm & 0x1f); }]>;
35
36// Transformation function: get log2 of low 32 bits of immediate
37def Log2LO : SDNodeXForm<imm, [{
38  return getImm(N, Log2_64((unsigned) N->getZExtValue()));
39}]>;
40
41// Transformation function: get log2 of high 32 bits of immediate
42def Log2HI : SDNodeXForm<imm, [{
43  return getImm(N, Log2_64((unsigned) (N->getZExtValue() >> 32)));
44}]>;
45
46// Predicate: True if immediate is a power of 2 and fits 32 bits
47def PowerOf2LO : PatLeaf<(imm), [{
48  if (N->getValueType(0) == MVT::i64) {
49    uint64_t Imm = N->getZExtValue();
50    return isPowerOf2_64(Imm) && (Imm & 0xffffffff) == Imm;
51  }
52  else
53    return false;
54}]>;
55
56// Predicate: True if immediate is a power of 2 and exceeds 32 bits
57def PowerOf2HI : PatLeaf<(imm), [{
58  if (N->getValueType(0) == MVT::i64) {
59    uint64_t Imm = N->getZExtValue();
60    return isPowerOf2_64(Imm) && (Imm & 0xffffffff00000000) == Imm;
61  }
62  else
63    return false;
64}]>;
65
66def assertzext_lt_i32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
67  return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLT(MVT::i32);
68}]>;
69
70//===----------------------------------------------------------------------===//
71// Instructions specific format
72//===----------------------------------------------------------------------===//
73let usesCustomInserter = 1 in {
74  def ATOMIC_LOAD_ADD_I64  : Atomic2Ops<atomic_load_add_64, GPR64>;
75  def ATOMIC_LOAD_SUB_I64  : Atomic2Ops<atomic_load_sub_64, GPR64>;
76  def ATOMIC_LOAD_AND_I64  : Atomic2Ops<atomic_load_and_64, GPR64>;
77  def ATOMIC_LOAD_OR_I64   : Atomic2Ops<atomic_load_or_64, GPR64>;
78  def ATOMIC_LOAD_XOR_I64  : Atomic2Ops<atomic_load_xor_64, GPR64>;
79  def ATOMIC_LOAD_NAND_I64 : Atomic2Ops<atomic_load_nand_64, GPR64>;
80  def ATOMIC_SWAP_I64      : Atomic2Ops<atomic_swap_64, GPR64>;
81  def ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap<atomic_cmp_swap_64, GPR64>;
82}
83
84/// Pseudo instructions for loading and storing accumulator registers.
85let isPseudo = 1, isCodeGenOnly = 1, hasNoSchedulingInfo = 1 in {
86  def LOAD_ACC128  : Load<"", ACC128>;
87  def STORE_ACC128 : Store<"", ACC128>;
88}
89
90//===----------------------------------------------------------------------===//
91// Instruction definition
92//===----------------------------------------------------------------------===//
93let DecoderNamespace = "Mips64" in {
94/// Arithmetic Instructions (ALU Immediate)
95def DADDi   : ArithLogicI<"daddi", simm16_64, GPR64Opnd, II_DADDI>,
96              ADDI_FM<0x18>, ISA_MIPS3_NOT_32R6_64R6;
97let AdditionalPredicates = [NotInMicroMips] in {
98  def DADDiu : StdMMR6Rel, ArithLogicI<"daddiu", simm16_64, GPR64Opnd,
99                                       II_DADDIU, immSExt16, add>,
100               ADDI_FM<0x19>, IsAsCheapAsAMove, ISA_MIPS3;
101}
102
103let isCodeGenOnly = 1 in {
104def SLTi64  : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
105              SLTI_FM<0xa>;
106def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
107              SLTI_FM<0xb>;
108def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, II_AND, immZExt16, and>,
109             ADDI_FM<0xc>;
110def ORi64   : ArithLogicI<"ori", uimm16_64, GPR64Opnd, II_OR, immZExt16, or>,
111              ADDI_FM<0xd>;
112def XORi64  : ArithLogicI<"xori", uimm16_64, GPR64Opnd, II_XOR, immZExt16, xor>,
113              ADDI_FM<0xe>;
114def LUi64   : LoadUpper<"lui", GPR64Opnd, uimm16_64_relaxed>, LUI_FM;
115}
116
117/// Arithmetic Instructions (3-Operand, R-Type)
118let AdditionalPredicates = [NotInMicroMips] in {
119  def DADD   : StdMMR6Rel, ArithLogicR<"dadd", GPR64Opnd, 1, II_DADD>,
120               ADD_FM<0, 0x2c>, ISA_MIPS3;
121  def DADDu  : StdMMR6Rel, ArithLogicR<"daddu", GPR64Opnd, 1, II_DADDU, add>,
122               ADD_FM<0, 0x2d>, ISA_MIPS3;
123  def DSUBu  : StdMMR6Rel, ArithLogicR<"dsubu", GPR64Opnd, 0, II_DSUBU, sub>, ADD_FM<0, 0x2f>,
124               ISA_MIPS3;
125  def DSUB   : StdMMR6Rel, ArithLogicR<"dsub", GPR64Opnd, 0, II_DSUB>, ADD_FM<0, 0x2e>,
126               ISA_MIPS3;
127}
128
129let isCodeGenOnly = 1 in {
130def SLT64  : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
