1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "PPC.h"
17 #include "MCTargetDesc/PPCPredicates.h"
18 #include "PPCCallingConv.h"
19 #include "PPCCCState.h"
20 #include "PPCISelLowering.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCSubtarget.h"
23 #include "PPCTargetMachine.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetLowering.h"
40 #include "llvm/Target/TargetMachine.h"
41
42 //===----------------------------------------------------------------------===//
43 //
44 // TBD:
45 // fastLowerArguments: Handle simple cases.
46 // PPCMaterializeGV: Handle TLS.
47 // SelectCall: Handle function pointers.
48 // SelectCall: Handle multi-register return values.
49 // SelectCall: Optimize away nops for local calls.
50 // processCallArgs: Handle bit-converted arguments.
51 // finishCall: Handle multi-register return values.
52 // PPCComputeAddress: Handle parameter references as FrameIndex's.
53 // PPCEmitCmp: Handle immediate as operand 1.
54 // SelectCall: Handle small byval arguments.
55 // SelectIntrinsicCall: Implement.
56 // SelectSelect: Implement.
57 // Consider factoring isTypeLegal into the base class.
58 // Implement switches and jump tables.
59 //
60 //===----------------------------------------------------------------------===//
61 using namespace llvm;
62
63 #define DEBUG_TYPE "ppcfastisel"
64
65 namespace {
66
67 typedef struct Address {
68 enum {
69 RegBase,
70 FrameIndexBase
71 } BaseType;
72
73 union {
74 unsigned Reg;
75 int FI;
76 } Base;
77
78 long Offset;
79
80 // Innocuous defaults for our address.
Address__anonb98230de0111::Address81 Address()
82 : BaseType(RegBase), Offset(0) {
83 Base.Reg = 0;
84 }
85 } Address;
86
87 class PPCFastISel final : public FastISel {
88
89 const TargetMachine &TM;
90 const PPCSubtarget *PPCSubTarget;
91 PPCFunctionInfo *PPCFuncInfo;
92 const TargetInstrInfo &TII;
93 const TargetLowering &TLI;
94 LLVMContext *Context;
95
96 public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)97 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
98 const TargetLibraryInfo *LibInfo)
99 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
100 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
101 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
102 TII(*PPCSubTarget->getInstrInfo()),
103 TLI(*PPCSubTarget->getTargetLowering()),
104 Context(&FuncInfo.Fn->getContext()) {}
105
106 // Backend specific FastISel code.
107 private:
108 bool fastSelectInstruction(const Instruction *I) override;
109 unsigned fastMaterializeConstant(const Constant *C) override;
110 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
111 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
112 const LoadInst *LI) override;
113 bool fastLowerArguments() override;
114 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
115 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
116 const TargetRegisterClass *RC,
117 unsigned Op0, bool Op0IsKill,
118 uint64_t Imm);
119 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
120 const TargetRegisterClass *RC,
121 unsigned Op0, bool Op0IsKill);
122 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
123 const TargetRegisterClass *RC,
124 unsigned Op0, bool Op0IsKill,
125 unsigned Op1, bool Op1IsKill);
126
127 bool fastLowerCall(CallLoweringInfo &CLI) override;
128
129 // Instruction selection routines.
130 private:
131 bool SelectLoad(const Instruction *I);
132 bool SelectStore(const Instruction *I);
133 bool SelectBranch(const Instruction *I);
134 bool SelectIndirectBr(const Instruction *I);
135 bool SelectFPExt(const Instruction *I);
136 bool SelectFPTrunc(const Instruction *I);
137 bool SelectIToFP(const Instruction *I, bool IsSigned);
138 bool SelectFPToI(const Instruction *I, bool IsSigned);
139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
140 bool SelectRet(const Instruction *I);
141 bool SelectTrunc(const Instruction *I);
142 bool SelectIntExt(const Instruction *I);
143
144 // Utility routines.
145 private:
146 bool isTypeLegal(Type *Ty, MVT &VT);
147 bool isLoadTypeLegal(Type *Ty, MVT &VT);
148 bool isValueAvailable(const Value *V) const;
isVSFRCRegister(unsigned Register) const149 bool isVSFRCRegister(unsigned Register) const {
150 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID;
151 }
isVSSRCRegister(unsigned Register) const152 bool isVSSRCRegister(unsigned Register) const {
153 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID;
154 }
155 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
156 bool isZExt, unsigned DestReg);
157 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
158 const TargetRegisterClass *RC, bool IsZExt = true,
159 unsigned FP64LoadOpc = PPC::LFD);
160 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
161 bool PPCComputeAddress(const Value *Obj, Address &Addr);
162 void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
163 unsigned &IndexReg);
164 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
165 unsigned DestReg, bool IsZExt);
166 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
167 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
168 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
169 bool UseSExt = true);
170 unsigned PPCMaterialize32BitInt(int64_t Imm,
171 const TargetRegisterClass *RC);
172 unsigned PPCMaterialize64BitInt(int64_t Imm,
173 const TargetRegisterClass *RC);
174 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
175 unsigned SrcReg, bool IsSigned);
176 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
177
178 // Call handling routines.
179 private:
180 bool processCallArgs(SmallVectorImpl<Value*> &Args,
181 SmallVectorImpl<unsigned> &ArgRegs,
182 SmallVectorImpl<MVT> &ArgVTs,
183 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
184 SmallVectorImpl<unsigned> &RegArgs,
185 CallingConv::ID CC,
186 unsigned &NumBytes,
187 bool IsVarArg);
188 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
189 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);
190
191 private:
192 #include "PPCGenFastISel.inc"
193
194 };
195
196 } // end anonymous namespace
197
198 #include "PPCGenCallingConv.inc"
199
200 // Function whose sole purpose is to kill compiler warnings
201 // stemming from unused functions included from PPCGenCallingConv.inc.
usePPC32CCs(unsigned Flag)202 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
203 if (Flag == 1)
204 return CC_PPC32_SVR4;
205 else if (Flag == 2)
206 return CC_PPC32_SVR4_ByVal;
207 else if (Flag == 3)
208 return CC_PPC32_SVR4_VarArg;
209 else
210 return RetCC_PPC;
211 }
212
getComparePred(CmpInst::Predicate Pred)213 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
214 switch (Pred) {
215 // These are not representable with any single compare.
216 case CmpInst::FCMP_FALSE:
217 case CmpInst::FCMP_TRUE:
218 // Major concern about the following 6 cases is NaN result. The comparison
219 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
220 // only one of which will be set. The result is generated by fcmpu
221 // instruction. However, bc instruction only inspects one of the first 3
222 // bits, so when un is set, bc instruction may jump to to an undesired
223 // place.
224 //
225 // More specifically, if we expect an unordered comparison and un is set, we
226 // expect to always go to true branch; in such case UEQ, UGT and ULT still
227 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
228 // since they are tested by inspecting !eq, !lt, !gt, respectively.
229 //
230 // Similarly, for ordered comparison, when un is set, we always expect the
231 // result to be false. In such case OGT, OLT and OEQ is good, since they are
232 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
233 // and ONE are tested through !lt, !gt and !eq, and these are true.
234 case CmpInst::FCMP_UEQ:
235 case CmpInst::FCMP_UGT:
236 case CmpInst::FCMP_ULT:
237 case CmpInst::FCMP_OGE:
238 case CmpInst::FCMP_OLE:
239 case CmpInst::FCMP_ONE:
240 default:
241 return Optional<PPC::Predicate>();
242
243 case CmpInst::FCMP_OEQ:
244 case CmpInst::ICMP_EQ:
245 return PPC::PRED_EQ;
246
247 case CmpInst::FCMP_OGT:
248 case CmpInst::ICMP_UGT:
249 case CmpInst::ICMP_SGT:
250 return PPC::PRED_GT;
251
252 case CmpInst::FCMP_UGE:
253 case CmpInst::ICMP_UGE:
254 case CmpInst::ICMP_SGE:
255 return PPC::PRED_GE;
256
257 case CmpInst::FCMP_OLT:
258 case CmpInst::ICMP_ULT:
259 case CmpInst::ICMP_SLT:
260 return PPC::PRED_LT;
261
262 case CmpInst::FCMP_ULE:
263 case CmpInst::ICMP_ULE:
264 case CmpInst::ICMP_SLE:
265 return PPC::PRED_LE;
266
267 case CmpInst::FCMP_UNE:
268 case CmpInst::ICMP_NE:
269 return PPC::PRED_NE;
270
271 case CmpInst::FCMP_ORD:
272 return PPC::PRED_NU;
273
274 case CmpInst::FCMP_UNO:
275 return PPC::PRED_UN;
276 }
277 }
278
279 // Determine whether the type Ty is simple enough to be handled by
280 // fast-isel, and return its equivalent machine type in VT.
