1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===// 2 3TODO: 4* lmw/stmw pass a la arm load store optimizer for prolog/epilog 5 6===-------------------------------------------------------------------------=== 7 8This code: 9 10unsigned add32carry(unsigned sum, unsigned x) { 11 unsigned z = sum + x; 12 if (sum + x < x) 13 z++; 14 return z; 15} 16 17Should compile to something like: 18 19 addc r3,r3,r4 20 addze r3,r3 21 22instead we get: 23 24 add r3, r4, r3 25 cmplw cr7, r3, r4 26 mfcr r4 ; 1 27 rlwinm r4, r4, 29, 31, 31 28 add r3, r3, r4 29 30Ick. 31 32===-------------------------------------------------------------------------=== 33 34We compile the hottest inner loop of viterbi to: 35 36 li r6, 0 37 b LBB1_84 ;bb432.i 38LBB1_83: ;bb420.i 39 lbzx r8, r5, r7 40 addi r6, r7, 1 41 stbx r8, r4, r7 42LBB1_84: ;bb432.i 43 mr r7, r6 44 cmplwi cr0, r7, 143 45 bne cr0, LBB1_83 ;bb420.i 46 47The CBE manages to produce: 48 49 li r0, 143 50 mtctr r0 51loop: 52 lbzx r2, r2, r11 53 stbx r0, r2, r9 54 addi r2, r2, 1 55 bdz later 56 b loop 57 58This could be much better (bdnz instead of bdz) but it still beats us. If we 59produced this with bdnz, the loop would be a single dispatch group. 60 61===-------------------------------------------------------------------------=== 62 63Lump the constant pool for each function into ONE pic object, and reference 64pieces of it as offsets from the start. For functions like this (contrived 65to have lots of constants obviously): 66 67double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; } 68 69We generate: 70 71_X: 72 lis r2, ha16(.CPI_X_0) 73 lfd f0, lo16(.CPI_X_0)(r2) 74 lis r2, ha16(.CPI_X_1) 75 lfd f2, lo16(.CPI_X_1)(r2) 76 fmadd f0, f1, f0, f2 77 lis r2, ha16(.CPI_X_2) 78 lfd f1, lo16(.CPI_X_2)(r2) 79 lis r2, ha16(.CPI_X_3) 80 lfd f2, lo16(.CPI_X_3)(r2) 81 fmadd f1, f0, f1, f2 82 blr 83 84It would be better to materialize .CPI_X into a register, then use immediates 85off of the register to avoid the lis's. This is even more important in PIC 86mode. 87 88Note that this (and the static variable version) is discussed here for GCC: 89http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html 90 91Here's another example (the sgn function): 92double testf(double a) { 93 return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0); 94} 95 96it produces a BB like this: 97LBB1_1: ; cond_true 98 lis r2, ha16(LCPI1_0) 99 lfs f0, lo16(LCPI1_0)(r2) 100 lis r2, ha16(LCPI1_1) 101 lis r3, ha16(LCPI1_2) 102 lfs f2, lo16(LCPI1_2)(r3) 103 lfs f3, lo16(LCPI1_1)(r2) 104 fsub f0, f0, f1 105 fsel f1, f0, f2, f3 106 blr 107 108===-------------------------------------------------------------------------=== 109 110PIC Code Gen IPO optimization: 111 112Squish small scalar globals together into a single global struct, allowing the 113address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size 114of the GOT on targets with one). 115 116Note that this is discussed here for GCC: 117http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html 118 119===-------------------------------------------------------------------------=== 120 121Darwin Stub removal: 122 123We still generate calls to foo$stub, and stubs, on Darwin. This is not 124necessary when building with the Leopard (10.5) or later linker, as stubs are 125generated by ld when necessary. Parameterizing this based on the deployment 126target (-mmacosx-version-min) is probably enough. x86-32 does this right, see 127its logic. 128 129===-------------------------------------------------------------------------=== 130 131Darwin Stub LICM optimization: 132 133Loops like this: 134 135 for (...) bar(); 136 137Have to go through an indirect stub if bar is external or linkonce. It would 138be better to compile it as: 139 140 fp = &bar; 141 for (...) fp(); 142 143which only computes the address of bar once (instead of each time through the 144stub). This is Darwin specific and would have to be done in the code generator. 