131def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
132def AND64  : ArithLogicR<"and", GPR64Opnd, 1, II_AND, and>, ADD_FM<0, 0x24>;
133def OR64   : ArithLogicR<"or", GPR64Opnd, 1, II_OR, or>, ADD_FM<0, 0x25>;
134def XOR64  : ArithLogicR<"xor", GPR64Opnd, 1, II_XOR, xor>, ADD_FM<0, 0x26>;
135def NOR64  : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
136}
137
138/// Shift Instructions
139let AdditionalPredicates = [NotInMicroMips] in {
140  def DSLL : StdMMR6Rel, shift_rotate_imm<"dsll", uimm6, GPR64Opnd, II_DSLL,
141                                          shl, immZExt6>,
142             SRA_FM<0x38, 0>, ISA_MIPS3;
143  def DSRL : StdMMR6Rel, shift_rotate_imm<"dsrl", uimm6, GPR64Opnd, II_DSRL,
144                                          srl, immZExt6>,
145             SRA_FM<0x3a, 0>, ISA_MIPS3;
146  def DSRA : StdMMR6Rel, shift_rotate_imm<"dsra", uimm6, GPR64Opnd, II_DSRA,
147                                          sra, immZExt6>,
148             SRA_FM<0x3b, 0>, ISA_MIPS3;
149  def DSLLV  : StdMMR6Rel, shift_rotate_reg<"dsllv", GPR64Opnd, II_DSLLV, shl>,
150               SRLV_FM<0x14, 0>, ISA_MIPS3;
151  def DSRAV  : StdMMR6Rel, shift_rotate_reg<"dsrav", GPR64Opnd, II_DSRAV, sra>,
152               SRLV_FM<0x17, 0>, ISA_MIPS3;
153  def DSRLV  : StdMMR6Rel, shift_rotate_reg<"dsrlv", GPR64Opnd, II_DSRLV, srl>,
154               SRLV_FM<0x16, 0>, ISA_MIPS3;
155  def DSLL32 : StdMMR6Rel, shift_rotate_imm<"dsll32", uimm5, GPR64Opnd,
156                                            II_DSLL32>,
157               SRA_FM<0x3c, 0>, ISA_MIPS3;
158  def DSRL32 : StdMMR6Rel, shift_rotate_imm<"dsrl32", uimm5, GPR64Opnd,
159                                            II_DSRL32>,
160               SRA_FM<0x3e, 0>, ISA_MIPS3;
161  def DSRA32 : StdMMR6Rel, shift_rotate_imm<"dsra32", uimm5, GPR64Opnd,
162               II_DSRA32>,
163               SRA_FM<0x3f, 0>, ISA_MIPS3;
164
165// Rotate Instructions
166  def DROTR  : StdMMR6Rel, shift_rotate_imm<"drotr", uimm6, GPR64Opnd, II_DROTR,
167                                            rotr, immZExt6>,
168               SRA_FM<0x3a, 1>, ISA_MIPS64R2;
169  def DROTRV : StdMMR6Rel, shift_rotate_reg<"drotrv", GPR64Opnd, II_DROTRV,
170                                            rotr>,
171               SRLV_FM<0x16, 1>, ISA_MIPS64R2;
172  def DROTR32 : StdMMR6Rel, shift_rotate_imm<"drotr32", uimm5, GPR64Opnd,
173                                             II_DROTR32>,
174                SRA_FM<0x3e, 1>, ISA_MIPS64R2;
175}
176
177/// Load and Store Instructions
178///  aligned
179let isCodeGenOnly = 1 in {
180def LB64  : Load<"lb", GPR64Opnd, sextloadi8, II_LB>, LW_FM<0x20>;
181def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, II_LBU>, LW_FM<0x24>;
182def LH64  : Load<"lh", GPR64Opnd, sextloadi16, II_LH>, LW_FM<0x21>;
183def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, II_LHU>, LW_FM<0x25>;
184def LW64  : Load<"lw", GPR64Opnd, sextloadi32, II_LW>, LW_FM<0x23>;
185def SB64  : Store<"sb", GPR64Opnd, truncstorei8, II_SB>, LW_FM<0x28>;
186def SH64  : Store<"sh", GPR64Opnd, truncstorei16, II_SH>, LW_FM<0x29>;
187def SW64  : Store<"sw", GPR64Opnd, truncstorei32, II_SW>, LW_FM<0x2b>;
188}
189
190let AdditionalPredicates = [NotInMicroMips] in {
191  def LWu : StdMMR6Rel, MMRel, Load<"lwu", GPR64Opnd, zextloadi32, II_LWU>,
192            LW_FM<0x27>, ISA_MIPS3;
193  def LD  : StdMMR6Rel, LoadMemory<"ld", GPR64Opnd, mem_simm16, load, II_LD>,
194            LW_FM<0x37>, ISA_MIPS3;
195  def SD  : StdMMR6Rel, StoreMemory<"sd", GPR64Opnd, mem_simm16, store, II_SD>,
196            LW_FM<0x3f>, ISA_MIPS3;
197}
198
199
200
201/// load/store left/right
202let isCodeGenOnly = 1 in {
203def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, II_LWL>, LW_FM<0x22>;
204def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, II_LWR>, LW_FM<0x26>;
205def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, II_SWL>, LW_FM<0x2a>;
206def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, II_SWR>, LW_FM<0x2e>;
207}
208
209def LDL   : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, II_LDL>, LW_FM<0x1a>,
210            ISA_MIPS3_NOT_32R6_64R6;
