• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget->is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget->isV9()">,
33              AssemblerPredicate<"FeatureV9">;
34
35// HasNoV9 - This predicate is true when the target doesn't have V9
36// instructions.  Use of this is just a hack for the isel not having proper
37// costs for V8 instructions that are more expensive than their V9 ones.
38def HasNoV9 : Predicate<"!Subtarget->isV9()">;
39
40// HasVIS - This is true when the target processor has VIS extensions.
41def HasVIS : Predicate<"Subtarget->isVIS()">,
42             AssemblerPredicate<"FeatureVIS">;
43def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
44             AssemblerPredicate<"FeatureVIS2">;
45def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
46             AssemblerPredicate<"FeatureVIS3">;
47
48// HasHardQuad - This is true when the target processor supports quad floating
49// point instructions.
50def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
51
52// HasLeonCASA - This is true when the target processor supports the CASA
53// instruction
54def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
55
56// HasUMAC_SMAC - This is true when the target processor supports the
57// UMAC and SMAC instructions
58def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
59
60def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
61def HasNoFmulsFix : Predicate<"!Subtarget->replaceFMULS()">;
62def HasNoFsmuldFix : Predicate<"!Subtarget->fixFSMULD()">;
63
64// UseDeprecatedInsts - This predicate is true when the target processor is a
65// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
66// to use when appropriate.  In either of these cases, the instruction selector
67// will pick deprecated instructions.
68def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
69
70//===----------------------------------------------------------------------===//
71// Instruction Pattern Stuff
72//===----------------------------------------------------------------------===//
73
74def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
75
76def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
77
78def LO10 : SDNodeXForm<imm, [{
79  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
80                                   MVT::i32);
81}]>;
82
83def HI22 : SDNodeXForm<imm, [{
84  // Transformation function: shift the immediate value down into the low bits.
85  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
86                                   MVT::i32);
87}]>;
88
89def SETHIimm : PatLeaf<(imm), [{
90  return isShiftedUInt<22, 10>(N->getZExtValue());
91}], HI22>;
92
93// Addressing modes.
94def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
95def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
96
97// Address operands
98def SparcMEMrrAsmOperand : AsmOperandClass {
99  let Name = "MEMrr";
100  let ParserMethod = "parseMEMOperand";
101}
102
103def SparcMEMriAsmOperand : AsmOperandClass {
104  let Name = "MEMri";
105  let ParserMethod = "parseMEMOperand";
106}
107
108def MEMrr : Operand<iPTR> {
109  let PrintMethod = "printMemOperand";
110  let MIOperandInfo = (ops ptr_rc, ptr_rc);
111  let ParserMatchClass = SparcMEMrrAsmOperand;
112}
113def MEMri : Operand<iPTR> {
114  let PrintMethod = "printMemOperand";
115  let MIOperandInfo = (ops ptr_rc, i32imm);
116  let ParserMatchClass = SparcMEMriAsmOperand;
117}
118
119def TLSSym : Operand<iPTR>;
120
121// Branch targets have OtherVT type.
122def brtarget : Operand<OtherVT> {
123  let EncoderMethod = "getBranchTargetOpValue";
124}
125
126def bprtarget : Operand<OtherVT> {
127  let EncoderMethod = "getBranchPredTargetOpValue";
128}
129
130def bprtarget16 : Operand<OtherVT> {
131  let EncoderMethod = "getBranchOnRegTargetOpValue";
132}
133
134def calltarget : Operand<i32> {
135  let EncoderMethod = "getCallTargetOpValue";
136  let DecoderMethod = "DecodeCall";
137}
138
139def simm13Op : Operand<i32> {
140  let DecoderMethod = "DecodeSIMM13";
141}
142
143// Operand for printing out a condition code.
144let PrintMethod = "printCCOperand" in
145  def CCOp : Operand<i32>;
146
147def SDTSPcmpicc :
148SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
149def SDTSPcmpfcc :
150SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
151def SDTSPbrcc :
152SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
153def SDTSPselectcc :
154SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
155def SDTSPFTOI :
156SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
157def SDTSPITOF :
158SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
159def SDTSPFTOX :
160SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
161def SDTSPXTOF :
162SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
163
164def SDTSPtlsadd :
165SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
166def SDTSPtlsld :
167SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
168
169def SDTSPeh_sjlj_setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
170def SDTSPeh_sjlj_longjmp: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
171
172def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
173def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
174def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
175def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
176def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
177
178def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
179def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
180
181def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
182def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
183def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
184def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
185
186def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
187def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
188def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
189
190def SPsjlj_setjmp: SDNode<"SPISD::EH_SJLJ_SETJMP",
191                          SDTSPeh_sjlj_setjmp,
192                          [SDNPHasChain, SDNPSideEffect]>;
193def SPsjlj_longjmp: SDNode<"SPISD::EH_SJLJ_LONGJMP",
194                           SDTSPeh_sjlj_longjmp,
195                           [SDNPHasChain, SDNPSideEffect]>;
196
197//  These are target-independent nodes, but have target-specific formats.
198def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
199def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
200                                        SDTCisVT<1, i32> ]>;
201
202def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
203                           [SDNPHasChain, SDNPOutGlue]>;
204def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
205                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
206
207def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
208def call          : SDNode<"SPISD::CALL", SDT_SPCall,
209                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
210                            SDNPVariadic]>;
211
212def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
213def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
214                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
215
216def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
217                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
218
219def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
220def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
221def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
222                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
223                             SDNPVariadic]>;
224
225def getPCX        : Operand<iPTR> {
226  let PrintMethod = "printGetPCX";
227}
228
229//===----------------------------------------------------------------------===//
230// SPARC Flag Conditions
231//===----------------------------------------------------------------------===//
232
233// Note that these values must be kept in sync with the CCOp::CondCode enum
234// values.