145Probably not a win on x86. 146 147===-------------------------------------------------------------------------=== 148 149Simple IPO for argument passing, change: 150 void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y) 151 152the Darwin ABI specifies that any integer arguments in the first 32 bytes worth 153of arguments get assigned to r3 through r10. That is, if you have a function 154foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the 155argument bytes for r4 and r5. The trick then would be to shuffle the argument 156order for functions we can internalize so that the maximum number of 157integers/pointers get passed in regs before you see any of the fp arguments. 158 159Instead of implementing this, it would actually probably be easier to just 160implement a PPC fastcc, where we could do whatever we wanted to the CC, 161including having this work sanely. 162 163===-------------------------------------------------------------------------=== 164 165Fix Darwin FP-In-Integer Registers ABI 166 167Darwin passes doubles in structures in integer registers, which is very very 168bad. Add something like a BITCAST to LLVM, then do an i-p transformation that 169percolates these things out of functions. 170 171Check out how horrible this is: 172http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html 173 174This is an extension of "interprocedural CC unmunging" that can't be done with 175just fastcc. 176 177===-------------------------------------------------------------------------=== 178 179Fold add and sub with constant into non-extern, non-weak addresses so this: 180 181static int a; 182void bar(int b) { a = b; } 183void foo(unsigned char *c) { 184 *c = a; 185} 186 187So that 188 189_foo: 190 lis r2, ha16(_a) 191 la r2, lo16(_a)(r2) 192 lbz r2, 3(r2) 193 stb r2, 0(r3) 194 blr 195 196Becomes 197 198_foo: 199 lis r2, ha16(_a+3) 200 lbz r2, lo16(_a+3)(r2) 201 stb r2, 0(r3) 202 blr 203 204===-------------------------------------------------------------------------=== 205 206We should compile these two functions to the same thing: 207 208#include <stdlib.h> 209void f(int a, int b, int *P) { 210 *P = (a-b)>=0?(a-b):(b-a); 211} 212void g(int a, int b, int *P) { 213 *P = abs(a-b); 214} 215 216Further, they should compile to something better than: 217 218_g: 219 subf r2, r4, r3 220 subfic r3, r2, 0 221 cmpwi cr0, r2, -1 222 bgt cr0, LBB2_2 ; entry 223LBB2_1: ; entry 224 mr r2, r3 225LBB2_2: ; entry 226 stw r2, 0(r5) 227 blr 228 229GCC produces: 230 231_g: 232 subf r4,r4,r3 233 srawi r2,r4,31 234 xor r0,r2,r4 235 subf r0,r2,r0 236 stw r0,0(r5) 237 blr 238 239... which is much nicer. 240 241This theoretically may help improve twolf slightly (used in dimbox.c:142?). 242 243===-------------------------------------------------------------------------=== 244 245PR5945: This: 246define i32 @clamp0g(i32 %a) { 247entry: 248 %cmp = icmp slt i32 %a, 0 249 %sel = select i1 %cmp, i32 0, i32 %a 250 ret i32 %sel 251} 252 253Is compile to this with the PowerPC (32-bit) backend: 254 255_clamp0g: 256 cmpwi cr0, r3, 0 257 li r2, 0 258 blt cr0, LBB1_2 259; BB#1: ; %entry 260 mr r2, r3 261LBB1_2: ; %entry 262 mr r3, r2 263 blr 264 265This could be reduced to the much simpler: 266 267_clamp0g: 268 srawi r2, r3, 31 269 andc r3, r3, r2 270 blr 271 272===-------------------------------------------------------------------------=== 273 274int foo(int N, int ***W, int **TK, int X) { 275 int t, i; 276 277 for (t = 0; t < N; ++t) 278 for (i = 0; i < 4; ++i) 279 W[t / X][i][t % X] = TK[i][t]; 280 281 return 5; 282} 283 