211def LDR   : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, II_LDR>, LW_FM<0x1b>,
212            ISA_MIPS3_NOT_32R6_64R6;
213def SDL   : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, II_SDL>, LW_FM<0x2c>,
214            ISA_MIPS3_NOT_32R6_64R6;
215def SDR   : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, II_SDR>, LW_FM<0x2d>,
216            ISA_MIPS3_NOT_32R6_64R6;
217
218/// Load-linked, Store-conditional
219let AdditionalPredicates = [NotInMicroMips] in {
220  def LLD : StdMMR6Rel, LLBase<"lld", GPR64Opnd, mem_simm16>, LW_FM<0x34>,
221            ISA_MIPS3_NOT_32R6_64R6;
222}
223def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>, ISA_MIPS3_NOT_32R6_64R6;
224
225let AdditionalPredicates = [NotInMicroMips],
226    DecoderNamespace = "Mips32_64_PTR64" in {
227def LL64 : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>, PTR_64,
228           ISA_MIPS2_NOT_32R6_64R6;
229def SC64 : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>, PTR_64,
230           ISA_MIPS2_NOT_32R6_64R6;
231}
232
233/// Jump and Branch Instructions
234let isCodeGenOnly = 1 in {
235  def JR64   : IndirectBranch<"jr", GPR64Opnd>, MTLO_FM<8>;
236  def BEQ64  : CBranch<"beq", brtarget, seteq, GPR64Opnd>, BEQ_FM<4>;
237  def BNE64  : CBranch<"bne", brtarget, setne, GPR64Opnd>, BEQ_FM<5>;
238  def BGEZ64 : CBranchZero<"bgez", brtarget, setge, GPR64Opnd>, BGEZ_FM<1, 1>;
239  def BGTZ64 : CBranchZero<"bgtz", brtarget, setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
240  def BLEZ64 : CBranchZero<"blez", brtarget, setle, GPR64Opnd>, BGEZ_FM<6, 0>;
241  def BLTZ64 : CBranchZero<"bltz", brtarget, setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
242  def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
243  def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
244  def TAILCALL64_R : TailCallReg<GPR64Opnd, JR, GPR32Opnd>;
245}
246
247def PseudoReturn64 : PseudoReturnBase<GPR64Opnd>;
248def PseudoIndirectBranch64 : PseudoIndirectBranchBase<GPR64Opnd>;
249
250/// Multiply and Divide Instructions.
251let AdditionalPredicates = [NotInMicroMips] in {
252  def DMULT  : Mult<"dmult", II_DMULT, GPR64Opnd, [HI0_64, LO0_64]>,
253               MULT_FM<0, 0x1c>, ISA_MIPS3_NOT_32R6_64R6;
254  def DMULTu : Mult<"dmultu", II_DMULTU, GPR64Opnd, [HI0_64, LO0_64]>,
255               MULT_FM<0, 0x1d>, ISA_MIPS3_NOT_32R6_64R6;
256}
257def PseudoDMULT  : MultDivPseudo<DMULT, ACC128, GPR64Opnd, MipsMult,
258                                 II_DMULT>, ISA_MIPS3_NOT_32R6_64R6;
259def PseudoDMULTu : MultDivPseudo<DMULTu, ACC128, GPR64Opnd, MipsMultu,
260                                 II_DMULTU>, ISA_MIPS3_NOT_32R6_64R6;
261let AdditionalPredicates = [NotInMicroMips] in {
262  def DSDIV : Div<"ddiv", II_DDIV, GPR64Opnd, [HI0_64, LO0_64]>,
263              MULT_FM<0, 0x1e>, ISA_MIPS3_NOT_32R6_64R6;
264  def DUDIV : Div<"ddivu", II_DDIVU, GPR64Opnd, [HI0_64, LO0_64]>,
265              MULT_FM<0, 0x1f>, ISA_MIPS3_NOT_32R6_64R6;
266}
267def PseudoDSDIV : MultDivPseudo<DSDIV, ACC128, GPR64Opnd, MipsDivRem,
268                                II_DDIV, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
269def PseudoDUDIV : MultDivPseudo<DUDIV, ACC128, GPR64Opnd, MipsDivRemU,
270                                II_DDIVU, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
271
272let isCodeGenOnly = 1 in {
273def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>,
274             ISA_MIPS3_NOT_32R6_64R6;
275def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>,
276             ISA_MIPS3_NOT_32R6_64R6;
277def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, AC0_64>, MFLO_FM<0x10>,
278             ISA_MIPS3_NOT_32R6_64R6;
279def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, AC0_64>, MFLO_FM<0x12>,
280             ISA_MIPS3_NOT_32R6_64R6;
281def PseudoMFHI64 : PseudoMFLOHI<GPR64, ACC128, MipsMFHI>,
282                   ISA_MIPS3_NOT_32R6_64R6;
283def PseudoMFLO64 : PseudoMFLOHI<GPR64, ACC128, MipsMFLO>,
284                   ISA_MIPS3_NOT_32R6_64R6;
285def PseudoMTLOHI64 : PseudoMTLOHI<ACC128, GPR64>, ISA_MIPS3_NOT_32R6_64R6;
286
287/// Sign Ext In Register Instructions.
