• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Select instructions
12//===----------------------------------------------------------------------===//
13
14// C's ?: operator for floating-point operands.
15def SelectF32  : SelectWrapper<FP32>;
16def SelectF64  : SelectWrapper<FP64>;
17def SelectF128 : SelectWrapper<FP128>;
18
19defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
20                               nonvolatile_load, bdxaddr20only>;
21defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
22                               nonvolatile_load, bdxaddr20only>;
23
24//===----------------------------------------------------------------------===//
25// Move instructions
26//===----------------------------------------------------------------------===//
27
28// Load zero.
29let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1 in {
30  def LZER : InherentRRE<"lzer", 0xB374, FP32,  (fpimm0)>;
31  def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  (fpimm0)>;
32  def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
33}
34
35// Moves between two floating-point registers.
36let hasSideEffects = 0 in {
37  def LER : UnaryRR <"le", 0x38,   null_frag, FP32,  FP32>;
38  def LDR : UnaryRR <"ld", 0x28,   null_frag, FP64,  FP64>;
39  def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>;
40
41  // For z13 we prefer LDR over LER to avoid partial register dependencies.
42  let isCodeGenOnly = 1 in
43    def LDR32 : UnaryRR<"ld", 0x28, null_frag, FP32, FP32>;
44}
45
46// Moves between two floating-point registers that also set the condition
47// codes.
48let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
49  defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>;
50  defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>;
51  defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>;
52}
53// Note that LTxBRCompare is not available if we have vector support,
54// since load-and-test instructions will partially clobber the target
55// (vector) register.
56let Predicates = [FeatureNoVector] in {
57  defm : CompareZeroFP<LTEBRCompare, FP32>;
58  defm : CompareZeroFP<LTDBRCompare, FP64>;
59  defm : CompareZeroFP<LTXBRCompare, FP128>;
60}
61
62// Use a normal load-and-test for compare against zero in case of
63// vector support (via a pseudo to simplify instruction selection).
64let Defs = [CC], usesCustomInserter = 1 in {
65  def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
66  def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
67  def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
68}
69let Predicates = [FeatureVector] in {
70  defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
71  defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
72  defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;
73}
74
75// Moves between 64-bit integer and floating-point registers.
76def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>;
77def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>;
78
79// fcopysign with an FP32 result.
80let isCodeGenOnly = 1 in {
81  def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>;
82  def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>;
83}
84
85// The sign of an FP128 is in the high register.
86def : Pat<(fcopysign FP32:$src1, FP128:$src2),
87          (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
88
89// fcopysign with an FP64 result.
90let isCodeGenOnly = 1 in
91  def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>;
92def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>;
93
94// The sign of an FP128 is in the high register.
95def : Pat<(fcopysign FP64:$src1, FP128:$src2),
96          (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
97
98// fcopysign with an FP128 result.  Use "upper" as the high half and leave
99// the low half as-is.
100class CopySign128<RegisterOperand cls, dag upper>
101  : Pat<(fcopysign FP128:$src1, cls:$src2),
102        (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
103
104def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
105                                  FP32:$src2)>;
106def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
107                                  FP64:$src2)>;
108def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
109                                  (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
110
111defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
112defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
113defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
114
115//===----------------------------------------------------------------------===//
116// Load instructions
117//===----------------------------------------------------------------------===//
118
119let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
120  defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
121  defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
122
123  // For z13 we prefer LDE over LE to avoid partial register dependencies.
124  def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;
125
126  // These instructions are split after register allocation, so we don't
127  // want a custom inserter.
128  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
129    def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
130                     [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
131  }
132}
133
134//===----------------------------------------------------------------------===//
135// Store instructions
136//===----------------------------------------------------------------------===//
137
138let SimpleBDXStore = 1 in {
139  defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
140  defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
141
142  // These instructions are split after register allocation, so we don't
143  // want a custom inserter.
144  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
145    def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
146                     [(store FP128:$src, bdxaddr20only128:$dst)]>;
147  }
148}
149
150//===----------------------------------------------------------------------===//
151// Conversion instructions
152//===----------------------------------------------------------------------===//
153
154// Convert floating-point values to narrower representations, rounding
155// according to the current mode.  The destination of LEXBR and LDXBR
156// is a 128-bit value, but only the first register of the pair is used.
157def LEDBR : UnaryRRE<"ledb", 0xB344, fround,    FP32,  FP64>;
158def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>;
159def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>;
160
161def LEDBRA : UnaryRRF4<"ledbra", 0xB344, FP32,  FP64>,
162             Requires<[FeatureFPExtension]>;
163def LEXBRA : UnaryRRF4<"lexbra", 0xB346, FP128, FP128>,
164             Requires<[FeatureFPExtension]>;
165def LDXBRA : UnaryRRF4<"ldxbra", 0xB345, FP128, FP128>,
166             Requires<[FeatureFPExtension]>;
167
168def : Pat<(f32 (fround FP128:$src)),
169          (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hr32)>;
170def : Pat<(f64 (fround FP128:$src)),
171          (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
172
173// Extend register floating-point values to wider representations.
174def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64,  FP32>;
175def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>;
176def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>;
177
178// Extend memory floating-point values to wider representations.
179def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64,  4>;
180def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>;
181def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>;
182
183// Convert a signed integer register value to a floating-point one.
184def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32,  GR32>;
185def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64,  GR32>;
186def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>;
187
188def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32,  GR64>;
189def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64,  GR64>;
190def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>;
191
192// Convert am unsigned integer register value to a floating-point one.