235class ICC_VAL<int N> : PatLeaf<(i32 N)>;
236def ICC_NE  : ICC_VAL< 9>;  // Not Equal
237def ICC_E   : ICC_VAL< 1>;  // Equal
238def ICC_G   : ICC_VAL<10>;  // Greater
239def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
240def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
241def ICC_L   : ICC_VAL< 3>;  // Less
242def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
243def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
244def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
245def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
246def ICC_POS : ICC_VAL<14>;  // Positive
247def ICC_NEG : ICC_VAL< 6>;  // Negative
248def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
249def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
250
251class FCC_VAL<int N> : PatLeaf<(i32 N)>;
252def FCC_U   : FCC_VAL<23>;  // Unordered
253def FCC_G   : FCC_VAL<22>;  // Greater
254def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
255def FCC_L   : FCC_VAL<20>;  // Less
256def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
257def FCC_LG  : FCC_VAL<18>;  // Less or Greater
258def FCC_NE  : FCC_VAL<17>;  // Not Equal
259def FCC_E   : FCC_VAL<25>;  // Equal
260def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
261def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
262def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
263def FCC_LE  : FCC_VAL<29>;  // Less or Equal
264def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
265def FCC_O   : FCC_VAL<31>;  // Ordered
266
267class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
268def CPCC_3   : CPCC_VAL<39>;  // 3
269def CPCC_2   : CPCC_VAL<38>;  // 2
270def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
271def CPCC_1   : CPCC_VAL<36>;  // 1
272def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
273def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
274def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
275def CPCC_0   : CPCC_VAL<41>;  // 0
276def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
277def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
278def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
279def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
280def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
281def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2
282
283//===----------------------------------------------------------------------===//
284// Instruction Class Templates
285//===----------------------------------------------------------------------===//
286
287/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
288multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
289                 RegisterClass RC, ValueType Ty, Operand immOp,
290                 InstrItinClass itin = IIC_iu_instr> {
291  def rr  : F3_1<2, Op3Val,
292                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
293                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
294                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
295                 itin>;
296  def ri  : F3_2<2, Op3Val,
297                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
298                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
299                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
300                 itin>;
301}
302
303/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
304/// pattern.
305multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
306  def rr  : F3_1<2, Op3Val,
307                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
308                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
309                 itin>;
310  def ri  : F3_2<2, Op3Val,
311                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
312                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
313                 itin>;
314}
315
316// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
317multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
318           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
319  def rr  : F3_1<3, Op3Val,
320                 (outs RC:$dst), (ins MEMrr:$addr),
321                 !strconcat(OpcStr, " [$addr], $dst"),
322                 [(set Ty:$dst, (OpNode ADDRrr:$addr))],
323                 itin>;
324  def ri  : F3_2<3, Op3Val,
325                 (outs RC:$dst), (ins MEMri:$addr),
326                 !strconcat(OpcStr, " [$addr], $dst"),
327                 [(set Ty:$dst, (OpNode ADDRri:$addr))],
328                 itin>;
329}
330
331// TODO: Instructions of the LoadASI class are currently asm only; hooking up
332// CodeGen's address spaces to use these is a future task.
333class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
334              RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> :
335  F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
336                !strconcat(OpcStr, "a [$addr] $asi, $dst"),
337                []>;
338
339// LoadA multiclass - As above, but also define alternate address space variant
340multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
341                 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
342                 InstrItinClass itin = NoItinerary> :
343             Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
344  def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
345}
346
347// The LDSTUB instruction is supported for asm only.
348// It is unlikely that general-purpose code could make use of it.
349// CAS is preferred for sparc v9.
350def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
351                    "ldstub [$addr], $dst", []>;
352def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
353                    "ldstub [$addr], $dst", []>;
354def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
355                         (ins MEMrr:$addr, i8imm:$asi),
356                         "ldstuba [$addr] $asi, $dst", []>;
357
358// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
359multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
360           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
361  def rr  : F3_1<3, Op3Val,
362                 (outs), (ins MEMrr:$addr, RC:$rd),
363                 !strconcat(OpcStr, " $rd, [$addr]"),
364                 [(OpNode Ty:$rd, ADDRrr:$addr)],
365                 itin>;
366  def ri  : F3_2<3, Op3Val,
367                 (outs), (ins MEMri:$addr, RC:$rd),
368                 !strconcat(OpcStr, " $rd, [$addr]"),
369                 [(OpNode Ty:$rd, ADDRri:$addr)],
370                 itin>;
371}
372
373// TODO: Instructions of the StoreASI class are currently asm only; hooking up
374// CodeGen's address spaces to use these is a future task.
375class StoreASI<string OpcStr, bits<6> Op3Val,
376               SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
377               InstrItinClass itin = IIC_st> :
378  F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
379           !strconcat(OpcStr, "a $rd, [$addr] $asi"),
380           [],
381           itin>;
382
383multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
384                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
385                  InstrItinClass itin = IIC_st> :
386             Store<OpcStr, Op3Val, OpNode, RC, Ty> {
387  def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>;
388}
389
390//===----------------------------------------------------------------------===//
391// Instructions
392//===----------------------------------------------------------------------===//
393
394// Pseudo instructions.
395class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
396   : InstSP<outs, ins, asmstr, pattern> {
397  let isCodeGenOnly = 1;
398  let isPseudo = 1;
399}
400
401// GETPCX for PIC
402let Defs = [O7] in {
403  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
404}
405
406let Defs = [O6], Uses = [O6] in {
407def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
408                               "!ADJCALLSTACKDOWN $amt",
409                               [(callseq_start timm:$amt)]>;
410def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
411                            "!ADJCALLSTACKUP $amt1",
412                            [(callseq_end timm:$amt1, timm:$amt2)]>;
413}
414
415let hasSideEffects = 1, mayStore = 1 in {
416  let rd = 0, rs1 = 0, rs2 = 0 in
417    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
418                      "flushw",
419                      [(flushw)]>, Requires<[HasV9]>;
420  let rd = 0, rs1 = 1, simm13 = 3 in
421    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
422                   "ta 3",
423                   [(flushw)]>;
424}
425
426// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
427// instruction selection into a branch sequence.  This has to handle all
428// permutations of selection between i32/f32/f64 on ICC and FCC.
429// Expanded after instruction selection.