284We generate relatively atrocious code for this loop compared to gcc. 285 286We could also strength reduce the rem and the div: 287http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf 288 289===-------------------------------------------------------------------------=== 290 291We generate ugly code for this: 292 293void func(unsigned int *ret, float dx, float dy, float dz, float dw) { 294 unsigned code = 0; 295 if(dx < -dw) code |= 1; 296 if(dx > dw) code |= 2; 297 if(dy < -dw) code |= 4; 298 if(dy > dw) code |= 8; 299 if(dz < -dw) code |= 16; 300 if(dz > dw) code |= 32; 301 *ret = code; 302} 303 304===-------------------------------------------------------------------------=== 305 306%struct.B = type { i8, [3 x i8] } 307 308define void @bar(%struct.B* %b) { 309entry: 310 %tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1] 311 %tmp = load i32* %tmp ; <uint> [#uses=1] 312 %tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1] 313 %tmp4 = load i32* %tmp3 ; <uint> [#uses=1] 314 %tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2] 315 %tmp9 = load i32* %tmp8 ; <uint> [#uses=1] 316 %tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1] 317 %tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1] 318 %tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1] 319 %tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1] 320 %tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1] 321 %tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1] 322 store i32 %tmp13, i32* %tmp8 323 ret void 324} 325 326We emit: 327 328_foo: 329 lwz r2, 0(r3) 330 slwi r4, r2, 1 331 or r4, r4, r2 332 rlwimi r2, r4, 0, 0, 0 333 stw r2, 0(r3) 334 blr 335 336We could collapse a bunch of those ORs and ANDs and generate the following 337equivalent code: 338 339_foo: 340 lwz r2, 0(r3) 341 rlwinm r4, r2, 1, 0, 0 342 or r2, r2, r4 343 stw r2, 0(r3) 344 blr 345 346===-------------------------------------------------------------------------=== 347 348Consider a function like this: 349 350float foo(float X) { return X + 1234.4123f; } 351 352The FP constant ends up in the constant pool, so we need to get the LR register. 353 This ends up producing code like this: 354 355_foo: 356.LBB_foo_0: ; entry 357 mflr r11 358*** stw r11, 8(r1) 359 bl "L00000$pb" 360"L00000$pb": 361 mflr r2 362 addis r2, r2, ha16(.CPI_foo_0-"L00000$pb") 363 lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2) 364 fadds f1, f1, f0 365*** lwz r11, 8(r1) 366 mtlr r11 367 blr 368 369This is functional, but there is no reason to spill the LR register all the way 370to the stack (the two marked instrs): spilling it to a GPR is quite enough. 371 372Implementing this will require some codegen improvements. Nate writes: 373 374"So basically what we need to support the "no stack frame save and restore" is a 375generalization of the LR optimization to "callee-save regs". 376 377Currently, we have LR marked as a callee-save reg. The register allocator sees 378that it's callee save, and spills it directly to the stack. 379 380Ideally, something like this would happen: 381 382LR would be in a separate register class from the GPRs. The class of LR would be 383marked "unspillable". When the register allocator came across an unspillable 384reg, it would ask "what is the best class to copy this into that I *can* spill" 385If it gets a class back, which it will in this case (the gprs), it grabs a free 386register of that class. If it is then later necessary to spill that reg, so be 387it. 388 389===-------------------------------------------------------------------------=== 390 391We compile this: 392int test(_Bool X) { 393 return X ? 