281 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)282 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
283 EVT Evt = TLI.getValueType(DL, Ty, true);
284
285 // Only handle simple types.
286 if (Evt == MVT::Other || !Evt.isSimple()) return false;
287 VT = Evt.getSimpleVT();
288
289 // Handle all legal types, i.e. a register that will directly hold this
290 // value.
291 return TLI.isTypeLegal(VT);
292 }
293
294 // Determine whether the type Ty is simple enough to be handled by
295 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)296 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
297 if (isTypeLegal(Ty, VT)) return true;
298
299 // If this is a type than can be sign or zero-extended to a basic operation
300 // go ahead and accept it now.
301 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
302 return true;
303 }
304
305 return false;
306 }
307
isValueAvailable(const Value * V) const308 bool PPCFastISel::isValueAvailable(const Value *V) const {
309 if (!isa<Instruction>(V))
310 return true;
311
312 const auto *I = cast<Instruction>(V);
313 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
314 }
315
316 // Given a value Obj, create an Address object Addr that represents its
317 // address. Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)318 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
319 const User *U = nullptr;
320 unsigned Opcode = Instruction::UserOp1;
321 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
322 // Don't walk into other basic blocks unless the object is an alloca from
323 // another block, otherwise it may not have a virtual register assigned.
324 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
325 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
326 Opcode = I->getOpcode();
327 U = I;
328 }
329 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
330 Opcode = C->getOpcode();
331 U = C;
332 }
333
334 switch (Opcode) {
335 default:
336 break;
337 case Instruction::BitCast:
338 // Look through bitcasts.
339 return PPCComputeAddress(U->getOperand(0), Addr);
340 case Instruction::IntToPtr:
341 // Look past no-op inttoptrs.
342 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
343 TLI.getPointerTy(DL))
344 return PPCComputeAddress(U->getOperand(0), Addr);
345 break;
346 case Instruction::PtrToInt:
347 // Look past no-op ptrtoints.
348 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
349 return PPCComputeAddress(U->getOperand(0), Addr);
350 break;
351 case Instruction::GetElementPtr: {
352 Address SavedAddr = Addr;
353 long TmpOffset = Addr.Offset;
354
355 // Iterate through the GEP folding the constants into offsets where
356 // we can.
357 gep_type_iterator GTI = gep_type_begin(U);
358 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
359 II != IE; ++II, ++GTI) {
360 const Value *Op = *II;
361 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
362 const StructLayout *SL = DL.getStructLayout(STy);
363 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
364 TmpOffset += SL->getElementOffset(Idx);
365 } else {
366 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
367 for (;;) {
368 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
369 // Constant-offset addressing.
370 TmpOffset += CI->getSExtValue() * S;
371 break;
372 }
373 if (canFoldAddIntoGEP(U, Op)) {
374 // A compatible add with a constant operand. Fold the constant.
375 ConstantInt *CI =
376 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
377 TmpOffset += CI->getSExtValue() * S;
378 // Iterate on the other operand.
379 Op = cast<AddOperator>(Op)->getOperand(0);
380 continue;
381 }
382 // Unsupported
383 goto unsupported_gep;
384 }
385 }
386 }
387
388 // Try to grab the base operand now.
389 Addr.Offset = TmpOffset;
390 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
391
392 // We failed, restore everything and try the other options.
393 Addr = SavedAddr;
394
395 unsupported_gep:
396 break;
397 }
398 case Instruction::Alloca: {
399 const AllocaInst *AI = cast<AllocaInst>(Obj);
400 DenseMap<const AllocaInst*, int>::iterator SI =
401 FuncInfo.StaticAllocaMap.find(AI);
402 if (SI != FuncInfo.StaticAllocaMap.end()) {
403 Addr.BaseType = Address::FrameIndexBase;
404 Addr.Base.FI = SI->second;
405 return true;
406 }
407 break;
408 }
409 }
410
411 // FIXME: References to parameters fall through to the behavior
412 // below. They should be able to reference a frame index since
413 // they are stored to the stack, so we can get "ld rx, offset(r1)"
414 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
415 // just contain the parameter. Try to handle this with a FI.
416
417 // Try to get this in a register if nothing else has worked.
418 if (Addr.Base.Reg == 0)
419 Addr.Base.Reg = getRegForValue(Obj);
420
421 // Prevent assignment of base register to X0, which is inappropriate
422 // for loads and stores alike.
423 if (Addr.Base.Reg != 0)
424 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
425
426 return Addr.Base.Reg != 0;
427 }
428
429 // Fix up some addresses that can't be used directly. For example, if
430 // an offset won't fit in an instruction field, we may need to move it
431 // into an index register.
PPCSimplifyAddress(Address & Addr,bool & UseOffset,unsigned & IndexReg)432 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
433 unsigned &IndexReg) {
434
435 // Check whether the offset fits in the instruction field.
436 if (!isInt<16>(Addr.Offset))
437 UseOffset = false;
438
439 // If this is a stack pointer and the offset needs to be simplified then
440 // put the alloca address into a register, set the base type back to
441 // register and continue. This should almost never happen.
442 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
443 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
444 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
445 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
446 Addr.Base.Reg = ResultReg;
447 Addr.BaseType = Address::RegBase;
448 }
449
450 if (!UseOffset) {
451 IntegerType *OffsetTy = Type::getInt64Ty(*Context);
452 const ConstantInt *Offset =
453 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
454 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
455 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
456 }
457 }
458
459 // Emit a load instruction if possible, returning true if we succeeded,
460 // otherwise false. See commentary below for how the register class of
461 // the load is determined.
PPCEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)462 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
463 const TargetRegisterClass *RC,
464 bool IsZExt, unsigned FP64LoadOpc) {
465 unsigned Opc;
466 bool UseOffset = true;
467
468 // If ResultReg is given, it determines the register class of the load.
469 // Otherwise, RC is the register class to use. If the result of the
470 // load isn't anticipated in this block, both may be zero, in which
471 // case we must make a conservative guess. In particular, don't assign
472 // R0 or X0 to the result register, as the result may be used in a load,
473 // store, add-immediate, or isel that won't permit this. (Though
474 // perhaps the spill and reload of live-exit values would handle this?)
475 const TargetRegisterClass *UseRC =
476 (ResultReg ? MRI.getRegClass(ResultReg) :
477 (RC ? RC :
478 (VT == MVT::f64 ? &PPC::F8RCRegClass :
479 (VT == MVT::f32 ? &PPC::F4RCRegClass :
480 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
481 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
482
483 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
484
485 switch (VT.SimpleTy) {
486 default: // e.g., vector types not handled
487 return false;
488 case MVT::i8:
489 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
490 break;
491 case MVT::i16:
492 Opc = (IsZExt ?
493 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
494 (Is32BitInt ? PPC::LHA : PPC::LHA8));
495 break;
496 case MVT::i32:
497 Opc = (IsZExt ?
498 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
499 (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
500 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
501 UseOffset = false;
502 break;
503 case MVT::i64:
504 Opc = PPC::LD;
505 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
506 "64-bit load with 32-bit target??");
507 UseOffset = ((Addr.Offset & 3) == 0);
508 break;
509 case MVT::f32:
510 Opc = PPC::LFS;
511 break;
512 case MVT::f64:
513 Opc = FP64LoadOpc;
514 break;
515 }
516
517 // If necessary, materialize the offset into a register and use
518 // the indexed form. Also handle stack pointers with special needs.
519 unsigned IndexReg = 0;
520 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
521
522 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
523 // be used.
524 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg);
525 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg);
526 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
527 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD;
528 if ((Is32VSXLoad || Is64VSXLoad) &&
529 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
530 (Addr.Offset == 0)) {
531 UseOffset = false;
532 }
533
534 if (ResultReg == 0)
535 ResultReg = createResultReg(UseRC);
536
537 // Note: If we still have a frame index here, we know the offset is
538 // in range, as otherwise PPCSimplifyAddress would have converted it
539 // into a RegBase.
540 if (Addr.BaseType == Address::FrameIndexBase) {
541 // VSX only provides an indexed load.
542 if (Is32VSXLoad || Is64VSXLoad) return false;
543
544 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
545 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
546 Addr.Offset),
547 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
548 MFI.getObjectAlignment(Addr.Base.FI));
549
550 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
551 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
552
553 // Base reg with offset in range.
554 } else if (UseOffset) {
555 // VSX only provides an indexed load.
556 if (Is32VSXLoad || Is64VSXLoad) return false;
557
558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
559 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
560
561 // Indexed form.
562 } else {
563 // Get the RR opcode corresponding to the RI one. FIXME: It would be
564 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
565 // is hard to get at.