430let Uses = [ICC], usesCustomInserter = 1 in {
431  def SELECT_CC_Int_ICC
432   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
433            "; SELECT_CC_Int_ICC PSEUDO!",
434            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
435  def SELECT_CC_FP_ICC
436   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
437            "; SELECT_CC_FP_ICC PSEUDO!",
438            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
439
440  def SELECT_CC_DFP_ICC
441   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
442            "; SELECT_CC_DFP_ICC PSEUDO!",
443            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
444
445  def SELECT_CC_QFP_ICC
446   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
447            "; SELECT_CC_QFP_ICC PSEUDO!",
448            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
449}
450
451let usesCustomInserter = 1, Uses = [FCC0] in {
452
453  def SELECT_CC_Int_FCC
454   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
455            "; SELECT_CC_Int_FCC PSEUDO!",
456            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
457
458  def SELECT_CC_FP_FCC
459   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
460            "; SELECT_CC_FP_FCC PSEUDO!",
461            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
462  def SELECT_CC_DFP_FCC
463   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
464            "; SELECT_CC_DFP_FCC PSEUDO!",
465            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
466  def SELECT_CC_QFP_FCC
467   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
468            "; SELECT_CC_QFP_FCC PSEUDO!",
469            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
470}
471
472let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
473  let Defs = [WIM] in
474  def EH_SJLJ_SETJMP32ri  : Pseudo<(outs IntRegs:$dst), (ins MEMri:$buf),
475                            "#EH_SJLJ_SETJMP32",
476                            [(set i32:$dst, (SPsjlj_setjmp ADDRri:$buf))]>,
477                            Requires<[Is32Bit]>;
478  def EH_SJLJ_SETJMP32rr  : Pseudo<(outs IntRegs:$dst), (ins MEMrr:$buf),
479                            "#EH_SJLJ_SETJMP32",
480                            [(set i32:$dst, (SPsjlj_setjmp ADDRrr:$buf))]>,
481                            Requires<[Is32Bit]>;
482  let isTerminator = 1 in
483  def EH_SJLJ_LONGJMP32ri : Pseudo<(outs), (ins MEMri:$buf),
484                            "#EH_SJLJ_LONGJMP32",
485                            [(SPsjlj_longjmp ADDRri:$buf)]>,
486                            Requires<[Is32Bit]>;
487  def EH_SJLJ_LONGJMP32rr : Pseudo<(outs), (ins MEMrr:$buf),
488                            "#EH_SJLJ_LONGJMP32",
489                            [(SPsjlj_longjmp ADDRrr:$buf)]>,
490                            Requires<[Is32Bit]>;
491}
492
493// Section B.1 - Load Integer Instructions, p. 90
494let DecoderMethod = "DecodeLoadInt" in {
495  defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
496  defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
497  defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
498  defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
499  defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
500}
501
502let DecoderMethod = "DecodeLoadIntPair" in
503  defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
504
505// Section B.2 - Load Floating-point Instructions, p. 92
506let DecoderMethod = "DecodeLoadFP" in {
507  defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
508  def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32, IIC_iu_or_fpu_instr>,
509                Requires<[HasV9]>;
510}
511let DecoderMethod = "DecodeLoadDFP" in {
512  defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
513  def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
514                 Requires<[HasV9]>;
515}
516let DecoderMethod = "DecodeLoadQFP" in
517  defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
518               Requires<[HasV9, HasHardQuad]>;
519
520let DecoderMethod = "DecodeLoadCP" in
521  defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>;
522let DecoderMethod = "DecodeLoadCPPair" in
523  defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
524
525let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
526  let rd = 0 in {
527    def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
528                       "ld [$addr], %csr", []>;
529    def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
530                       "ld [$addr], %csr", []>;
531  }
532}
533
534let DecoderMethod = "DecodeLoadFP" in
535  let Defs = [FSR] in {
536    let rd = 0 in {
537      def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
538                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
539      def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
540                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
541    }
542    let rd = 1 in {
543      def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
544                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
545      def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
546                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
547    }
548  }
549
550// Section B.4 - Store Integer Instructions, p. 95
551let DecoderMethod = "DecodeStoreInt" in {
552  defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
553  defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
554  defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
555}
556
557let DecoderMethod = "DecodeStoreIntPair" in
558  defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>;
559
560// Section B.5 - Store Floating-point Instructions, p. 97
561let DecoderMethod = "DecodeStoreFP" in {
562  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
563  def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
564               Requires<[HasV9]>;
565}
566let DecoderMethod = "DecodeStoreDFP" in {
567  defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
568  def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
569                Requires<[HasV9]>;
570}
571let DecoderMethod = "DecodeStoreQFP" in
572  defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
573               Requires<[HasV9, HasHardQuad]>;
574
575let DecoderMethod = "DecodeStoreCP" in
576  defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>;
577
578let DecoderMethod = "DecodeStoreCPPair" in
579  defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
580
581let DecoderMethod = "DecodeStoreCP", rd = 0 in {
582  let Defs = [CPSR] in {
583    def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
584                       "st %csr, [$addr]", [], IIC_st>;
585    def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
586                       "st %csr, [$addr]", [], IIC_st>;
587  }
588  let Defs = [CPQ] in {
589    def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
590                       "std %cq, [$addr]", [], IIC_std>;
591    def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
592                       "std %cq, [$addr]", [], IIC_std>;
593  }
594}
595
596let DecoderMethod = "DecodeStoreFP" in {
597  let rd = 0 in {
598    let Defs = [FSR] in {
599      def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
600                     "st %fsr, [$addr]", [], IIC_st>;
601      def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
602                     "st %fsr, [$addr]", [], IIC_st>;
603    }
604    let Defs = [FQ] in {
605      def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
606                     "std %fq, [$addr]", [], IIC_std>;
607      def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
608                     "std %fq, [$addr]", [], IIC_std>;
609    }
610  }
611  let rd = 1, Defs = [FSR] in {
612    def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
613                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
614    def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
615                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
616  }
617}
618
619// Section B.8 - SWAP Register with Memory Instruction
620// (Atomic swap)
621let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
622  def SWAPrr : F3_1<3, 0b001111,
623                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
624                 "swap [$addr], $dst",
625                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
626  def SWAPri : F3_2<3, 0b001111,
627                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
628                 "swap [$addr], $dst",
629                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
630  def SWAPArr : F3_1_asi<3, 0b011111,
631                 (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
632                 "swapa [$addr] $asi, $dst",
633                 [/*FIXME: pattern?*/]>;
634}
635
636
637// Section B.9 - SETHI Instruction, p. 104
638def SETHIi: F2_1<0b100,
639                 (outs IntRegs:$rd), (ins i32imm:$imm22),
640                 "sethi $imm22, $rd",
641                 [(set i32:$rd, SETHIimm:$imm22)],
642                 IIC_iu_instr>;
643
644// Section B.10 - NOP Instruction, p. 105
645// (It's a special case of SETHI)
646let rd = 0, imm22 = 0 in
647  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
648
649// Section B.11 - Logical Instructions, p. 106
650defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
651
652def ANDNrr  : F3_1<2, 0b000101,
653                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
654                   "andn $rs1, $rs2, $rd",
655                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
656def ANDNri  : F3_2<2, 0b000101,
657                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
658                   "andn $rs1, $simm13, $rd", []>;