288def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd, II_SEB>, SEB_FM<0x10, 0x20>,
289            ISA_MIPS32R2;
290def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd, II_SEH>, SEB_FM<0x18, 0x20>,
291            ISA_MIPS32R2;
292}
293
294/// Count Leading
295let AdditionalPredicates = [NotInMicroMips] in {
296  def DCLZ : StdMMR6Rel, CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>,
297             ISA_MIPS64_NOT_64R6;
298  def DCLO : StdMMR6Rel, CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>,
299             ISA_MIPS64_NOT_64R6;
300
301/// Double Word Swap Bytes/HalfWords
302  def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>, ISA_MIPS64R2;
303  def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>, ISA_MIPS64R2;
304}
305
306def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>;
307
308let isCodeGenOnly = 1 in
309def RDHWR64 : ReadHardware<GPR64Opnd, HWRegsOpnd>, RDHWR_FM;
310
311let AdditionalPredicates = [NotInMicroMips] in {
312  // The 'pos + size' constraints are enforced by the code that lowers into
313  // MipsISD::Ext.
314  def DEXT : ExtBase<"dext", GPR64Opnd, uimm5_report_uimm6, uimm5_plus1,
315                     immZExt5, immZExt5Plus1, MipsExt>, EXT_FM<3>,
316                     ISA_MIPS64R2;
317  def DEXTM : ExtBase<"dextm", GPR64Opnd, uimm5, uimm5_plus33, immZExt5,
318                      immZExt5Plus33, MipsExt>, EXT_FM<1>, ISA_MIPS64R2;
319  def DEXTU : ExtBase<"dextu", GPR64Opnd, uimm5_plus32, uimm5_plus1,
320                      immZExt5Plus32, immZExt5Plus1, MipsExt>, EXT_FM<2>,
321                      ISA_MIPS64R2;
322  def DINS : InsBase<"dins", GPR64Opnd, uimm6, uimm5_inssize_plus1, MipsIns>,
323             EXT_FM<7>, ISA_MIPS64R2;
324  def DINSU : InsBase<"dinsu", GPR64Opnd, uimm5_plus32, uimm5_inssize_plus1>,
325              EXT_FM<6>, ISA_MIPS64R2;
326  def DINSM : InsBase<"dinsm", GPR64Opnd, uimm5, uimm5_inssize_plus1>,
327              EXT_FM<5>, ISA_MIPS64R2;
328}
329
330let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
331  def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
332                     "dsll\t$rd, $rt, 32", [], II_DSLL>;
333  def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
334                    "sll\t$rd, $rt, 0", [], II_SLL>;
335  def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
336                    "sll\t$rd, $rt, 0", [], II_SLL>;
337}
338
339// We need the following pseudo instruction to avoid offset calculation for
340// long branches.  See the comment in file MipsLongBranch.cpp for detailed
341// explanation.
342
343// Expands to: daddiu $dst, $src, %PART($tgt - $baltgt)
344// where %PART may be %hi or %lo, depending on the relocation kind
345// that $tgt is annotated with.
346def LONG_BRANCH_DADDiu : PseudoSE<(outs GPR64Opnd:$dst),
347  (ins GPR64Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>;
348
349// Cavium Octeon cnMIPS instructions
350let DecoderNamespace = "CnMips",
351    // FIXME: The lack of HasStdEnc is probably a bug
352    EncodingPredicates = []<Predicate> in {
353
354class Count1s<string opstr, RegisterOperand RO>:
355  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
356         [(set RO:$rd, (ctpop RO:$rs))], II_POP, FrmR, opstr> {
357  let TwoOperandAliasConstraint = "$rd = $rs";
358}
359
360class ExtsCins<string opstr, SDPatternOperator Op = null_frag>:
361  InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, uimm5:$pos, uimm5:$lenm1),
362         !strconcat(opstr, " $rt, $rs, $pos, $lenm1"),
363         [(set GPR64Opnd:$rt, (Op GPR64Opnd:$rs, imm:$pos, imm:$lenm1))],
364         NoItinerary, FrmR, opstr> {
365  let TwoOperandAliasConstraint = "$rt = $rs";
366}
367
368class SetCC64_R<string opstr, PatFrag cond_op> :
369  InstSE<(outs GPR64Opnd:$rd), (ins GPR64Opnd:$rs, GPR64Opnd:$rt),
370         !strconcat(opstr, "\t$rd, $rs, $rt"),
371         [(set GPR64Opnd:$rd, (zext (cond_op GPR64Opnd:$rs,
372                                             GPR64Opnd:$rt)))],
373         II_SEQ_SNE, FrmR, opstr> {
374  let TwoOperandAliasConstraint = "$rd = $rs";
375}
376
377class SetCC64_I<string opstr, PatFrag cond_op>:
378  InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, simm10_64:$imm10),
379         !strconcat(opstr, "\t$rt, $rs, $imm10"),
380         [(set GPR64Opnd:$rt, (zext (cond_op GPR64Opnd:$rs,