566 switch (Opc) {
567 default: llvm_unreachable("Unexpected opcode!");
568 case PPC::LBZ: Opc = PPC::LBZX; break;
569 case PPC::LBZ8: Opc = PPC::LBZX8; break;
570 case PPC::LHZ: Opc = PPC::LHZX; break;
571 case PPC::LHZ8: Opc = PPC::LHZX8; break;
572 case PPC::LHA: Opc = PPC::LHAX; break;
573 case PPC::LHA8: Opc = PPC::LHAX8; break;
574 case PPC::LWZ: Opc = PPC::LWZX; break;
575 case PPC::LWZ8: Opc = PPC::LWZX8; break;
576 case PPC::LWA: Opc = PPC::LWAX; break;
577 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
578 case PPC::LD: Opc = PPC::LDX; break;
579 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
580 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
581 }
582 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
583 .addReg(Addr.Base.Reg).addReg(IndexReg);
584 }
585
586 return true;
587 }
588
589 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)590 bool PPCFastISel::SelectLoad(const Instruction *I) {
591 // FIXME: No atomic loads are supported.
592 if (cast<LoadInst>(I)->isAtomic())
593 return false;
594
595 // Verify we have a legal type before going any further.
596 MVT VT;
597 if (!isLoadTypeLegal(I->getType(), VT))
598 return false;
599
600 // See if we can handle this address.
601 Address Addr;
602 if (!PPCComputeAddress(I->getOperand(0), Addr))
603 return false;
604
605 // Look at the currently assigned register for this instruction
606 // to determine the required register class. This is necessary
607 // to constrain RA from using R0/X0 when this is not legal.
608 unsigned AssignedReg = FuncInfo.ValueMap[I];
609 const TargetRegisterClass *RC =
610 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
611
612 unsigned ResultReg = 0;
613 if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
614 return false;
615 updateValueMap(I, ResultReg);
616 return true;
617 }
618
619 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)620 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
621 assert(SrcReg && "Nothing to store!");
622 unsigned Opc;
623 bool UseOffset = true;
624
625 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
626 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
627
628 switch (VT.SimpleTy) {
629 default: // e.g., vector types not handled
630 return false;
631 case MVT::i8:
632 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
633 break;
634 case MVT::i16:
635 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
636 break;
637 case MVT::i32:
638 assert(Is32BitInt && "Not GPRC for i32??");
639 Opc = PPC::STW;
640 break;
641 case MVT::i64:
642 Opc = PPC::STD;
643 UseOffset = ((Addr.Offset & 3) == 0);
644 break;
645 case MVT::f32:
646 Opc = PPC::STFS;
647 break;
648 case MVT::f64:
649 Opc = PPC::STFD;
650 break;
651 }
652
653 // If necessary, materialize the offset into a register and use
654 // the indexed form. Also handle stack pointers with special needs.
655 unsigned IndexReg = 0;
656 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
657
658 // If this is a potential VSX store with an offset of 0, a VSX indexed store
659 // can be used.
660 bool IsVSSRC = isVSSRCRegister(SrcReg);
661 bool IsVSFRC = isVSFRCRegister(SrcReg);
662 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
663 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
664 if ((Is32VSXStore || Is64VSXStore) &&
665 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
666 (Addr.Offset == 0)) {
667 UseOffset = false;
668 }
669
670 // Note: If we still have a frame index here, we know the offset is
671 // in range, as otherwise PPCSimplifyAddress would have converted it
672 // into a RegBase.
673 if (Addr.BaseType == Address::FrameIndexBase) {
674 // VSX only provides an indexed store.
675 if (Is32VSXStore || Is64VSXStore) return false;
676
677 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
678 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
679 Addr.Offset),
680 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
681 MFI.getObjectAlignment(Addr.Base.FI));
682
683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
684 .addReg(SrcReg)
685 .addImm(Addr.Offset)
686 .addFrameIndex(Addr.Base.FI)
687 .addMemOperand(MMO);
688
689 // Base reg with offset in range.
690 } else if (UseOffset) {
691 // VSX only provides an indexed store.
692 if (Is32VSXStore || Is64VSXStore) return false;
693
694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
695 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
696
697 // Indexed form.
698 } else {
699 // Get the RR opcode corresponding to the RI one. FIXME: It would be
700 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
701 // is hard to get at.
702 switch (Opc) {
703 default: llvm_unreachable("Unexpected opcode!");
704 case PPC::STB: Opc = PPC::STBX; break;
705 case PPC::STH : Opc = PPC::STHX; break;
706 case PPC::STW : Opc = PPC::STWX; break;
707 case PPC::STB8: Opc = PPC::STBX8; break;
708 case PPC::STH8: Opc = PPC::STHX8; break;
709 case PPC::STW8: Opc = PPC::STWX8; break;
710 case PPC::STD: Opc = PPC::STDX; break;
711 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
712 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
713 }
714
715 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
716 .addReg(SrcReg);
717
718 // If we have an index register defined we use it in the store inst,
719 // otherwise we use X0 as base as it makes the vector instructions to
720 // use zero in the computation of the effective address regardless the
721 // content of the register.
722 if (IndexReg)
723 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
724 else
725 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
726 }
727
728 return true;
729 }
730
731 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)732 bool PPCFastISel::SelectStore(const Instruction *I) {
733 Value *Op0 = I->getOperand(0);
734 unsigned SrcReg = 0;
735
736 // FIXME: No atomics loads are supported.
737 if (cast<StoreInst>(I)->isAtomic())
738 return false;
739
740 // Verify we have a legal type before going any further.
741 MVT VT;
742 if (!isLoadTypeLegal(Op0->getType(), VT))
743 return false;
744
745 // Get the value to be stored into a register.
746 SrcReg = getRegForValue(Op0);
747 if (SrcReg == 0)
748 return false;
749
750 // See if we can handle this address.
751 Address Addr;
752 if (!PPCComputeAddress(I->getOperand(1), Addr))
753 return false;
754
755 if (!PPCEmitStore(VT, SrcReg, Addr))
756 return false;
757
758 return true;
759 }
760
761 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)762 bool PPCFastISel::SelectBranch(const Instruction *I) {
763 const BranchInst *BI = cast<BranchInst>(I);
764 MachineBasicBlock *BrBB = FuncInfo.MBB;
765 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
766 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
767
768 // For now, just try the simplest case where it's fed by a compare.
769 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
770 if (isValueAvailable(CI)) {
771 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
772 if (!OptPPCPred)
773 return false;
774
775 PPC::Predicate PPCPred = OptPPCPred.getValue();
776
777 // Take advantage of fall-through opportunities.
778 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
779 std::swap(TBB, FBB);
780 PPCPred = PPC::InvertPredicate(PPCPred);
781 }
782
783 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
784
785 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
786 CondReg))
787 return false;
788
789 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
790 .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
791 finishCondBranch(BI->getParent(), TBB, FBB);
792 return true;
793 }
794 } else if (const ConstantInt *CI =
795 dyn_cast<ConstantInt>(BI->getCondition())) {
796 uint64_t Imm = CI->getZExtValue();
797 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
798 fastEmitBranch(Target, DbgLoc);
799 return true;
800 }
801
802 // FIXME: ARM looks for a case where the block containing the compare
803 // has been split from the block containing the branch. If this happens,
804 // there is a vreg available containing the result of the compare. I'm
805 // not sure we can do much, as we've lost the predicate information with
806 // the compare instruction -- we have a 4-bit CR but don't know which bit
807 // to test here.
808 return false;
809 }
810
811 // Attempt to emit a compare of the two source values. Signed and unsigned
812 // comparisons are supported. Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg)813 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
814 bool IsZExt, unsigned DestReg) {
815 Type *Ty = SrcValue1->getType();
816 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
817 if (!SrcEVT.isSimple())
818 return false;
819 MVT SrcVT = SrcEVT.getSimpleVT();
820
821 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
822 return false;
823
824 // See if operand 2 is an immediate encodeable in the compare.
825 // FIXME: Operands are not in canonical order at -O0, so an immediate
826 // operand in position 1 is a lost opportunity for now. We are
827 // similar to ARM in this regard.
828 long Imm = 0;
829 bool UseImm = false;
830
831 // Only 16-bit integer constants can be represented in compares for
832 // PowerPC. Others will be materialized into a register.
833 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
834 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
835 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
836 const APInt &CIVal = ConstInt->getValue();
837 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
838 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
839 UseImm = true;
840 }
841 }
842
843 unsigned CmpOpc;
844 bool NeedsExt = false;
845 switch (SrcVT.SimpleTy) {
846 default: return false;
847 case MVT::f32:
848 CmpOpc = PPC::FCMPUS;
849 break;
850 case MVT::f64:
851 CmpOpc = PPC::FCMPUD;
852 break;
853 case MVT::i1:
854 case MVT::i8:
855 case MVT::i16:
856 NeedsExt = true;
857 // Intentional fall-through.