659
660defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
661
662def ORNrr   : F3_1<2, 0b000110,
663                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
664                   "orn $rs1, $rs2, $rd",
665                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
666def ORNri   : F3_2<2, 0b000110,
667                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
668                   "orn $rs1, $simm13, $rd", []>;
669defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
670
671def XNORrr  : F3_1<2, 0b000111,
672                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
673                   "xnor $rs1, $rs2, $rd",
674                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
675def XNORri  : F3_2<2, 0b000111,
676                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
677                   "xnor $rs1, $simm13, $rd", []>;
678
679let Defs = [ICC] in {
680  defm ANDCC  : F3_12np<"andcc",  0b010001>;
681  defm ANDNCC : F3_12np<"andncc", 0b010101>;
682  defm ORCC   : F3_12np<"orcc",   0b010010>;
683  defm ORNCC  : F3_12np<"orncc",  0b010110>;
684  defm XORCC  : F3_12np<"xorcc",  0b010011>;
685  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
686}
687
688// Section B.12 - Shift Instructions, p. 107
689defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
690defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
691defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
692
693// Section B.13 - Add Instructions, p. 108
694defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
695
696// "LEA" forms of add (patterns to make tblgen happy)
697let Predicates = [Is32Bit], isCodeGenOnly = 1 in
698  def LEA_ADDri   : F3_2<2, 0b000000,
699                     (outs IntRegs:$dst), (ins MEMri:$addr),
700                     "add ${addr:arith}, $dst",
701                     [(set iPTR:$dst, ADDRri:$addr)]>;
702
703let Defs = [ICC] in
704  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
705
706let Uses = [ICC] in
707  defm ADDC   : F3_12np<"addx", 0b001000>;
708
709let Uses = [ICC], Defs = [ICC] in
710  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
711
712// Section B.15 - Subtract Instructions, p. 110
713defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
714let Uses = [ICC], Defs = [ICC] in
715  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
716
717let Defs = [ICC] in
718  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
719
720let Uses = [ICC] in
721  defm SUBC   : F3_12np <"subx", 0b001100>;
722
723// cmp (from Section A.3) is a specialized alias for subcc
724let Defs = [ICC], rd = 0 in {
725  def CMPrr   : F3_1<2, 0b010100,
726                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
727                     "cmp $rs1, $rs2",
728                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
729  def CMPri   : F3_2<2, 0b010100,
730                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
731                     "cmp $rs1, $simm13",
732                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
733}
734
735// Section B.18 - Multiply Instructions, p. 113
736let Defs = [Y] in {
737  defm UMUL : F3_12np<"umul", 0b001010, IIC_iu_umul>;
738  defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op, IIC_iu_smul>;
739}
740
741let Defs = [Y, ICC] in {
742  defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
743  defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
744}
745
746let Defs = [Y, ICC], Uses = [Y, ICC] in {
747  defm MULSCC : F3_12np<"mulscc", 0b100100>;
748}
749
750// Section B.19 - Divide Instructions, p. 115
751let Uses = [Y], Defs = [Y] in {
752  defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
753  defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
754}
755
756let Uses = [Y], Defs = [Y, ICC] in {
757  defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
758  defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
759}
760
761// Section B.20 - SAVE and RESTORE, p. 117
762defm SAVE    : F3_12np<"save"   , 0b111100>;
763defm RESTORE : F3_12np<"restore", 0b111101>;
764
765// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
766
767// unconditional branch class.
768class BranchAlways<dag ins, string asmstr, list<dag> pattern>
769  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
770  let isBranch     = 1;
771  let isTerminator = 1;
772  let hasDelaySlot = 1;
773  let isBarrier    = 1;
774}
775
776let cond = 8 in
777  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
778
779
780let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
781
782// conditional branch class:
783class BranchSP<dag ins, string asmstr, list<dag> pattern>
784 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
785
786// conditional branch with annul class:
787class BranchSPA<dag ins, string asmstr, list<dag> pattern>
788 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
789
790// Conditional branch class on %icc|%xcc with predication:
791multiclass IPredBranch<string regstr, list<dag> CCPattern> {
792  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
793                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
794                   CCPattern,
795                   IIC_iu_instr>;
796  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
797                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
798                   [],
799                   IIC_iu_instr>;
800  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
801                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
802                   [],
803                   IIC_iu_instr>;
804  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
805                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
806                   [],
807                   IIC_iu_instr>;
808}
809
810} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
811
812
813// Indirect branch instructions.
814let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
815     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
816  def BINDrr  : F3_1<2, 0b111000,
817                   (outs), (ins MEMrr:$ptr),
818                   "jmp $ptr",
819                   [(brind ADDRrr:$ptr)]>;
820  def BINDri  : F3_2<2, 0b111000,
821                   (outs), (ins MEMri:$ptr),
822                   "jmp $ptr",
823                   [(brind ADDRri:$ptr)]>;
824}
825
826let Uses = [ICC] in {
827  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
828                         "b$cond $imm22",
829                        [(SPbricc bb:$imm22, imm:$cond)]>;
830  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
831                         "b$cond,a $imm22", []>;
832
833  let Predicates = [HasV9], cc = 0b00 in
834    defm BPI : IPredBranch<"%icc", []>;
835}
836
837// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
838
839let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
840
841// floating-point conditional branch class:
842class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
843 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
844
845// floating-point conditional branch with annul class:
846class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
847 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
848
849// Conditional branch class on %fcc0-%fcc3 with predication:
850multiclass FPredBranch {
851  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
852                                         FCCRegs:$cc),
853                  "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
854  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
855                                         FCCRegs:$cc),
856                  "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
857  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
858                                         FCCRegs:$cc),
859                  "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
860  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
861                                         FCCRegs:$cc),
862                  "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
863}
864} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
865
866let Uses = [FCC0] in {
867  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
868                              "fb$cond $imm22",
869                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
870  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
871                             "fb$cond,a $imm22", []>;
872}
873
874let Predicates = [HasV9] in
875  defm BPF : FPredBranch;
876
877// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
878let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
879
880// co-processor conditional branch class:
881class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
882 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
883
884// co-processor conditional branch with annul class:
885class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
886 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
887
888} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
889
890def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
891                          "cb$cond $imm22",
892                          [(SPbrfcc bb:$imm22, imm:$cond)]>;
893def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
894                           "cb$cond,a $imm22", []>;
895
896// Section B.24 - Call and Link Instruction, p. 125
897// This is the only Format 1 instruction
898let Uses = [O6],
899    hasDelaySlot = 1, isCall = 1 in {
900  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
901                    "call $disp",
902                    [],
903                    IIC_jmp_or_call> {
904    bits<30> disp;
905    let op = 1;
906    let Inst{29-0} = disp;
907  }
908
909  // indirect calls: special cases of JMPL.