381                                             immSExt10_64:$imm10)))],
382         II_SEQI_SNEI, FrmI, opstr> {
383  let TwoOperandAliasConstraint = "$rt = $rs";
384}
385
386class CBranchBitNum<string opstr, DAGOperand opnd, PatFrag cond_op,
387                    RegisterOperand RO, Operand ImmOp, bits<64> shift = 1> :
388  InstSE<(outs), (ins RO:$rs, ImmOp:$p, opnd:$offset),
389         !strconcat(opstr, "\t$rs, $p, $offset"),
390         [(brcond (i32 (cond_op (and RO:$rs, (shl shift, immZExt5_64:$p)), 0)),
391                  bb:$offset)], II_BBIT, FrmI, opstr> {
392  let isBranch = 1;
393  let isTerminator = 1;
394  let hasDelaySlot = 1;
395  let Defs = [AT];
396}
397
398class MFC2OP<string asmstr, RegisterOperand RO> :
399  InstSE<(outs RO:$rt, uimm16:$imm16), (ins),
400         !strconcat(asmstr, "\t$rt, $imm16"), [], NoItinerary, FrmFR>;
401
402// Unsigned Byte Add
403def BADDu  : ArithLogicR<"baddu", GPR64Opnd, 1, II_BADDU>,
404             ADD_FM<0x1c, 0x28>, ASE_CNMIPS {
405  let Pattern = [(set GPR64Opnd:$rd,
406                      (and (add GPR64Opnd:$rs, GPR64Opnd:$rt), 255))];
407}
408
409// Branch on Bit Clear /+32
410def BBIT0  : CBranchBitNum<"bbit0", brtarget, seteq, GPR64Opnd,
411                           uimm5_64_report_uimm6>, BBIT_FM<0x32>, ASE_CNMIPS;
412def BBIT032: CBranchBitNum<"bbit032", brtarget, seteq, GPR64Opnd, uimm5_64,
413                           0x100000000>, BBIT_FM<0x36>, ASE_CNMIPS;
414
415// Branch on Bit Set /+32
416def BBIT1  : CBranchBitNum<"bbit1", brtarget, setne, GPR64Opnd,
417                           uimm5_64_report_uimm6>, BBIT_FM<0x3a>, ASE_CNMIPS;
418def BBIT132: CBranchBitNum<"bbit132", brtarget, setne, GPR64Opnd, uimm5_64,
419                           0x100000000>, BBIT_FM<0x3e>, ASE_CNMIPS;
420
421// Multiply Doubleword to GPR
422def DMUL  : ArithLogicR<"dmul", GPR64Opnd, 1, II_DMUL, mul>,
423            ADD_FM<0x1c, 0x03>, ASE_CNMIPS {
424  let Defs = [HI0, LO0, P0, P1, P2];
425}
426
427// Extract a signed bit field /+32
428def EXTS  : ExtsCins<"exts">, EXTS_FM<0x3a>, ASE_CNMIPS;
429def EXTS32: ExtsCins<"exts32">, EXTS_FM<0x3b>, ASE_CNMIPS;
430
431// Clear and insert a bit field /+32
432def CINS  : ExtsCins<"cins">, EXTS_FM<0x32>, ASE_CNMIPS;
433def CINS32: ExtsCins<"cins32">, EXTS_FM<0x33>, ASE_CNMIPS;
434
435// Move to multiplier/product register
436def MTM0   : MoveToLOHI<"mtm0", GPR64Opnd, [MPL0, P0, P1, P2]>, MTMR_FM<0x08>,
437             ASE_CNMIPS;
438def MTM1   : MoveToLOHI<"mtm1", GPR64Opnd, [MPL1, P0, P1, P2]>, MTMR_FM<0x0c>,
439             ASE_CNMIPS;
440def MTM2   : MoveToLOHI<"mtm2", GPR64Opnd, [MPL2, P0, P1, P2]>, MTMR_FM<0x0d>,
441             ASE_CNMIPS;
442def MTP0   : MoveToLOHI<"mtp0", GPR64Opnd, [P0]>, MTMR_FM<0x09>, ASE_CNMIPS;
443def MTP1   : MoveToLOHI<"mtp1", GPR64Opnd, [P1]>, MTMR_FM<0x0a>, ASE_CNMIPS;
444def MTP2   : MoveToLOHI<"mtp2", GPR64Opnd, [P2]>, MTMR_FM<0x0b>, ASE_CNMIPS;
445
446// Count Ones in a Word/Doubleword
447def POP   : Count1s<"pop", GPR32Opnd>, POP_FM<0x2c>, ASE_CNMIPS;
448def DPOP  : Count1s<"dpop", GPR64Opnd>, POP_FM<0x2d>, ASE_CNMIPS;
449
450// Set on equal/not equal
451def SEQ   : SetCC64_R<"seq", seteq>, SEQ_FM<0x2a>, ASE_CNMIPS;
452def SEQi  : SetCC64_I<"seqi", seteq>, SEQI_FM<0x2e>, ASE_CNMIPS;
453def SNE   : SetCC64_R<"sne", setne>, SEQ_FM<0x2b>, ASE_CNMIPS;
454def SNEi  : SetCC64_I<"snei", setne>, SEQI_FM<0x2f>, ASE_CNMIPS;
455
456// 192-bit x 64-bit Unsigned Multiply and Add
457def V3MULU: ArithLogicR<"v3mulu", GPR64Opnd, 0, II_DMUL>, ADD_FM<0x1c, 0x11>,
458            ASE_CNMIPS {
459  let Defs = [P0, P1, P2];
460}
461
462// 64-bit Unsigned Multiply and Add Move
463def VMM0  : ArithLogicR<"vmm0", GPR64Opnd, 0, II_DMUL>, ADD_FM<0x1c, 0x10>,
464            ASE_CNMIPS {
465  let Defs = [MPL0, P0, P1, P2];
466}
467
468// 64-bit Unsigned Multiply and Add
469def VMULU : ArithLogicR<"vmulu", GPR64Opnd, 0, II_DMUL>, ADD_FM<0x1c, 0x0f>,
470            ASE_CNMIPS {
471  let Defs = [MPL1, MPL2, P0, P1, P2];
472}
473
474// Move between CPU and coprocessor registers
475def DMFC2_OCTEON : MFC2OP<"dmfc2", GPR64Opnd>, MFC2OP_FM<0x12, 1>, ASE_CNMIPS;
476def DMTC2_OCTEON : MFC2OP<"dmtc2", GPR64Opnd>, MFC2OP_FM<0x12, 5>, ASE_CNMIPS;
477}
478
479}
480
481/// Move between CPU and coprocessor registers