858 case MVT::i32:
859 if (!UseImm)
860 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
861 else
862 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
863 break;
864 case MVT::i64:
865 if (!UseImm)
866 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
867 else
868 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
869 break;
870 }
871
872 unsigned SrcReg1 = getRegForValue(SrcValue1);
873 if (SrcReg1 == 0)
874 return false;
875
876 unsigned SrcReg2 = 0;
877 if (!UseImm) {
878 SrcReg2 = getRegForValue(SrcValue2);
879 if (SrcReg2 == 0)
880 return false;
881 }
882
883 if (NeedsExt) {
884 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
885 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
886 return false;
887 SrcReg1 = ExtReg;
888
889 if (!UseImm) {
890 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
891 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
892 return false;
893 SrcReg2 = ExtReg;
894 }
895 }
896
897 if (!UseImm)
898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
899 .addReg(SrcReg1).addReg(SrcReg2);
900 else
901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
902 .addReg(SrcReg1).addImm(Imm);
903
904 return true;
905 }
906
907 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)908 bool PPCFastISel::SelectFPExt(const Instruction *I) {
909 Value *Src = I->getOperand(0);
910 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
911 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
912
913 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
914 return false;
915
916 unsigned SrcReg = getRegForValue(Src);
917 if (!SrcReg)
918 return false;
919
920 // No code is generated for a FP extend.
921 updateValueMap(I, SrcReg);
922 return true;
923 }
924
925 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)926 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
927 Value *Src = I->getOperand(0);
928 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
929 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
930
931 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
932 return false;
933
934 unsigned SrcReg = getRegForValue(Src);
935 if (!SrcReg)
936 return false;
937
938 // Round the result to single precision.
939 unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
941 .addReg(SrcReg);
942
943 updateValueMap(I, DestReg);
944 return true;
945 }
946
947 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
948 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
949 // those should be used instead of moving via a stack slot when the
950 // subtarget permits.
951 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
952 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
953 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)954 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
955 bool IsSigned) {
956
957 // If necessary, extend 32-bit int to 64-bit.
958 if (SrcVT == MVT::i32) {
959 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
960 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
961 return 0;
962 SrcReg = TmpReg;
963 }
964
965 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
966 Address Addr;
967 Addr.BaseType = Address::FrameIndexBase;
968 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
969
970 // Store the value from the GPR.
971 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
972 return 0;
973
974 // Load the integer value into an FPR. The kind of load used depends
975 // on a number of conditions.
976 unsigned LoadOpc = PPC::LFD;
977
978 if (SrcVT == MVT::i32) {
979 if (!IsSigned) {
980 LoadOpc = PPC::LFIWZX;
981 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
982 } else if (PPCSubTarget->hasLFIWAX()) {
983 LoadOpc = PPC::LFIWAX;
984 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
985 }
986 }
987
988 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
989 unsigned ResultReg = 0;
990 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
991 return 0;
992
993 return ResultReg;
994 }
995
996 // Attempt to fast-select an integer-to-floating-point conversion.
997 // FIXME: Once fast-isel has better support for VSX, conversions using
998 // direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)999 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1000 MVT DstVT;
1001 Type *DstTy = I->getType();
1002 if (!isTypeLegal(DstTy, DstVT))
1003 return false;
1004
1005 if (DstVT != MVT::f32 && DstVT != MVT::f64)
1006 return false;
1007
1008 Value *Src = I->getOperand(0);
1009 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1010 if (!SrcEVT.isSimple())
1011 return false;
1012
1013 MVT SrcVT = SrcEVT.getSimpleVT();
1014
1015 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1016 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1017 return false;
1018
1019 unsigned SrcReg = getRegForValue(Src);
1020 if (SrcReg == 0)
1021 return false;
1022
1023 // We can only lower an unsigned convert if we have the newer
1024 // floating-point conversion operations.
1025 if (!IsSigned && !PPCSubTarget->hasFPCVT())
1026 return false;
1027
1028 // FIXME: For now we require the newer floating-point conversion operations
1029 // (which are present only on P7 and A2 server models) when converting
1030 // to single-precision float. Otherwise we have to generate a lot of
1031 // fiddly code to avoid double rounding. If necessary, the fiddly code
1032 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1033 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1034 return false;
1035
1036 // Extend the input if necessary.
1037 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1038 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1039 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1040 return false;
1041 SrcVT = MVT::i64;
1042 SrcReg = TmpReg;
1043 }
1044
1045 // Move the integer value to an FPR.
1046 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1047 if (FPReg == 0)
1048 return false;
1049
1050 // Determine the opcode for the conversion.
1051 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1052 unsigned DestReg = createResultReg(RC);
1053 unsigned Opc;
1054
1055 if (DstVT == MVT::f32)
1056 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1057 else
1058 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1059
1060 // Generate the convert.
1061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1062 .addReg(FPReg);
1063
1064 updateValueMap(I, DestReg);
1065 return true;
1066 }
1067
1068 // Move the floating-point value in SrcReg into an integer destination
1069 // register, and return the register (or zero if we can't handle it).
1070 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1071 // those should be used instead of moving via a stack slot when the
1072 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1073 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1074 unsigned SrcReg, bool IsSigned) {
1075 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1076 // Note that if have STFIWX available, we could use a 4-byte stack
1077 // slot for i32, but this being fast-isel we'll just go with the
1078 // easiest code gen possible.
1079 Address Addr;
1080 Addr.BaseType = Address::FrameIndexBase;
1081 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1082
1083 // Store the value from the FPR.
1084 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1085 return 0;
1086
1087 // Reload it into a GPR. If we want an i32 on big endian, modify the
1088 // address to have a 4-byte offset so we load from the right place.
1089 if (VT == MVT::i32)
1090 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1091
1092 // Look at the currently assigned register for this instruction
1093 // to determine the required register class.
1094 unsigned AssignedReg = FuncInfo.ValueMap[I];
1095 const TargetRegisterClass *RC =
1096 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1097
1098 unsigned ResultReg = 0;
1099 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1100 return 0;
1101
1102 return ResultReg;
1103 }
1104
1105 // Attempt to fast-select a floating-point-to-integer conversion.
1106 // FIXME: Once fast-isel has better support for VSX, conversions using
1107 // direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1108 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1109 MVT DstVT, SrcVT;
1110 Type *DstTy = I->getType();
1111 if (!isTypeLegal(DstTy, DstVT))
1112 return false;
1113
1114 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1115 return false;
1116
1117 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
1118 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
1119 return false;
1120
1121 Value *Src = I->getOperand(0);
1122 Type *SrcTy = Src->getType();
1123 if (!isTypeLegal(SrcTy, SrcVT))
1124 return false;
1125
1126 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1127 return false;
1128
1129 unsigned SrcReg = getRegForValue(Src);
1130 if (SrcReg == 0)
1131 return false;
1132
1133 // Convert f32 to f64 if necessary. This is just a meaningless copy
1134 // to get the register class right.
1135 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1136 if (InRC == &PPC::F4RCRegClass) {
1137 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1139 TII.get(TargetOpcode::COPY), TmpReg)
1140 .addReg(SrcReg);
1141 SrcReg = TmpReg;
1142 }
1143
1144 // Determine the opcode for the conversion, which takes place
1145 // entirely within FPRs.
1146 unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1147 unsigned Opc;
1148
1149 if (DstVT == MVT::i32)
1150 if (IsSigned)
1151 Opc = PPC::FCTIWZ;
1152 else
1153 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1154 else
1155 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1156
1157 // Generate the convert.
1158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1159 .addReg(SrcReg);
1160
1161 // Now move the integer value from a float register to an integer register.
1162 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1163 if (IntReg == 0)
1164 return false;
1165
1166 updateValueMap(I, IntReg);
1167 return true;
1168 }
1169
1170 // Attempt to fast-select a binary integer operation that isn't already
1171 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1172 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1173 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1174
1175 // We can get here in the case when we have a binary operation on a non-legal
1176 // type and the target independent selector doesn't know how to handle it.
1177 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1178 return false;
1179
1180 // Look at the currently assigned register for this instruction
1181 // to determine the required register class. If there is no register,
1182 // make a conservative choice (don't assign R0).
1183 unsigned AssignedReg = FuncInfo.ValueMap[I];
1184 const TargetRegisterClass *RC =
1185 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1186 &PPC::GPRC_and_GPRC_NOR0RegClass);
1187 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1188
1189 unsigned Opc;
1190 switch (ISDOpcode) {
1191 default: return false;
1192 case ISD::ADD:
1193 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1194 break;
1195 case ISD::OR:
1196 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1197 break;
1198 case ISD::SUB:
1199 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1200 break;
1201 }
1202
1203 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1204 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1205 if (SrcReg1 == 0) return false;
1206
1207 // Handle case of small immediate operand.