910  let isCodeGenOnly = 1, rd = 15 in {
911    def CALLrr : F3_1<2, 0b111000,
912                      (outs), (ins MEMrr:$ptr, variable_ops),
913                      "call $ptr",
914                      [(call ADDRrr:$ptr)],
915                      IIC_jmp_or_call>;
916    def CALLri : F3_2<2, 0b111000,
917                      (outs), (ins MEMri:$ptr, variable_ops),
918                      "call $ptr",
919                      [(call ADDRri:$ptr)],
920                      IIC_jmp_or_call>;
921  }
922}
923
924// Section B.25 - Jump and Link Instruction
925
926// JMPL Instruction.
927let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
928    DecoderMethod = "DecodeJMPL" in {
929  def JMPLrr: F3_1<2, 0b111000,
930                   (outs IntRegs:$dst), (ins MEMrr:$addr),
931                   "jmpl $addr, $dst",
932                   [],
933                   IIC_jmp_or_call>;
934  def JMPLri: F3_2<2, 0b111000,
935                   (outs IntRegs:$dst), (ins MEMri:$addr),
936                   "jmpl $addr, $dst",
937                   [],
938                   IIC_jmp_or_call>;
939}
940
941// Section A.3 - Synthetic Instructions, p. 85
942// special cases of JMPL:
943let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
944    isCodeGenOnly = 1 in {
945  let rd = 0, rs1 = 15 in
946    def RETL: F3_2<2, 0b111000,
947                   (outs), (ins i32imm:$val),
948                   "jmp %o7+$val",
949                   [(retflag simm13:$val)],
950                   IIC_jmp_or_call>;
951
952  let rd = 0, rs1 = 31 in
953    def RET: F3_2<2, 0b111000,
954                  (outs), (ins i32imm:$val),
955                  "jmp %i7+$val",
956                  [],
957                  IIC_jmp_or_call>;
958}
959
960// Section B.26 - Return from Trap Instruction
961let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
962     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
963  def RETTrr : F3_1<2, 0b111001,
964                   (outs), (ins MEMrr:$addr),
965                   "rett $addr",
966                   [],
967                   IIC_jmp_or_call>;
968  def RETTri : F3_2<2, 0b111001,
969                    (outs), (ins MEMri:$addr),
970                    "rett $addr",
971                    [],
972                    IIC_jmp_or_call>;
973}
974
975
976// Section B.27 - Trap on Integer Condition Codes Instruction
977// conditional branch class:
978let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
979{
980  def TRAPrr : TRAPSPrr<0b111010,
981                        (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
982                        "t$cond $rs1 + $rs2",
983                        []>;
984  def TRAPri : TRAPSPri<0b111010,
985                        (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
986                        "t$cond $rs1 + $imm",
987                        []>;
988}
989
990multiclass TRAP<string regStr> {
991  def rr : TRAPSPrr<0b111010,
992                    (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
993                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
994                    []>;
995  def ri : TRAPSPri<0b111010,
996                    (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
997                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
998                    []>;
999}
1000
1001let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1002  defm TICC : TRAP<"%icc">;
1003
1004
1005let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
1006  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
1007
1008// Section B.28 - Read State Register Instructions
1009let rs2 = 0 in
1010  def RDASR : F3_1<2, 0b101000,
1011                 (outs IntRegs:$rd), (ins ASRRegs:$rs1),
1012                 "rd $rs1, $rd", []>;
1013
1014// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1015let Predicates = [HasNoV9] in {
1016  let rs2 = 0, rs1 = 0, Uses=[PSR] in
1017    def RDPSR : F3_1<2, 0b101001,
1018		     (outs IntRegs:$rd), (ins),
1019		     "rd %psr, $rd", []>;
1020
1021  let rs2 = 0, rs1 = 0, Uses=[WIM] in
1022    def RDWIM : F3_1<2, 0b101010,
1023		     (outs IntRegs:$rd), (ins),
1024		     "rd %wim, $rd", []>;
1025
1026  let rs2 = 0, rs1 = 0, Uses=[TBR] in
1027    def RDTBR : F3_1<2, 0b101011,
1028		     (outs IntRegs:$rd), (ins),
1029		     "rd %tbr, $rd", []>;
1030}
1031
1032// Section B.29 - Write State Register Instructions
1033def WRASRrr : F3_1<2, 0b110000,
1034                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1035                 "wr $rs1, $rs2, $rd", []>;
1036def WRASRri : F3_2<2, 0b110000,
1037                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1038                 "wr $rs1, $simm13, $rd", []>;
1039
1040// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1041let Predicates = [HasNoV9] in {
1042  let Defs = [PSR], rd=0 in {
1043    def WRPSRrr : F3_1<2, 0b110001,
1044		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1045		     "wr $rs1, $rs2, %psr", []>;
1046    def WRPSRri : F3_2<2, 0b110001,
1047		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1048		     "wr $rs1, $simm13, %psr", []>;
1049  }
1050
1051  let Defs = [WIM], rd=0 in {
1052    def WRWIMrr : F3_1<2, 0b110010,
1053		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1054		     "wr $rs1, $rs2, %wim", []>;
1055    def WRWIMri : F3_2<2, 0b110010,
1056		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1057		     "wr $rs1, $simm13, %wim", []>;
1058  }
1059
1060  let Defs = [TBR], rd=0 in {
1061    def WRTBRrr : F3_1<2, 0b110011,
1062		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1063		     "wr $rs1, $rs2, %tbr", []>;
1064    def WRTBRri : F3_2<2, 0b110011,
1065		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1066		     "wr $rs1, $simm13, %tbr", []>;
1067  }
1068}
1069
1070// Section B.30 - STBAR Instruction
1071let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
1072  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
1073
1074
1075// Section B.31 - Unimplmented Instruction
1076let rd = 0 in
1077  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
1078                  "unimp $imm22", []>;
1079
1080// Section B.32 - Flush Instruction Memory
1081let rd = 0 in {
1082  def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
1083                       "flush $addr", []>;
1084  def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
1085                       "flush $addr", []>;
1086
1087  // The no-arg FLUSH is only here for the benefit of the InstAlias
1088  // "flush", which cannot seem to use FLUSHrr, due to the inability
1089  // to construct a MEMrr with fixed G0 registers.