524288 : 0; 394} 395 396to: 397_test: 398 cmplwi cr0, r3, 0 399 lis r2, 8 400 li r3, 0 401 beq cr0, LBB1_2 ;entry 402LBB1_1: ;entry 403 mr r3, r2 404LBB1_2: ;entry 405 blr 406 407instead of: 408_test: 409 addic r2,r3,-1 410 subfe r0,r2,r3 411 slwi r3,r0,19 412 blr 413 414This sort of thing occurs a lot due to globalopt. 415 416===-------------------------------------------------------------------------=== 417 418We compile: 419 420define i32 @bar(i32 %x) nounwind readnone ssp { 421entry: 422 %0 = icmp eq i32 %x, 0 ; <i1> [#uses=1] 423 %neg = sext i1 %0 to i32 ; <i32> [#uses=1] 424 ret i32 %neg 425} 426 427to: 428 429_bar: 430 cntlzw r2, r3 431 slwi r2, r2, 26 432 srawi r3, r2, 31 433 blr 434 435it would be better to produce: 436 437_bar: 438 addic r3,r3,-1 439 subfe r3,r3,r3 440 blr 441 442===-------------------------------------------------------------------------=== 443 444We generate horrible ppc code for this: 445 446#define N 2000000 447double a[N],c[N]; 448void simpleloop() { 449 int j; 450 for (j=0; j<N; j++) 451 c[j] = a[j]; 452} 453 454LBB1_1: ;bb 455 lfdx f0, r3, r4 456 addi r5, r5, 1 ;; Extra IV for the exit value compare. 457 stfdx f0, r2, r4 458 addi r4, r4, 8 459 460 xoris r6, r5, 30 ;; This is due to a large immediate. 461 cmplwi cr0, r6, 33920 462 bne cr0, LBB1_1 463 464//===---------------------------------------------------------------------===// 465 466This: 467 #include <algorithm> 468 inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b) 469 { return std::make_pair(a + b, a + b < a); } 470 bool no_overflow(unsigned a, unsigned b) 471 { return !full_add(a, b).second; } 472 473Should compile to: 474 475__Z11no_overflowjj: 476 add r4,r3,r4 477 subfc r3,r3,r4 478 li r3,0 479 adde r3,r3,r3 480 blr 481 482(or better) not: 483 484__Z11no_overflowjj: 485 add r2, r4, r3 486 cmplw cr7, r2, r3 487 mfcr r2 488 rlwinm r2, r2, 29, 31, 31 489 xori r3, r2, 1 490 blr 491 492//===---------------------------------------------------------------------===// 493 494We compile some FP comparisons into an mfcr with two rlwinms and an or. For 495example: 496#include <math.h> 497int test(double x, double y) { return islessequal(x, y);} 498int test2(double x, double y) { return islessgreater(x, y);} 499int test3(double x, double y) { return !islessequal(x, y);} 500 501Compiles into (all three are similar, but the bits differ): 502 503_test: 504 fcmpu cr7, f1, f2 505 mfcr r2 506 rlwinm r3, r2, 29, 31, 31 507 rlwinm r2, r2, 31, 31, 31 508 or r3, r2, r3 509 blr 510 511GCC compiles this into: 512 513 _test: 514 fcmpu cr7,f1,f2 515 cror 30,28,30 516 mfcr r3 517 rlwinm r3,r3,31,1 518 blr 519 520which is more efficient and can use mfocr. See PR642 for some more context. 521 522//===---------------------------------------------------------------------===// 523 524void foo(float *data, float d) { 525 long i; 526 for (i = 0; i < 8000; i++) 527 data[i] = d; 528} 529void foo2(float *data, float d) { 530 long i; 531 data--; 532 for (i = 0; i < 8000; i++) { 533 data[1] = d; 534 data++; 535 } 536} 537 538These compile to: 539 540_foo: 541 li r2, 0 542LBB1_1: ; bb 543 addi r4, r2, 4 544 stfsx f1, r3, r2 545 cmplwi cr0, r4, 32000 546 mr r2, r4 547 bne cr0, LBB1_1 ; bb 548 blr 549_foo2: 550 li r2, 0 551LBB2_1: ; bb 552 addi r4, r2, 4 553 stfsx f1, r3, r2 554 cmplwi cr0, r4, 32000 555 mr r2, r4 556 bne cr0, LBB2_1 ; bb 557 blr 558 559The 'mr' could be eliminated to folding the add into the cmp better. 560 561//===---------------------------------------------------------------------===// 562Codegen for the following (low-probability) case deteriorated considerably 563when the correctness fixes for unordered comparisons went in (PR 642, 58871). 564It should be possible to recover the code quality described in the comments. 565 566; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3 567; This should produce one 'or' or 'cror' instruction per function. 