482let DecoderNamespace = "Mips64", Predicates = [HasMips64] in {
483def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd, COP0Opnd, II_DMFC0>, MFC3OP_FM<0x10, 1>,
484            ISA_MIPS3;
485def DMTC0 : MTC3OP<"dmtc0", COP0Opnd, GPR64Opnd, II_DMTC0>, MFC3OP_FM<0x10, 5>,
486            ISA_MIPS3;
487def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd, COP2Opnd, II_DMFC2>, MFC3OP_FM<0x12, 1>,
488            ISA_MIPS3;
489def DMTC2 : MTC3OP<"dmtc2", COP2Opnd, GPR64Opnd, II_DMTC2>, MFC3OP_FM<0x12, 5>,
490            ISA_MIPS3;
491}
492
493//===----------------------------------------------------------------------===//
494//  Arbitrary patterns that map to one or more instructions
495//===----------------------------------------------------------------------===//
496
497// extended loads
498def : MipsPat<(i64 (extloadi1  addr:$src)), (LB64 addr:$src)>;
499def : MipsPat<(i64 (extloadi8  addr:$src)), (LB64 addr:$src)>;
500def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
501def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
502
503// hi/lo relocs
504def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
505def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
506def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
507def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
508def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
509def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
510
511let AdditionalPredicates = [NotInMicroMips] in {
512  def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
513  def : MipsPat<(MipsLo tblockaddress:$in),
514                (DADDiu ZERO_64, tblockaddress:$in)>;
515  def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
516  def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
517  def : MipsPat<(MipsLo tglobaltlsaddr:$in),
518                (DADDiu ZERO_64, tglobaltlsaddr:$in)>;
519  def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
520
521  def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
522                (DADDiu GPR64:$hi, tglobaladdr:$lo)>;
523  def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
524                (DADDiu GPR64:$hi, tblockaddress:$lo)>;
525  def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
526                (DADDiu GPR64:$hi, tjumptable:$lo)>;
527  def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
528                (DADDiu GPR64:$hi, tconstpool:$lo)>;
529  def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
530                (DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
531
532  def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
533  def : WrapperPat<tconstpool, DADDiu, GPR64>;
534  def : WrapperPat<texternalsym, DADDiu, GPR64>;
535  def : WrapperPat<tblockaddress, DADDiu, GPR64>;
536  def : WrapperPat<tjumptable, DADDiu, GPR64>;
537  def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
538}
539
540defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
541                  ZERO_64>;
542
543def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
544              (BLEZ64 i64:$lhs, bb:$dst)>;
545def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
546              (BGEZ64 i64:$lhs, bb:$dst)>;
547
548// setcc patterns
549defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
550defm : SetlePats<GPR64, SLT64, SLTu64>;
551defm : SetgtPats<GPR64, SLT64, SLTu64>;
552defm : SetgePats<GPR64, SLT64, SLTu64>;
553defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
554
555// truncate
556def : MipsPat<(trunc (assertsext GPR64:$src)),
557              (EXTRACT_SUBREG GPR64:$src, sub_32)>;
558// The forward compatibility strategy employed by MIPS requires us to treat
559// values as being sign extended to an infinite number of bits. This allows
560// existing software to run without modification on any future MIPS
561// implementation (e.g. 128-bit, or 1024-bit). Being compatible with this
562// strategy requires that truncation acts as a sign-extension for values being
563// fed into instructions operating on 32-bit values. Such instructions have
564// undefined results if this is not true.
565// For our case, this means that we can't issue an extract_subreg for nodes
566// such as (trunc:i32 (assertzext:i64 X, i32)), because the sign-bit of the
567// lower subreg would not be replicated into the upper half.