1090  let rs1 = 0, rs2 = 0 in
1091    def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
1092}
1093
1094// Section B.33 - Floating-point Operate (FPop) Instructions
1095
1096// Convert Integer to Floating-point Instructions, p. 141
1097def FITOS : F3_3u<2, 0b110100, 0b011000100,
1098                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1099                 "fitos $rs2, $rd",
1100                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
1101                 IIC_fpu_fast_instr>;
1102def FITOD : F3_3u<2, 0b110100, 0b011001000,
1103                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1104                 "fitod $rs2, $rd",
1105                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
1106                 IIC_fpu_fast_instr>;
1107def FITOQ : F3_3u<2, 0b110100, 0b011001100,
1108                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1109                 "fitoq $rs2, $rd",
1110                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
1111                 Requires<[HasHardQuad]>;
1112
1113// Convert Floating-point to Integer Instructions, p. 142
1114def FSTOI : F3_3u<2, 0b110100, 0b011010001,
1115                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1116                 "fstoi $rs2, $rd",
1117                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
1118                 IIC_fpu_fast_instr>;
1119def FDTOI : F3_3u<2, 0b110100, 0b011010010,
1120                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1121                 "fdtoi $rs2, $rd",
1122                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
1123                 IIC_fpu_fast_instr>;
1124def FQTOI : F3_3u<2, 0b110100, 0b011010011,
1125                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1126                 "fqtoi $rs2, $rd",
1127                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
1128                 Requires<[HasHardQuad]>;
1129
1130// Convert between Floating-point Formats Instructions, p. 143
1131def FSTOD : F3_3u<2, 0b110100, 0b011001001,
1132                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1133                 "fstod $rs2, $rd",
1134                 [(set f64:$rd, (fextend f32:$rs2))],
1135                 IIC_fpu_stod>;
1136def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
1137                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1138                 "fstoq $rs2, $rd",
1139                 [(set f128:$rd, (fextend f32:$rs2))]>,
1140                 Requires<[HasHardQuad]>;
1141def FDTOS : F3_3u<2, 0b110100, 0b011000110,
1142                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1143                 "fdtos $rs2, $rd",
1144                 [(set f32:$rd, (fround f64:$rs2))],
1145                 IIC_fpu_fast_instr>;
1146def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
1147                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
1148                 "fdtoq $rs2, $rd",
1149                 [(set f128:$rd, (fextend f64:$rs2))]>,
1150                 Requires<[HasHardQuad]>;
1151def FQTOS : F3_3u<2, 0b110100, 0b011000111,
1152                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1153                 "fqtos $rs2, $rd",
1154                 [(set f32:$rd, (fround f128:$rs2))]>,
1155                 Requires<[HasHardQuad]>;
1156def FQTOD : F3_3u<2, 0b110100, 0b011001011,
1157                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
1158                 "fqtod $rs2, $rd",
1159                 [(set f64:$rd, (fround f128:$rs2))]>,
1160                 Requires<[HasHardQuad]>;
1161
1162// Floating-point Move Instructions, p. 144
1163def FMOVS : F3_3u<2, 0b110100, 0b000000001,
1164                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1165                 "fmovs $rs2, $rd", []>;
1166def FNEGS : F3_3u<2, 0b110100, 0b000000101,
1167                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1168                 "fnegs $rs2, $rd",
1169                 [(set f32:$rd, (fneg f32:$rs2))],
1170                 IIC_fpu_negs>;
1171def FABSS : F3_3u<2, 0b110100, 0b000001001,
1172                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1173                 "fabss $rs2, $rd",
1174                 [(set f32:$rd, (fabs f32:$rs2))],
1175                 IIC_fpu_abs>;
1176
1177
1178// Floating-point Square Root Instructions, p.145
1179// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
1180// this will be promoted to use FSQRTD with doubles instead.
1181let Predicates = [HasNoFdivSqrtFix] in
1182def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
1183                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
1184                  "fsqrts $rs2, $rd",
1185                  [(set f32:$rd, (fsqrt f32:$rs2))],
1186                  IIC_fpu_sqrts>;
1187def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
1188                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1189                  "fsqrtd $rs2, $rd",
1190                  [(set f64:$rd, (fsqrt f64:$rs2))],
1191                  IIC_fpu_sqrtd>;
1192def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
1193                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1194                  "fsqrtq $rs2, $rd",
1195                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
1196                  Requires<[HasHardQuad]>;
1197
1198
1199
1200// Floating-point Add and Subtract Instructions, p. 146
1201def FADDS  : F3_3<2, 0b110100, 0b001000001,
1202                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1203                  "fadds $rs1, $rs2, $rd",
1204                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
1205                  IIC_fpu_fast_instr>;
1206def FADDD  : F3_3<2, 0b110100, 0b001000010,
1207                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1208                  "faddd $rs1, $rs2, $rd",
1209                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
1210                  IIC_fpu_fast_instr>;
1211def FADDQ  : F3_3<2, 0b110100, 0b001000011,
1212                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1213                  "faddq $rs1, $rs2, $rd",
1214                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
1215                  Requires<[HasHardQuad]>;
1216
1217def FSUBS  : F3_3<2, 0b110100, 0b001000101,
1218                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1219                  "fsubs $rs1, $rs2, $rd",
1220                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
1221                  IIC_fpu_fast_instr>;
1222def FSUBD  : F3_3<2, 0b110100, 0b001000110,
1223                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1224                  "fsubd $rs1, $rs2, $rd",
1225                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
1226                  IIC_fpu_fast_instr>;
1227def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
1228                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1229                  "fsubq $rs1, $rs2, $rd",
1230                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
1231                  Requires<[HasHardQuad]>;
1232
1233
1234// Floating-point Multiply and Divide Instructions, p. 147
1235// FMULS generates an erratum on LEON processors, so by disabling this instruction
1236// this will be promoted to use FMULD with doubles instead.
1237let Predicates = [HasNoFmulsFix] in
1238def FMULS  : F3_3<2, 0b110100, 0b001001001,
1239                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1240                  "fmuls $rs1, $rs2, $rd",
1241                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
1242                  IIC_fpu_muls>;
1243def FMULD  : F3_3<2, 0b110100, 0b001001010,
1244                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1245                  "fmuld $rs1, $rs2, $rd",
1246                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
1247                  IIC_fpu_muld>;
1248def FMULQ  : F3_3<2, 0b110100, 0b001001011,
1249                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1250                  "fmulq $rs1, $rs2, $rd",
1251                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
1252                  Requires<[HasHardQuad]>;
1253
1254let Predicates = [HasNoFsmuldFix] in
1255def FSMULD : F3_3<2, 0b110100, 0b001101001,
1256                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1257                  "fsmuld $rs1, $rs2, $rd",
1258                  [(set f64:$rd, (fmul (fextend f32:$rs1),
1259                                        (fextend f32:$rs2)))],
1260                  IIC_fpu_muld>;
1261def FDMULQ : F3_3<2, 0b110100, 0b001101110,
1262                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1263                  "fdmulq $rs1, $rs2, $rd",
1264                  [(set f128:$rd, (fmul (fextend f64:$rs1),
1265                                         (fextend f64:$rs2)))]>,
1266                  Requires<[HasHardQuad]>;
1267
1268// FDIVS generates an erratum on LEON processors, so by disabling this instruction
1269// this will be promoted to use FDIVD with doubles instead.