1208 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1209 const APInt &CIVal = ConstInt->getValue();
1210 int Imm = (int)CIVal.getSExtValue();
1211 bool UseImm = true;
1212 if (isInt<16>(Imm)) {
1213 switch (Opc) {
1214 default:
1215 llvm_unreachable("Missing case!");
1216 case PPC::ADD4:
1217 Opc = PPC::ADDI;
1218 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1219 break;
1220 case PPC::ADD8:
1221 Opc = PPC::ADDI8;
1222 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1223 break;
1224 case PPC::OR:
1225 Opc = PPC::ORI;
1226 break;
1227 case PPC::OR8:
1228 Opc = PPC::ORI8;
1229 break;
1230 case PPC::SUBF:
1231 if (Imm == -32768)
1232 UseImm = false;
1233 else {
1234 Opc = PPC::ADDI;
1235 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1236 Imm = -Imm;
1237 }
1238 break;
1239 case PPC::SUBF8:
1240 if (Imm == -32768)
1241 UseImm = false;
1242 else {
1243 Opc = PPC::ADDI8;
1244 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1245 Imm = -Imm;
1246 }
1247 break;
1248 }
1249
1250 if (UseImm) {
1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1252 ResultReg)
1253 .addReg(SrcReg1)
1254 .addImm(Imm);
1255 updateValueMap(I, ResultReg);
1256 return true;
1257 }
1258 }
1259 }
1260
1261 // Reg-reg case.
1262 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1263 if (SrcReg2 == 0) return false;
1264
1265 // Reverse operands for subtract-from.
1266 if (ISDOpcode == ISD::SUB)
1267 std::swap(SrcReg1, SrcReg2);
1268
1269 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1270 .addReg(SrcReg1).addReg(SrcReg2);
1271 updateValueMap(I, ResultReg);
1272 return true;
1273 }
1274
1275 // Handle arguments to a call that we're attempting to fast-select.
1276 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1277 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1278 SmallVectorImpl<unsigned> &ArgRegs,
1279 SmallVectorImpl<MVT> &ArgVTs,
1280 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1281 SmallVectorImpl<unsigned> &RegArgs,
1282 CallingConv::ID CC,
1283 unsigned &NumBytes,
1284 bool IsVarArg) {
1285 SmallVector<CCValAssign, 16> ArgLocs;
1286 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1287
1288 // Reserve space for the linkage area on the stack.
1289 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1290 CCInfo.AllocateStack(LinkageSize, 8);
1291
1292 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1293
1294 // Bail out if we can't handle any of the arguments.
1295 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1296 CCValAssign &VA = ArgLocs[I];
1297 MVT ArgVT = ArgVTs[VA.getValNo()];
1298
1299 // Skip vector arguments for now, as well as long double and
1300 // uint128_t, and anything that isn't passed in a register.
1301 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1302 !VA.isRegLoc() || VA.needsCustom())
1303 return false;
1304
1305 // Skip bit-converted arguments for now.
1306 if (VA.getLocInfo() == CCValAssign::BCvt)
1307 return false;
1308 }
1309
1310 // Get a count of how many bytes are to be pushed onto the stack.
1311 NumBytes = CCInfo.getNextStackOffset();
1312
1313 // The prolog code of the callee may store up to 8 GPR argument registers to
1314 // the stack, allowing va_start to index over them in memory if its varargs.
1315 // Because we cannot tell if this is needed on the caller side, we have to
1316 // conservatively assume that it is needed. As such, make sure we have at
1317 // least enough stack space for the caller to store the 8 GPRs.
1318 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1319 NumBytes = std::max(NumBytes, LinkageSize + 64);
1320
1321 // Issue CALLSEQ_START.
1322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1323 TII.get(TII.getCallFrameSetupOpcode()))
1324 .addImm(NumBytes);
1325
1326 // Prepare to assign register arguments. Every argument uses up a
1327 // GPR protocol register even if it's passed in a floating-point
1328 // register (unless we're using the fast calling convention).
1329 unsigned NextGPR = PPC::X3;
1330 unsigned NextFPR = PPC::F1;
1331
1332 // Process arguments.
1333 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1334 CCValAssign &VA = ArgLocs[I];
1335 unsigned Arg = ArgRegs[VA.getValNo()];
1336 MVT ArgVT = ArgVTs[VA.getValNo()];
1337
1338 // Handle argument promotion and bitcasts.
1339 switch (VA.getLocInfo()) {
1340 default:
1341 llvm_unreachable("Unknown loc info!");
1342 case CCValAssign::Full:
1343 break;
1344 case CCValAssign::SExt: {
1345 MVT DestVT = VA.getLocVT();
1346 const TargetRegisterClass *RC =
1347 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1348 unsigned TmpReg = createResultReg(RC);
1349 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1350 llvm_unreachable("Failed to emit a sext!");
1351 ArgVT = DestVT;
1352 Arg = TmpReg;
1353 break;
1354 }
1355 case CCValAssign::AExt:
1356 case CCValAssign::ZExt: {
1357 MVT DestVT = VA.getLocVT();
1358 const TargetRegisterClass *RC =
1359 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1360 unsigned TmpReg = createResultReg(RC);
1361 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1362 llvm_unreachable("Failed to emit a zext!");
1363 ArgVT = DestVT;
1364 Arg = TmpReg;
1365 break;
1366 }
1367 case CCValAssign::BCvt: {
1368 // FIXME: Not yet handled.
1369 llvm_unreachable("Should have bailed before getting here!");
1370 break;
1371 }
1372 }
1373
1374 // Copy this argument to the appropriate register.
1375 unsigned ArgReg;
1376 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1377 ArgReg = NextFPR++;
1378 if (CC != CallingConv::Fast)
1379 ++NextGPR;
1380 } else
1381 ArgReg = NextGPR++;
1382
1383 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1384 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1385 RegArgs.push_back(ArgReg);
1386 }
1387
1388 return true;
1389 }
1390
1391 // For a call that we've determined we can fast-select, finish the
1392 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1393 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1394 CallingConv::ID CC = CLI.CallConv;
1395
1396 // Issue CallSEQ_END.
1397 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1398 TII.get(TII.getCallFrameDestroyOpcode()))
1399 .addImm(NumBytes).addImm(0);
1400
1401 // Next, generate a copy to obtain the return value.
1402 // FIXME: No multi-register return values yet, though I don't foresee
1403 // any real difficulties there.
1404 if (RetVT != MVT::isVoid) {
1405 SmallVector<CCValAssign, 16> RVLocs;
1406 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1407 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1408 CCValAssign &VA = RVLocs[0];
1409 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1410 assert(VA.isRegLoc() && "Can only return in registers!");
1411
1412 MVT DestVT = VA.getValVT();
1413 MVT CopyVT = DestVT;
1414
1415 // Ints smaller than a register still arrive in a full 64-bit
1416 // register, so make sure we recognize this.
1417 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1418 CopyVT = MVT::i64;
1419
1420 unsigned SourcePhysReg = VA.getLocReg();
1421 unsigned ResultReg = 0;
1422
1423 if (RetVT == CopyVT) {
1424 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1425 ResultReg = createResultReg(CpyRC);
1426
1427 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1428 TII.get(TargetOpcode::COPY), ResultReg)
1429 .addReg(SourcePhysReg);
1430
1431 // If necessary, round the floating result to single precision.
1432 } else if (CopyVT == MVT::f64) {
1433 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1434 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1435 ResultReg).addReg(SourcePhysReg);
1436
1437 // If only the low half of a general register is needed, generate
1438 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1439 // used along the fast-isel path (not lowered), and downstream logic
1440 // also doesn't like a direct subreg copy on a physical reg.)
1441 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1442 ResultReg = createResultReg(&PPC::GPRCRegClass);
1443 // Convert physical register from G8RC to GPRC.
1444 SourcePhysReg -= PPC::X0 - PPC::R0;
1445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1446 TII.get(TargetOpcode::COPY), ResultReg)
1447 .addReg(SourcePhysReg);
1448 }
1449
1450 assert(ResultReg && "ResultReg unset!");
1451 CLI.InRegs.push_back(SourcePhysReg);
1452 CLI.ResultReg = ResultReg;
1453 CLI.NumResultRegs = 1;
1454 }
1455
1456 return true;
1457 }
1458
fastLowerCall(CallLoweringInfo & CLI)1459 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1460 CallingConv::ID CC = CLI.CallConv;
1461 bool IsTailCall = CLI.IsTailCall;
1462 bool IsVarArg = CLI.IsVarArg;
1463 const Value *Callee = CLI.Callee;
1464 const MCSymbol *Symbol = CLI.Symbol;
1465
1466 if (!Callee && !Symbol)
1467 return false;
1468
1469 // Allow SelectionDAG isel to handle tail calls.
1470 if (IsTailCall)
1471 return false;
1472
1473 // Let SDISel handle vararg functions.