568 569; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3 570; PR2964 571 572define i32 @test(double %x, double %y) nounwind { 573entry: 574 %tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1] 575 %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] 576 ret i32 %tmp345 577} 578 579define i32 @test2(double %x, double %y) nounwind { 580entry: 581 %tmp3 = fcmp one double %x, %y ; <i1> [#uses=1] 582 %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] 583 ret i32 %tmp345 584} 585 586define i32 @test3(double %x, double %y) nounwind { 587entry: 588 %tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1] 589 %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] 590 ret i32 %tmp34 591} 592 593//===---------------------------------------------------------------------===// 594for the following code: 595 596void foo (float *__restrict__ a, int *__restrict__ b, int n) { 597 a[n] = b[n] * 2.321; 598} 599 600we load b[n] to GPR, then move it VSX register and convert it float. We should 601use vsx scalar integer load instructions to avoid direct moves 602 603//===----------------------------------------------------------------------===// 604; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg 605 606; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and 607; should not be generated except with -enable-finite-only-fp-math or the like). 608; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to 609; recognize a more elaborate tree than a simple SETxx. 610 611define double @test_FNEG_sel(double %A, double %B, double %C) { 612 %D = fsub double -0.000000e+00, %A ; <double> [#uses=1] 613 %Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1] 614 %E = select i1 %Cond, double %B, double %C ; <double> [#uses=1] 615 ret double %E 616} 617 618//===----------------------------------------------------------------------===// 619The save/restore sequence for CR in prolog/epilog is terrible: 620- Each CR subreg is saved individually, rather than doing one save as a unit. 621- On Darwin, the save is done after the decrement of SP, which means the offset 622from SP of the save slot can be too big for a store instruction, which means we 623need an additional register (currently hacked in 96015+96020; the solution there 624is correct, but poor). 625- On SVR4 the same thing can happen, and I don't think saving before the SP 626decrement is safe on that target, as there is no red zone. This is currently 627broken AFAIK, although it's not a target I can exercise. 628The following demonstrates the problem: 629extern void bar(char *p); 630void foo() { 631 char x[100000]; 632 bar(x); 633 __asm__("" ::: "cr2"); 634} 635 636//===-------------------------------------------------------------------------=== 637Naming convention for instruction formats is very haphazard. 638We have agreed on a naming scheme as follows: 639 640<INST_form>{_<OP_type><OP_len>}+ 641 642Where: 643INST_form is the instruction format (X-form, etc.) 644OP_type is the operand type - one of OPC (opcode), RD (register destination), 645 RS (register source), 646 RDp (destination register pair), 647 RSp (source register pair), IM (immediate), 648 XO (extended opcode) 649OP_len is the length of the operand in bits 650 651VSX register operands would be of length 6 (split across two fields), 652condition register fields of length 3. 653We would not need denote reserved fields in names of instruction formats. 654 655//===----------------------------------------------------------------------===// 656 657Instruction fusion was introduced in ISA 2.06 and more opportunities added in 658ISA 2.07. LLVM needs to add infrastructure to recognize fusion opportunities 659and force instruction pairs to be scheduled together. 660 661