568def : MipsPat<(trunc (assertzext_lt_i32 GPR64:$src)),
569              (EXTRACT_SUBREG GPR64:$src, sub_32)>;
570def : MipsPat<(i32 (trunc GPR64:$src)),
571              (SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>;
572
573// variable shift instructions patterns
574def : MipsPat<(shl GPR64:$rt, (i32 (trunc GPR64:$rs))),
575              (DSLLV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
576def : MipsPat<(srl GPR64:$rt, (i32 (trunc GPR64:$rs))),
577              (DSRLV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
578def : MipsPat<(sra GPR64:$rt, (i32 (trunc GPR64:$rs))),
579              (DSRAV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
580let AdditionalPredicates = [NotInMicroMips] in {
581  def : MipsPat<(rotr GPR64:$rt, (i32 (trunc GPR64:$rs))),
582                (DROTRV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
583}
584
585// 32-to-64-bit extension
586def : MipsPat<(i64 (anyext GPR32:$src)),
587              (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
588def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
589def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
590
591// Sign extend in register
592def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
593              (SLL64_64 GPR64:$src)>;
594
595// bswap MipsPattern
596def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
597
598// Carry pattern
599let AdditionalPredicates = [NotInMicroMips] in {
600  def : MipsPat<(subc GPR64:$lhs, GPR64:$rhs),
601                (DSUBu GPR64:$lhs, GPR64:$rhs)>;
602  def : MipsPat<(addc GPR64:$lhs, GPR64:$rhs),
603                (DADDu GPR64:$lhs, GPR64:$rhs)>, ASE_NOT_DSP;
604  def : MipsPat<(addc GPR64:$lhs, immSExt16:$imm),
605                (DADDiu GPR64:$lhs, imm:$imm)>, ASE_NOT_DSP;
606}
607
608// Octeon bbit0/bbit1 MipsPattern
609def : MipsPat<(brcond (i32 (seteq (and i64:$lhs, PowerOf2LO:$mask), 0)), bb:$dst),
610              (BBIT0 i64:$lhs, (Log2LO PowerOf2LO:$mask), bb:$dst)>, ASE_MIPS64_CNMIPS;
611def : MipsPat<(brcond (i32 (seteq (and i64:$lhs, PowerOf2HI:$mask), 0)), bb:$dst),
612              (BBIT032 i64:$lhs, (Log2HI PowerOf2HI:$mask), bb:$dst)>, ASE_MIPS64_CNMIPS;
613def : MipsPat<(brcond (i32 (setne (and i64:$lhs, PowerOf2LO:$mask), 0)), bb:$dst),
614              (BBIT1 i64:$lhs, (Log2LO PowerOf2LO:$mask), bb:$dst)>, ASE_MIPS64_CNMIPS;
615def : MipsPat<(brcond (i32 (setne (and i64:$lhs, PowerOf2HI:$mask), 0)), bb:$dst),
616              (BBIT132 i64:$lhs, (Log2HI PowerOf2HI:$mask), bb:$dst)>, ASE_MIPS64_CNMIPS;
617
618// Atomic load patterns.
619def : MipsPat<(atomic_load_8 addr:$a), (LB64 addr:$a)>;
620def : MipsPat<(atomic_load_16 addr:$a), (LH64 addr:$a)>;
621def : MipsPat<(atomic_load_32 addr:$a), (LW64 addr:$a)>;
622def : MipsPat<(atomic_load_64 addr:$a), (LD addr:$a)>;
623
624// Atomic store patterns.
625def : MipsPat<(atomic_store_8 addr:$a, GPR64:$v), (SB64 GPR64:$v, addr:$a)>;
626def : MipsPat<(atomic_store_16 addr:$a, GPR64:$v), (SH64 GPR64:$v, addr:$a)>;
627def : MipsPat<(atomic_store_32 addr:$a, GPR64:$v), (SW64 GPR64:$v, addr:$a)>;
628def : MipsPat<(atomic_store_64 addr:$a, GPR64:$v), (SD GPR64:$v, addr:$a)>;
629
630//===----------------------------------------------------------------------===//
631// Instruction aliases
632//===----------------------------------------------------------------------===//
633let AdditionalPredicates = [NotInMicroMips] in {
634  def : MipsInstAlias<"move $dst, $src",
635                      (OR64 GPR64Opnd:$dst,  GPR64Opnd:$src, ZERO_64), 1>,
636        GPR_64;
637  def : MipsInstAlias<"move $dst, $src",
638                      (DADDu GPR64Opnd:$dst,  GPR64Opnd:$src, ZERO_64), 1>,
639        GPR_64;
640  def : MipsInstAlias<"dadd $rs, $rt, $imm",
641                      (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
642                      0>, ISA_MIPS3_NOT_32R6_64R6;
643  def : MipsInstAlias<"dadd $rs, $imm",
644                      (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
645                      0>, ISA_MIPS3_NOT_32R6_64R6;
646  def : MipsInstAlias<"daddu $rs, $rt, $imm",
647                      (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
648                      0>, ISA_MIPS3;
649  def : MipsInstAlias<"daddu $rs, $imm",
650                      (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
651                      0>, ISA_MIPS3;
652}
653def : MipsInstAlias<"dsll $rd, $rt, $rs",
654                    (DSLLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
655                    ISA_MIPS3;
656let AdditionalPredicates = [NotInMicroMips] in {
657  def : MipsInstAlias<"dneg $rt, $rs",
658                      (DSUB GPR64Opnd:$rt, ZERO_64, GPR64Opnd:$rs), 1>,
659                      ISA_MIPS3;
660  def : MipsInstAlias<"dneg $rt",
661                      (DSUB GPR64Opnd:$rt, ZERO_64, GPR64Opnd:$rt), 0>,
662                      ISA_MIPS3;