1474 if (IsVarArg)
1475 return false;
1476
1477 // Handle simple calls for now, with legal return types and
1478 // those that can be extended.
1479 Type *RetTy = CLI.RetTy;
1480 MVT RetVT;
1481 if (RetTy->isVoidTy())
1482 RetVT = MVT::isVoid;
1483 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1484 RetVT != MVT::i8)
1485 return false;
1486 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1487 // We can't handle boolean returns when CR bits are in use.
1488 return false;
1489
1490 // FIXME: No multi-register return values yet.
1491 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1492 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1493 RetVT != MVT::f64) {
1494 SmallVector<CCValAssign, 16> RVLocs;
1495 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1496 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1497 if (RVLocs.size() > 1)
1498 return false;
1499 }
1500
1501 // Bail early if more than 8 arguments, as we only currently
1502 // handle arguments passed in registers.
1503 unsigned NumArgs = CLI.OutVals.size();
1504 if (NumArgs > 8)
1505 return false;
1506
1507 // Set up the argument vectors.
1508 SmallVector<Value*, 8> Args;
1509 SmallVector<unsigned, 8> ArgRegs;
1510 SmallVector<MVT, 8> ArgVTs;
1511 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1512
1513 Args.reserve(NumArgs);
1514 ArgRegs.reserve(NumArgs);
1515 ArgVTs.reserve(NumArgs);
1516 ArgFlags.reserve(NumArgs);
1517
1518 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1519 // Only handle easy calls for now. It would be reasonably easy
1520 // to handle <= 8-byte structures passed ByVal in registers, but we
1521 // have to ensure they are right-justified in the register.
1522 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1523 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1524 return false;
1525
1526 Value *ArgValue = CLI.OutVals[i];
1527 Type *ArgTy = ArgValue->getType();
1528 MVT ArgVT;
1529 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1530 return false;
1531
1532 if (ArgVT.isVector())
1533 return false;
1534
1535 unsigned Arg = getRegForValue(ArgValue);
1536 if (Arg == 0)
1537 return false;
1538
1539 Args.push_back(ArgValue);
1540 ArgRegs.push_back(Arg);
1541 ArgVTs.push_back(ArgVT);
1542 ArgFlags.push_back(Flags);
1543 }
1544
1545 // Process the arguments.
1546 SmallVector<unsigned, 8> RegArgs;
1547 unsigned NumBytes;
1548
1549 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1550 RegArgs, CC, NumBytes, IsVarArg))
1551 return false;
1552
1553 MachineInstrBuilder MIB;
1554 // FIXME: No handling for function pointers yet. This requires
1555 // implementing the function descriptor (OPD) setup.
1556 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1557 if (!GV) {
1558 // patchpoints are a special case; they always dispatch to a pointer value.
1559 // However, we don't actually want to generate the indirect call sequence
1560 // here (that will be generated, as necessary, during asm printing), and
1561 // the call we generate here will be erased by FastISel::selectPatchpoint,
1562 // so don't try very hard...
1563 if (CLI.IsPatchPoint)
1564 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1565 else
1566 return false;
1567 } else {
1568 // Build direct call with NOP for TOC restore.
1569 // FIXME: We can and should optimize away the NOP for local calls.
1570 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1571 TII.get(PPC::BL8_NOP));
1572 // Add callee.
1573 MIB.addGlobalAddress(GV);
1574 }
1575
1576 // Add implicit physical register uses to the call.
1577 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1578 MIB.addReg(RegArgs[II], RegState::Implicit);
1579
1580 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1581 // into the call.
1582 PPCFuncInfo->setUsesTOCBasePtr();
1583 MIB.addReg(PPC::X2, RegState::Implicit);
1584
1585 // Add a register mask with the call-preserved registers. Proper
1586 // defs for return values will be added by setPhysRegsDeadExcept().
1587 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1588
1589 CLI.Call = MIB;
1590
1591 // Finish off the call including any return values.
1592 return finishCall(RetVT, CLI, NumBytes);
1593 }
1594
1595 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1596 bool PPCFastISel::SelectRet(const Instruction *I) {
1597
1598 if (!FuncInfo.CanLowerReturn)
1599 return false;
1600
1601 if (TLI.supportSplitCSR(FuncInfo.MF))
1602 return false;
1603
1604 const ReturnInst *Ret = cast<ReturnInst>(I);
1605 const Function &F = *I->getParent()->getParent();
1606
1607 // Build a list of return value registers.
1608 SmallVector<unsigned, 4> RetRegs;
1609 CallingConv::ID CC = F.getCallingConv();
1610
1611 if (Ret->getNumOperands() > 0) {
1612 SmallVector<ISD::OutputArg, 4> Outs;
1613 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1614
1615 // Analyze operands of the call, assigning locations to each operand.
1616 SmallVector<CCValAssign, 16> ValLocs;
1617 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1618 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1619 const Value *RV = Ret->getOperand(0);
1620
1621 // FIXME: Only one output register for now.
1622 if (ValLocs.size() > 1)
1623 return false;
1624
1625 // Special case for returning a constant integer of any size - materialize
1626 // the constant as an i64 and copy it to the return register.
1627 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1628 CCValAssign &VA = ValLocs[0];
1629
1630 unsigned RetReg = VA.getLocReg();
1631 // We still need to worry about properly extending the sign. For example,
1632 // we could have only a single bit or a constant that needs zero
1633 // extension rather than sign extension. Make sure we pass the return
1634 // value extension property to integer materialization.
1635 unsigned SrcReg =
1636 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1637
1638 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1639 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1640
1641 RetRegs.push_back(RetReg);
1642
1643 } else {
1644 unsigned Reg = getRegForValue(RV);
1645
1646 if (Reg == 0)
1647 return false;
1648
1649 // Copy the result values into the output registers.
1650 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1651
1652 CCValAssign &VA = ValLocs[i];
1653 assert(VA.isRegLoc() && "Can only return in registers!");
1654 RetRegs.push_back(VA.getLocReg());
1655 unsigned SrcReg = Reg + VA.getValNo();
1656
1657 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1658 if (!RVEVT.isSimple())
1659 return false;
1660 MVT RVVT = RVEVT.getSimpleVT();
1661 MVT DestVT = VA.getLocVT();
1662
1663 if (RVVT != DestVT && RVVT != MVT::i8 &&
1664 RVVT != MVT::i16 && RVVT != MVT::i32)
1665 return false;
1666
1667 if (RVVT != DestVT) {
1668 switch (VA.getLocInfo()) {
1669 default:
1670 llvm_unreachable("Unknown loc info!");
1671 case CCValAssign::Full:
1672 llvm_unreachable("Full value assign but types don't match?");
1673 case CCValAssign::AExt:
1674 case CCValAssign::ZExt: {
1675 const TargetRegisterClass *RC =
1676 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1677 unsigned TmpReg = createResultReg(RC);
1678 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1679 return false;
1680 SrcReg = TmpReg;
1681 break;
1682 }
1683 case CCValAssign::SExt: {
1684 const TargetRegisterClass *RC =
1685 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1686 unsigned TmpReg = createResultReg(RC);
1687 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1688 return false;
1689 SrcReg = TmpReg;
1690 break;
1691 }
1692 }
1693 }
1694
1695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1696 TII.get(TargetOpcode::COPY), RetRegs[i])
1697 .addReg(SrcReg);
1698 }
1699 }
1700 }
1701
1702 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1703 TII.get(PPC::BLR8));
1704
1705 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1706 MIB.addReg(RetRegs[i], RegState::Implicit);
1707
1708 return true;
1709 }
1710
1711 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1712 // signed and zero extensions are supported. Return false if we
1713 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1714 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1715 unsigned DestReg, bool IsZExt) {
1716 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1717 return false;
1718 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1719 return false;
1720
1721 // Signed extensions use EXTSB, EXTSH, EXTSW.
1722 if (!IsZExt) {
1723 unsigned Opc;
1724 if (SrcVT == MVT::i8)
1725 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1726 else if (SrcVT == MVT::i16)
1727 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1728 else {
1729 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1730 Opc = PPC::EXTSW_32_64;
1731 }
1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1733 .addReg(SrcReg);
1734
1735 // Unsigned 32-bit extensions use RLWINM.