1270def FDIVS  : F3_3<2, 0b110100, 0b001001101,
1271                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1272                 "fdivs $rs1, $rs2, $rd",
1273                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
1274                 IIC_fpu_divs>;
1275def FDIVD  : F3_3<2, 0b110100, 0b001001110,
1276                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1277                 "fdivd $rs1, $rs2, $rd",
1278                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
1279                 IIC_fpu_divd>;
1280def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
1281                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1282                 "fdivq $rs1, $rs2, $rd",
1283                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
1284                 Requires<[HasHardQuad]>;
1285
1286// Floating-point Compare Instructions, p. 148
1287// Note: the 2nd template arg is different for these guys.
1288// Note 2: the result of a FCMP is not available until the 2nd cycle
1289// after the instr is retired, but there is no interlock in Sparc V8.
1290// This behavior is modeled with a forced noop after the instruction in
1291// DelaySlotFiller.
1292
1293let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
1294  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1295                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
1296                   "fcmps $rs1, $rs2",
1297                   [(SPcmpfcc f32:$rs1, f32:$rs2)],
1298                   IIC_fpu_fast_instr>;
1299  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1300                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1301                   "fcmpd $rs1, $rs2",
1302                   [(SPcmpfcc f64:$rs1, f64:$rs2)],
1303                   IIC_fpu_fast_instr>;
1304  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1305                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1306                   "fcmpq $rs1, $rs2",
1307                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
1308                   Requires<[HasHardQuad]>;
1309}
1310
1311//===----------------------------------------------------------------------===//
1312// Instructions for Thread Local Storage(TLS).
1313//===----------------------------------------------------------------------===//
1314let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
1315def TLS_ADDrr : F3_1<2, 0b000000,
1316                    (outs IntRegs:$rd),
1317                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
1318                    "add $rs1, $rs2, $rd, $sym",
1319                    [(set i32:$rd,
1320                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
1321
1322let mayLoad = 1 in
1323  def TLS_LDrr : F3_1<3, 0b000000,
1324                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
1325                      "ld [$addr], $dst, $sym",
1326                      [(set i32:$dst,
1327                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
1328
1329let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
1330  def TLS_CALL : InstSP<(outs),
1331                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
1332                        "call $disp, $sym",
1333                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
1334                        IIC_jmp_or_call> {
1335  bits<30> disp;
1336  let op = 1;
1337  let Inst{29-0} = disp;
1338}
1339}
1340
1341//===----------------------------------------------------------------------===//
1342// V9 Instructions
1343//===----------------------------------------------------------------------===//
1344
1345// V9 Conditional Moves.
1346let Predicates = [HasV9], Constraints = "$f = $rd" in {
1347  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
1348  let Uses = [ICC], intcc = 1, cc = 0b00 in {
1349    def MOVICCrr
1350      : F4_1<0b101100, (outs IntRegs:$rd),
1351             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1352             "mov$cond %icc, $rs2, $rd",
1353             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
1354
1355    def MOVICCri
1356      : F4_2<0b101100, (outs IntRegs:$rd),
1357             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1358             "mov$cond %icc, $simm11, $rd",
1359             [(set i32:$rd,
1360                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
1361  }
1362
1363  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
1364    def MOVFCCrr
1365      : F4_1<0b101100, (outs IntRegs:$rd),
1366             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1367             "mov$cond %fcc0, $rs2, $rd",
1368             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
1369    def MOVFCCri
1370      : F4_2<0b101100, (outs IntRegs:$rd),
1371             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1372             "mov$cond %fcc0, $simm11, $rd",
1373             [(set i32:$rd,
1374                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
1375  }
1376
1377  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
1378    def FMOVS_ICC
1379      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1380             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1381             "fmovs$cond %icc, $rs2, $rd",
1382             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
1383    def FMOVD_ICC
1384      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1385               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1386               "fmovd$cond %icc, $rs2, $rd",
1387               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
1388    def FMOVQ_ICC
1389      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1390               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1391               "fmovq$cond %icc, $rs2, $rd",
1392               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
1393               Requires<[HasHardQuad]>;
1394  }
1395
1396  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
1397    def FMOVS_FCC
1398      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1399             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1400             "fmovs$cond %fcc0, $rs2, $rd",
1401             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
1402    def FMOVD_FCC
1403      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1404             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1405             "fmovd$cond %fcc0, $rs2, $rd",
1406             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
1407    def FMOVQ_FCC
1408      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1409             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1410             "fmovq$cond %fcc0, $rs2, $rd",
1411             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
1412             Requires<[HasHardQuad]>;
1413  }
1414
1415}
1416
1417// Floating-Point Move Instructions, p. 164 of the V9 manual.
1418let Predicates = [HasV9] in {
1419  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
1420                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1421                   "fmovd $rs2, $rd", []>;
1422  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
1423                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1424                   "fmovq $rs2, $rd", []>,
1425                   Requires<[HasHardQuad]>;
1426  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
1427                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1428                   "fnegd $rs2, $rd",
1429                   [(set f64:$rd, (fneg f64:$rs2))]>;
1430  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
1431                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1432                   "fnegq $rs2, $rd",
1433                   [(set f128:$rd, (fneg f128:$rs2))]>,
1434                   Requires<[HasHardQuad]>;
1435  def FABSD : F3_3u<2, 0b110100, 0b000001010,
1436                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1437                   "fabsd $rs2, $rd",
1438                   [(set f64:$rd, (fabs f64:$rs2))]>;
1439  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
1440                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1441                   "fabsq $rs2, $rd",
1442                   [(set f128:$rd, (fabs f128:$rs2))]>,
1443                   Requires<[HasHardQuad]>;
1444}
1445
1446// Floating-point compare instruction with %fcc0-%fcc3.
1447def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1448               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1449               "fcmps $rd, $rs1, $rs2", []>;
1450def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1451                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1452                "fcmpd $rd, $rs1, $rs2", []>;
1453def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1454                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1455                "fcmpq $rd, $rs1, $rs2", []>,
1456                 Requires<[HasHardQuad]>;
1457
1458let hasSideEffects = 1 in {
1459  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
1460                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1461                   "fcmpes $rd, $rs1, $rs2", []>;
1462  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
1463                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1464                   "fcmped $rd, $rs1, $rs2", []>;
1465  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
1466                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1467                   "fcmpeq $rd, $rs1, $rs2", []>,
1468                   Requires<[HasHardQuad]>;
1469}
1470
1471// Floating point conditional move instrucitons with %fcc0-%fcc3.