663  def : MipsInstAlias<"dnegu $rt, $rs",
664                      (DSUBu GPR64Opnd:$rt, ZERO_64, GPR64Opnd:$rs), 1>,
665                      ISA_MIPS3;
666}
667def : MipsInstAlias<"dsubi $rs, $rt, $imm",
668                    (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
669                           InvertedImOperand64:$imm),
670                    0>, ISA_MIPS3_NOT_32R6_64R6;
671def : MipsInstAlias<"dsubi $rs, $imm",
672                    (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
673                           InvertedImOperand64:$imm),
674                    0>, ISA_MIPS3_NOT_32R6_64R6;
675def : MipsInstAlias<"dsub $rs, $rt, $imm",
676                    (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
677                           InvertedImOperand64:$imm),
678                    0>, ISA_MIPS3_NOT_32R6_64R6;
679def : MipsInstAlias<"dsub $rs, $imm",
680                    (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
681                           InvertedImOperand64:$imm),
682                    0>, ISA_MIPS3_NOT_32R6_64R6;
683let AdditionalPredicates = [NotInMicroMips] in {
684  def : MipsInstAlias<"dsubu $rt, $rs, $imm",
685                      (DADDiu GPR64Opnd:$rt, GPR64Opnd:$rs,
686                              InvertedImOperand64:$imm), 0>, ISA_MIPS3;
687  def : MipsInstAlias<"dsubu $rs, $imm",
688                      (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs,
689                              InvertedImOperand64:$imm), 0>, ISA_MIPS3;
690}
691def : MipsInstAlias<"dsra $rd, $rt, $rs",
692                    (DSRAV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
693                    ISA_MIPS3;
694let AdditionalPredicates = [NotInMicroMips] in {
695  def : MipsInstAlias<"dsrl $rd, $rt, $rs",
696                      (DSRLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
697                      ISA_MIPS3;
698
699// Two operand (implicit 0 selector) versions:
700  def : MipsInstAlias<"dmtc0 $rt, $rd",
701                      (DMTC0 COP0Opnd:$rd, GPR64Opnd:$rt, 0), 0>;
702  def : MipsInstAlias<"dmfc0 $rt, $rd",
703                      (DMFC0 GPR64Opnd:$rt, COP0Opnd:$rd, 0), 0>;
704}
705def : MipsInstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, COP2Opnd:$rd, 0), 0>;
706def : MipsInstAlias<"dmtc2 $rt, $rd", (DMTC2 COP2Opnd:$rd, GPR64Opnd:$rt, 0), 0>;
707
708def : MipsInstAlias<"synciobdma", (SYNC 0x2), 0>, ASE_MIPS64_CNMIPS;
709def : MipsInstAlias<"syncs", (SYNC 0x6), 0>, ASE_MIPS64_CNMIPS;
710def : MipsInstAlias<"syncw", (SYNC 0x4), 0>, ASE_MIPS64_CNMIPS;
711def : MipsInstAlias<"syncws", (SYNC 0x5), 0>, ASE_MIPS64_CNMIPS;
712
713// cnMIPS Aliases.
714
715// bbit* with $p 32-63 converted to bbit*32 with $p 0-31
716def : MipsInstAlias<"bbit0 $rs, $p, $offset",
717                    (BBIT032 GPR64Opnd:$rs, uimm5_plus32_normalize_64:$p,
718                             brtarget:$offset), 0>,
719      ASE_CNMIPS;
720def : MipsInstAlias<"bbit1 $rs, $p, $offset",
721                    (BBIT132 GPR64Opnd:$rs, uimm5_plus32_normalize_64:$p,
722                             brtarget:$offset), 0>,
723      ASE_CNMIPS;
724
725// exts with $pos 32-63 in converted to exts32 with $pos 0-31
726def : MipsInstAlias<"exts $rt, $rs, $pos, $lenm1",
727                    (EXTS32 GPR64Opnd:$rt, GPR64Opnd:$rs,
728                            uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
729      ASE_CNMIPS;
730def : MipsInstAlias<"exts $rt, $pos, $lenm1",
731                    (EXTS32 GPR64Opnd:$rt, GPR64Opnd:$rt,
732                            uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
733      ASE_CNMIPS;
734
735// cins with $pos 32-63 in converted to cins32 with $pos 0-31
736def : MipsInstAlias<"cins $rt, $rs, $pos, $lenm1",
737                    (CINS32 GPR64Opnd:$rt, GPR64Opnd:$rs,
738                            uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
739      ASE_CNMIPS;
740def : MipsInstAlias<"cins $rt, $pos, $lenm1",
741                    (CINS32 GPR64Opnd:$rt, GPR64Opnd:$rt,
742                            uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
743      ASE_CNMIPS;
744
745//===----------------------------------------------------------------------===//
746// Assembler Pseudo Instructions
747//===----------------------------------------------------------------------===//
748
749class LoadImmediate64<string instr_asm, Operand Od, RegisterOperand RO> :
750  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm64),
751                     !strconcat(instr_asm, "\t$rt, $imm64")> ;
752def LoadImm64 : LoadImmediate64<"dli", imm64, GPR64Opnd>;
753
754def LoadAddrReg64 : MipsAsmPseudoInst<(outs GPR64Opnd:$rt), (ins mem:$addr),
755                                       "dla\t$rt, $addr">;
756def LoadAddrImm64 : MipsAsmPseudoInst<(outs GPR64Opnd:$rt), (ins imm64:$imm64),
757                                       "dla\t$rt, $imm64">;
758