1736 } else if (DestVT == MVT::i32) {
1737 unsigned MB;
1738 if (SrcVT == MVT::i8)
1739 MB = 24;
1740 else {
1741 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1742 MB = 16;
1743 }
1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1745 DestReg)
1746 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1747
1748 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1749 } else {
1750 unsigned MB;
1751 if (SrcVT == MVT::i8)
1752 MB = 56;
1753 else if (SrcVT == MVT::i16)
1754 MB = 48;
1755 else
1756 MB = 32;
1757 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1758 TII.get(PPC::RLDICL_32_64), DestReg)
1759 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1760 }
1761
1762 return true;
1763 }
1764
1765 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1766 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1767 unsigned AddrReg = getRegForValue(I->getOperand(0));
1768 if (AddrReg == 0)
1769 return false;
1770
1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1772 .addReg(AddrReg);
1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1774
1775 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1776 for (const BasicBlock *SuccBB : IB->successors())
1777 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1778
1779 return true;
1780 }
1781
1782 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1783 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1784 Value *Src = I->getOperand(0);
1785 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1786 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1787
1788 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1789 return false;
1790
1791 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1792 return false;
1793
1794 unsigned SrcReg = getRegForValue(Src);
1795 if (!SrcReg)
1796 return false;
1797
1798 // The only interesting case is when we need to switch register classes.
1799 if (SrcVT == MVT::i64) {
1800 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1802 TII.get(TargetOpcode::COPY),
1803 ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1804 SrcReg = ResultReg;
1805 }
1806
1807 updateValueMap(I, SrcReg);
1808 return true;
1809 }
1810
1811 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1812 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1813 Type *DestTy = I->getType();
1814 Value *Src = I->getOperand(0);
1815 Type *SrcTy = Src->getType();
1816
1817 bool IsZExt = isa<ZExtInst>(I);
1818 unsigned SrcReg = getRegForValue(Src);
1819 if (!SrcReg) return false;
1820
1821 EVT SrcEVT, DestEVT;
1822 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1823 DestEVT = TLI.getValueType(DL, DestTy, true);
1824 if (!SrcEVT.isSimple())
1825 return false;
1826 if (!DestEVT.isSimple())
1827 return false;
1828
1829 MVT SrcVT = SrcEVT.getSimpleVT();
1830 MVT DestVT = DestEVT.getSimpleVT();
1831
1832 // If we know the register class needed for the result of this
1833 // instruction, use it. Otherwise pick the register class of the
1834 // correct size that does not contain X0/R0, since we don't know
1835 // whether downstream uses permit that assignment.
1836 unsigned AssignedReg = FuncInfo.ValueMap[I];
1837 const TargetRegisterClass *RC =
1838 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1839 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1840 &PPC::GPRC_and_GPRC_NOR0RegClass));
1841 unsigned ResultReg = createResultReg(RC);
1842
1843 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1844 return false;
1845
1846 updateValueMap(I, ResultReg);
1847 return true;
1848 }
1849
1850 // Attempt to fast-select an instruction that wasn't handled by
1851 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1852 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1853
1854 switch (I->getOpcode()) {
1855 case Instruction::Load:
1856 return SelectLoad(I);
1857 case Instruction::Store:
1858 return SelectStore(I);
1859 case Instruction::Br:
1860 return SelectBranch(I);
1861 case Instruction::IndirectBr:
1862 return SelectIndirectBr(I);
1863 case Instruction::FPExt:
1864 return SelectFPExt(I);
1865 case Instruction::FPTrunc:
1866 return SelectFPTrunc(I);
1867 case Instruction::SIToFP:
1868 return SelectIToFP(I, /*IsSigned*/ true);
1869 case Instruction::UIToFP:
1870 return SelectIToFP(I, /*IsSigned*/ false);
1871 case Instruction::FPToSI:
1872 return SelectFPToI(I, /*IsSigned*/ true);
1873 case Instruction::FPToUI:
1874 return SelectFPToI(I, /*IsSigned*/ false);
1875 case Instruction::Add:
1876 return SelectBinaryIntOp(I, ISD::ADD);
1877 case Instruction::Or:
1878 return SelectBinaryIntOp(I, ISD::OR);
1879 case Instruction::Sub:
1880 return SelectBinaryIntOp(I, ISD::SUB);
1881 case Instruction::Call:
1882 return selectCall(I);
1883 case Instruction::Ret:
1884 return SelectRet(I);
1885 case Instruction::Trunc:
1886 return SelectTrunc(I);
1887 case Instruction::ZExt:
1888 case Instruction::SExt:
1889 return SelectIntExt(I);
1890 // Here add other flavors of Instruction::XXX that automated
1891 // cases don't catch. For example, switches are terminators
1892 // that aren't yet handled.
1893 default:
1894 break;
1895 }
1896 return false;
1897 }
1898
1899 // Materialize a floating-point constant into a register, and return
1900 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1901 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1902 // No plans to handle long double here.
1903 if (VT != MVT::f32 && VT != MVT::f64)
1904 return 0;
1905
1906 // All FP constants are loaded from the constant pool.
1907 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1908 assert(Align > 0 && "Unexpectedly missing alignment information!");
1909 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1910 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1911 CodeModel::Model CModel = TM.getCodeModel();
1912
1913 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1914 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
1915 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
1916
1917 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1918 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1919
1920 PPCFuncInfo->setUsesTOCBasePtr();
1921 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1922 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
1924 TmpReg)
1925 .addConstantPoolIndex(Idx).addReg(PPC::X2);
1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1927 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1928 } else {
1929 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1931 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1932 // But for large code model, we must generate a LDtocL followed
1933 // by the LF[SD].
1934 if (CModel == CodeModel::Large) {
1935 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1937 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1939 .addImm(0).addReg(TmpReg2);
1940 } else
1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1942 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1943 .addReg(TmpReg)
1944 .addMemOperand(MMO);
1945 }
1946
1947 return DestReg;
1948 }
1949
1950 // Materialize the address of a global value into a register, and return
1951 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)1952 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1953 assert(VT == MVT::i64 && "Non-address!");
1954 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1955 unsigned DestReg = createResultReg(RC);
1956
1957 // Global values may be plain old object addresses, TLS object
1958 // addresses, constant pool entries, or jump tables. How we generate
1959 // code for these may depend on small, medium, or large code model.
1960 CodeModel::Model CModel = TM.getCodeModel();
1961
1962 // FIXME: Jump tables are not yet required because fast-isel doesn't
1963 // handle switches; if that changes, we need them as well. For now,
1964 // what follows assumes everything's a generic (or TLS) global address.
1965
1966 // FIXME: We don't yet handle the complexity of TLS.
1967 if (GV->isThreadLocal())
1968 return 0;
1969
1970 PPCFuncInfo->setUsesTOCBasePtr();
1971 // For small code model, generate a simple TOC load.
1972 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
1974 DestReg)
1975 .addGlobalAddress(GV)
1976 .addReg(PPC::X2);
1977 else {
1978 // If the address is an externally defined symbol, a symbol with common
1979 // or externally available linkage, a non-local function address, or a
1980 // jump table address (not yet needed), or if we are generating code
1981 // for large code model, we generate:
1982 // LDtocL(GV, ADDIStocHA(%X2, GV))
1983 // Otherwise we generate:
1984 // ADDItocL(ADDIStocHA(%X2, GV), GV)
1985 // Either way, start with the ADDIStocHA:
1986 unsigned HighPartReg = createResultReg(RC);
1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1988 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1989
1990 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
1991 if (GVFlags & PPCII::MO_NLP_FLAG) {
1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1993 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1994 } else {
1995 // Otherwise generate the ADDItocL.
1996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
1997 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1998 }
1999 }
2000
2001 return DestReg;
2002 }
2003
2004 // Materialize a 32-bit integer constant into a register, and return
2005 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)2006 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2007 const TargetRegisterClass *RC) {
2008 unsigned Lo = Imm & 0xFFFF;
2009 unsigned Hi = (Imm >> 16) & 0xFFFF;
2010
2011 unsigned ResultReg = createResultReg(RC);
2012 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2013
2014 if (isInt<16>(Imm))
2015 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2016 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2017 .addImm(Imm);
2018 else if (Lo) {
2019 // Both Lo and Hi have nonzero bits.
2020 unsigned TmpReg = createResultReg(RC);
2021 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2022 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2023 .addImm(Hi);
2024 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2025 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2026 .addReg(TmpReg).addImm(Lo);
2027 } else
2028 // Just Hi bits.
2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2030 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2031 .addImm(Hi);
2032
2033 return ResultReg;
2034 }
2035
2036 // Materialize a 64-bit integer constant into a register, and return
2037 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2038 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2039 const TargetRegisterClass *RC) {
2040 unsigned Remainder = 0;
2041 unsigned Shift = 0;
2042
2043 // If the value doesn't fit in 32 bits, see if we can shift it
2044 // so that it fits in 32 bits.
2045 if (!isInt<32>(Imm)) {
2046 Shift = countTrailingZeros<uint64_t>(Imm);
2047 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2048
2049 if (isInt<32>(ImmSh))
2050 Imm = ImmSh;
2051 else {
2052 Remainder = Imm;
2053 Shift = 32;
2054 Imm >>= 32;
2055 }
2056 }
2057
2058 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2059 // (if not shifted).