1472let Predicates = [HasV9] in {
1473  let Constraints = "$f = $rd", intcc = 0 in {
1474    def V9MOVFCCrr
1475      : F4_1<0b101100, (outs IntRegs:$rd),
1476             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1477             "mov$cond $cc, $rs2, $rd", []>;
1478    def V9MOVFCCri
1479      : F4_2<0b101100, (outs IntRegs:$rd),
1480             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1481             "mov$cond $cc, $simm11, $rd", []>;
1482    def V9FMOVS_FCC
1483      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1484             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1485             "fmovs$cond $opf_cc, $rs2, $rd", []>;
1486    def V9FMOVD_FCC
1487      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1488             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1489             "fmovd$cond $opf_cc, $rs2, $rd", []>;
1490    def V9FMOVQ_FCC
1491      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1492             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1493             "fmovq$cond $opf_cc, $rs2, $rd", []>,
1494             Requires<[HasHardQuad]>;
1495  } // Constraints = "$f = $rd", ...
1496} // let Predicates = [hasV9]
1497
1498
1499// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
1500// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
1501let rs1 = 0 in
1502  def POPCrr : F3_1<2, 0b101110,
1503                    (outs IntRegs:$rd), (ins IntRegs:$rs2),
1504                    "popc $rs2, $rd", []>, Requires<[HasV9]>;
1505def : Pat<(ctpop i32:$src),
1506          (POPCrr (SRLri $src, 0))>;
1507
1508let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
1509 def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
1510                    "membar $simm13", []>;
1511
1512// The CAS instruction, unlike other instructions, only comes in a
1513// form which requires an ASI be provided. The ASI value hardcoded
1514// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
1515let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
1516  def CASrr: F3_1_asi<3, 0b111100,
1517                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1518                                     IntRegs:$swap),
1519                 "cas [$rs1], $rs2, $rd",
1520                 [(set i32:$rd,
1521                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1522
1523
1524// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
1525// This version can be automatically lowered from C code, selecting ASI 10
1526let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
1527  def CASAasi10: F3_1_asi<3, 0b111100,
1528                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1529                                     IntRegs:$swap),
1530                 "casa [$rs1] 10, $rs2, $rd",
1531                 [(set i32:$rd,
1532                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1533
1534// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
1535// CASrr, above, but with a different ASI. This version is supported for
1536// inline assembly lowering only.
1537let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
1538  def CASArr: F3_1_asi<3, 0b111100,
1539                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1540                                     IntRegs:$swap, i8imm:$asi),
1541                 "casa [$rs1] $asi, $rs2, $rd", []>;
1542
1543// TODO: Add DAG sequence to lower these instructions. Currently, only provided
1544// as inline assembler-supported instructions.
1545let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
1546  def SMACrr :  F3_1<2, 0b111111,
1547                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1548                   "smac $rs1, $rs2, $rd",
1549                   [], IIC_smac_umac>;
1550
1551  def SMACri :  F3_2<2, 0b111111,
1552                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1553                   "smac $rs1, $simm13, $rd",
1554                   [], IIC_smac_umac>;
1555
1556  def UMACrr :  F3_1<2, 0b111110,
1557                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1558                   "umac $rs1, $rs2, $rd",
1559                   [], IIC_smac_umac>;
1560
1561  def UMACri :  F3_2<2, 0b111110,
1562                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1563                   "umac $rs1, $simm13, $rd",
1564                   [], IIC_smac_umac>;
1565}
1566
1567let Defs = [ICC] in {
1568defm TADDCC   : F3_12np<"taddcc",   0b100000>;
1569defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
1570
1571let hasSideEffects = 1 in {
1572  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
1573  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
1574}
1575}
1576
1577
1578// Section A.43 - Read Privileged Register Instructions
1579let Predicates = [HasV9] in {
1580let rs2 = 0 in
1581  def RDPR : F3_1<2, 0b101010,
1582                 (outs IntRegs:$rd), (ins PRRegs:$rs1),
1583                 "rdpr $rs1, $rd", []>;
1584}
1585
1586// Section A.62 - Write Privileged Register Instructions
1587let Predicates = [HasV9] in {
1588  def WRPRrr : F3_1<2, 0b110010,
1589                   (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1590                   "wrpr $rs1, $rs2, $rd", []>;
1591  def WRPRri : F3_2<2, 0b110010,
1592                   (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1593                   "wrpr $rs1, $simm13, $rd", []>;
1594}
1595
1596//===----------------------------------------------------------------------===//
1597// Non-Instruction Patterns
1598//===----------------------------------------------------------------------===//
1599
1600// Small immediates.
1601def : Pat<(i32 simm13:$val),
1602          (ORri (i32 G0), imm:$val)>;
1603// Arbitrary immediates.
1604def : Pat<(i32 imm:$val),
1605          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
1606
1607
1608// Global addresses, constant pool entries
1609let Predicates = [Is32Bit] in {
1610
1611def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
1612def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
1613def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
1614def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
1615
1616// GlobalTLS addresses
1617def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
1618def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
1619def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1620          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1621def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1622          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1623
1624// Blockaddress
1625def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1626def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1627
1628// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1629def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1630def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1631def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1632                        (ADDri $r, tblockaddress:$in)>;
1633}
1634
1635// Calls:
1636def : Pat<(call tglobaladdr:$dst),
1637          (CALL tglobaladdr:$dst)>;
1638def : Pat<(call texternalsym:$dst),
1639          (CALL texternalsym:$dst)>;
1640
1641// Map integer extload's to zextloads.
1642def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1643def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1644def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1645def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1646def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1647def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1648
1649// zextload bool -> zextload byte
1650def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1651def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1652
1653// store 0, addr -> store %g0, addr
1654def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1655def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1656
1657// store bar for all atomic_fence in V8.
1658let Predicates = [HasNoV9] in
1659  def : Pat<(atomic_fence imm, imm), (STBAR)>;
1660
1661// atomic_load addr -> load addr
1662def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1663def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1664def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1665def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1666def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1667def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
1668
1669// atomic_store val, addr -> store val, addr
1670def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
1671def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
1672def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
1673def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
1674def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1675def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1676
1677// extract_vector
1678def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
1679          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
1680def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
1681          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
1682
1683// build_vector
1684def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
1685          (INSERT_SUBREG
1686	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
1687            (i32 IntRegs:$a2), sub_odd)>;
1688
1689
1690include "SparcInstr64Bit.td"
1691include "SparcInstrVIS.td"
1692include "SparcInstrAliases.td"
1693