2060 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2061 if (!Shift)
2062 return TmpReg1;
2063
2064 // If upper 32 bits were not zero, we've built them and need to shift
2065 // them into place.
2066 unsigned TmpReg2;
2067 if (Imm) {
2068 TmpReg2 = createResultReg(RC);
2069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2070 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2071 } else
2072 TmpReg2 = TmpReg1;
2073
2074 unsigned TmpReg3, Hi, Lo;
2075 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2076 TmpReg3 = createResultReg(RC);
2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2078 TmpReg3).addReg(TmpReg2).addImm(Hi);
2079 } else
2080 TmpReg3 = TmpReg2;
2081
2082 if ((Lo = Remainder & 0xFFFF)) {
2083 unsigned ResultReg = createResultReg(RC);
2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2085 ResultReg).addReg(TmpReg3).addImm(Lo);
2086 return ResultReg;
2087 }
2088
2089 return TmpReg3;
2090 }
2091
2092 // Materialize an integer constant into a register, and return
2093 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const ConstantInt * CI,MVT VT,bool UseSExt)2094 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2095 bool UseSExt) {
2096 // If we're using CR bit registers for i1 values, handle that as a special
2097 // case first.
2098 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2099 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2101 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2102 return ImmReg;
2103 }
2104
2105 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2106 VT != MVT::i1)
2107 return 0;
2108
2109 const TargetRegisterClass *RC =
2110 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2111 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2112
2113 // If the constant is in range, use a load-immediate.
2114 // Since LI will sign extend the constant we need to make sure that for
2115 // our zeroext constants that the sign extended constant fits into 16-bits -
2116 // a range of 0..0x7fff.
2117 if (isInt<16>(Imm)) {
2118 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2119 unsigned ImmReg = createResultReg(RC);
2120 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2121 .addImm(Imm);
2122 return ImmReg;
2123 }
2124
2125 // Construct the constant piecewise.
2126 if (VT == MVT::i64)
2127 return PPCMaterialize64BitInt(Imm, RC);
2128 else if (VT == MVT::i32)
2129 return PPCMaterialize32BitInt(Imm, RC);
2130
2131 return 0;
2132 }
2133
2134 // Materialize a constant into a register, and return the register
2135 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2136 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2137 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2138
2139 // Only handle simple types.
2140 if (!CEVT.isSimple()) return 0;
2141 MVT VT = CEVT.getSimpleVT();
2142
2143 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2144 return PPCMaterializeFP(CFP, VT);
2145 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2146 return PPCMaterializeGV(GV, VT);
2147 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2148 return PPCMaterializeInt(CI, VT, VT != MVT::i1);
2149
2150 return 0;
2151 }
2152
2153 // Materialize the address created by an alloca into a register, and
2154 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2155 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2156 // Don't handle dynamic allocas.
2157 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2158
2159 MVT VT;
2160 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2161
2162 DenseMap<const AllocaInst*, int>::iterator SI =
2163 FuncInfo.StaticAllocaMap.find(AI);
2164
2165 if (SI != FuncInfo.StaticAllocaMap.end()) {
2166 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2167 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2168 ResultReg).addFrameIndex(SI->second).addImm(0);
2169 return ResultReg;
2170 }
2171
2172 return 0;
2173 }
2174
2175 // Fold loads into extends when possible.
2176 // FIXME: We can have multiple redundant extend/trunc instructions
2177 // following a load. The folding only picks up one. Extend this
2178 // to check subsequent instructions for the same pattern and remove
2179 // them. Thus ResultReg should be the def reg for the last redundant
2180 // instruction in a chain, and all intervening instructions can be
2181 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2182 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2183 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2184 const LoadInst *LI) {
2185 // Verify we have a legal type before going any further.
2186 MVT VT;
2187 if (!isLoadTypeLegal(LI->getType(), VT))
2188 return false;
2189
2190 // Combine load followed by zero- or sign-extend.
2191 bool IsZExt = false;
2192 switch(MI->getOpcode()) {
2193 default:
2194 return false;
2195
2196 case PPC::RLDICL:
2197 case PPC::RLDICL_32_64: {
2198 IsZExt = true;
2199 unsigned MB = MI->getOperand(3).getImm();
2200 if ((VT == MVT::i8 && MB <= 56) ||
2201 (VT == MVT::i16 && MB <= 48) ||
2202 (VT == MVT::i32 && MB <= 32))
2203 break;
2204 return false;
2205 }
2206
2207 case PPC::RLWINM:
2208 case PPC::RLWINM8: {
2209 IsZExt = true;
2210 unsigned MB = MI->getOperand(3).getImm();
2211 if ((VT == MVT::i8 && MB <= 24) ||
2212 (VT == MVT::i16 && MB <= 16))
2213 break;
2214 return false;
2215 }
2216
2217 case PPC::EXTSB:
2218 case PPC::EXTSB8:
2219 case PPC::EXTSB8_32_64:
2220 /* There is no sign-extending load-byte instruction. */
2221 return false;
2222
2223 case PPC::EXTSH:
2224 case PPC::EXTSH8:
2225 case PPC::EXTSH8_32_64: {
2226 if (VT != MVT::i16 && VT != MVT::i8)
2227 return false;
2228 break;
2229 }
2230
2231 case PPC::EXTSW:
2232 case PPC::EXTSW_32_64: {
2233 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2234 return false;
2235 break;
2236 }
2237 }
2238
2239 // See if we can handle this address.
2240 Address Addr;
2241 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2242 return false;
2243
2244 unsigned ResultReg = MI->getOperand(0).getReg();
2245
2246 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
2247 return false;
2248
2249 MI->eraseFromParent();
2250 return true;
2251 }
2252
2253 // Attempt to lower call arguments in a faster way than done by
2254 // the selection DAG code.
fastLowerArguments()2255 bool PPCFastISel::fastLowerArguments() {
2256 // Defer to normal argument lowering for now. It's reasonably
2257 // efficient. Consider doing something like ARM to handle the
2258 // case where all args fit in registers, no varargs, no float
2259 // or vector args.
2260 return false;
2261 }
2262
2263 // Handle materializing integer constants into a register. This is not
2264 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2265 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2266
2267 if (Opc != ISD::Constant)
2268 return 0;
2269
2270 // If we're using CR bit registers for i1 values, handle that as a special
2271 // case first.
2272 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2273 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2275 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2276 return ImmReg;
2277 }
2278
2279 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2280 VT != MVT::i8 && VT != MVT::i1)
2281 return 0;
2282
2283 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2284 &PPC::GPRCRegClass);
2285 if (VT == MVT::i64)
2286 return PPCMaterialize64BitInt(Imm, RC);
2287 else
2288 return PPCMaterialize32BitInt(Imm, RC);
2289 }
2290
2291 // Override for ADDI and ADDI8 to set the correct register class
2292 // on RHS operand 0. The automatic infrastructure naively assumes
2293 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2294 // for these cases. At the moment, none of the other automatically
2295 // generated RI instructions require special treatment. However, once
2296 // SelectSelect is implemented, "isel" requires similar handling.
2297 //
2298 // Also be conservative about the output register class. Avoid
2299 // assigning R0 or X0 to the output register for GPRC and G8RC
2300 // register classes, as any such result could be used in ADDI, etc.,
2301 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)2302 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2303 const TargetRegisterClass *RC,
2304 unsigned Op0, bool Op0IsKill,
2305 uint64_t Imm) {
2306 if (MachineInstOpcode == PPC::ADDI)
2307 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2308 else if (MachineInstOpcode == PPC::ADDI8)
2309 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2310
2311 const TargetRegisterClass *UseRC =
2312 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2313 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2314
2315 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2316 Op0, Op0IsKill, Imm);
2317 }
2318
2319 // Override for instructions with one register operand to avoid use of
2320 // R0/X0. The automatic infrastructure isn't aware of the context so
2321 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)2322 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2323 const TargetRegisterClass* RC,
2324 unsigned Op0, bool Op0IsKill) {
2325 const TargetRegisterClass *UseRC =
2326 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2327 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2328
2329 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2330 }
2331
2332 // Override for instructions with two register operands to avoid use
2333 // of R0/X0. The automatic infrastructure isn't aware of the context
2334 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2335 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2336 const TargetRegisterClass* RC,
2337 unsigned Op0, bool Op0IsKill,
2338 unsigned Op1, bool Op1IsKill) {
2339 const TargetRegisterClass *UseRC =
2340 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2341 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2342
2343 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2344 Op1, Op1IsKill);
2345 }
2346
2347 namespace llvm {
2348 // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2349 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2350 const TargetLibraryInfo *LibInfo) {
2351 // Only available on 64-bit ELF for now.
2352 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2353 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2354 return new PPCFastISel(FuncInfo, LibInfo);
2355 return nullptr;
2356 }
2357 }
2358