193let Predicates = [FeatureFPExtension] in {
194  def CELFBR : UnaryRRF4<"celfbr", 0xB390, FP32,  GR32>;
195  def CDLFBR : UnaryRRF4<"cdlfbr", 0xB391, FP64,  GR32>;
196  def CXLFBR : UnaryRRF4<"cxlfbr", 0xB392, FP128, GR32>;
197
198  def CELGBR : UnaryRRF4<"celgbr", 0xB3A0, FP32,  GR64>;
199  def CDLGBR : UnaryRRF4<"cdlgbr", 0xB3A1, FP64,  GR64>;
200  def CXLGBR : UnaryRRF4<"cxlgbr", 0xB3A2, FP128, GR64>;
201
202  def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
203  def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
204  def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
205
206  def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
207  def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
208  def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
209}
210
211// Convert a floating-point register value to a signed integer value,
212// with the second operand (modifier M3) specifying the rounding mode.
213let Defs = [CC] in {
214  def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>;
215  def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>;
216  def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>;
217
218  def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>;
219  def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>;
220  def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>;
221}
222
223// fp_to_sint always rounds towards zero, which is modifier value 5.
224def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
225def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
226def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
227
228def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
229def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
230def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
231
232// Convert a floating-point register value to an unsigned integer value.
233let Predicates = [FeatureFPExtension] in {
234  let Defs = [CC] in {
235    def CLFEBR : UnaryRRF4<"clfebr", 0xB39C, GR32, FP32>;
236    def CLFDBR : UnaryRRF4<"clfdbr", 0xB39D, GR32, FP64>;
237    def CLFXBR : UnaryRRF4<"clfxbr", 0xB39E, GR32, FP128>;
238
239    def CLGEBR : UnaryRRF4<"clgebr", 0xB3AC, GR64, FP32>;
240    def CLGDBR : UnaryRRF4<"clgdbr", 0xB3AD, GR64, FP64>;
241    def CLGXBR : UnaryRRF4<"clgxbr", 0xB3AE, GR64, FP128>;
242  }
243
244  def : Pat<(i32 (fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
245  def : Pat<(i32 (fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
246  def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
247
248  def : Pat<(i64 (fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
249  def : Pat<(i64 (fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
250  def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
251}
252
253
254//===----------------------------------------------------------------------===//
255// Unary arithmetic
256//===----------------------------------------------------------------------===//
257
258// We prefer generic instructions during isel, because they do not
259// clobber CC and therefore give the scheduler more freedom. In cases
260// the CC is actually useful, the SystemZElimCompare pass will try to
261// convert generic instructions into opcodes that also set CC. Note
262// that lcdf / lpdf / lndf only affect the sign bit, and can therefore
263// be used with fp32 as well. This could be done for fp128, in which
264// case the operands would have to be tied.
265
266// Negation (Load Complement).
267let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
268  def LCEBR : UnaryRRE<"lceb", 0xB303, null_frag, FP32,  FP32>;
269  def LCDBR : UnaryRRE<"lcdb", 0xB313, null_frag, FP64,  FP64>;
270  def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>;
271}
272// Generic form, which does not set CC.
273def LCDFR : UnaryRRE<"lcdf", 0xB373, fneg, FP64,  FP64>;
274let isCodeGenOnly = 1 in
275  def LCDFR_32 : UnaryRRE<"lcdf", 0xB373, fneg, FP32,  FP32>;
276
277// Absolute value (Load Positive).
278let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
279  def LPEBR : UnaryRRE<"lpeb", 0xB300, null_frag, FP32,  FP32>;
280  def LPDBR : UnaryRRE<"lpdb", 0xB310, null_frag, FP64,  FP64>;
281  def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>;
282}
283// Generic form, which does not set CC.
284def LPDFR : UnaryRRE<"lpdf", 0xB370, fabs, FP64,  FP64>;
285let isCodeGenOnly = 1 in
286  def LPDFR_32 : UnaryRRE<"lpdf", 0xB370, fabs, FP32,  FP32>;
287
288// Negative absolute value (Load Negative).
289let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
290  def LNEBR : UnaryRRE<"lneb", 0xB301, null_frag, FP32,  FP32>;
291  def LNDBR : UnaryRRE<"lndb", 0xB311, null_frag, FP64,  FP64>;
292  def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>;
293}
294// Generic form, which does not set CC.
295def LNDFR : UnaryRRE<"lndf", 0xB371, fnabs, FP64,  FP64>;
296let isCodeGenOnly = 1 in
297  def LNDFR_32 : UnaryRRE<"lndf", 0xB371, fnabs, FP32,  FP32>;
298
299// Square root.
300def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32,  FP32>;
301def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64,  FP64>;
302def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>;
303
304def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>;
305def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>;
306
307// Round to an integer, with the second operand (modifier M3) specifying
308// the rounding mode.  These forms always check for inexact conditions.
309def FIEBR : UnaryRRF<"fieb", 0xB357, FP32,  FP32>;
310def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64,  FP64>;
311def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>;
312
313// frint rounds according to the current mode (modifier 0) and detects
314// inexact conditions.
315def : Pat<(frint FP32:$src),  (FIEBR 0, FP32:$src)>;
316def : Pat<(frint FP64:$src),  (FIDBR 0, FP64:$src)>;
317def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
318
319let Predicates = [FeatureFPExtension] in {
320  // Extended forms of the FIxBR instructions.  M4 can be set to 4
321  // to suppress detection of inexact conditions.
322  def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32,  FP32>;
323  def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64,  FP64>;
324  def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>;
325
326  // fnearbyint is like frint but does not detect inexact conditions.
327  def : Pat<(fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
328  def : Pat<(fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
329  def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
330
331  // floor is no longer allowed to raise an inexact condition,
332  // so restrict it to the cases where the condition can be suppressed.
333  // Mode 7 is round towards -inf.
334  def : Pat<(ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
335  def : Pat<(ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
336  def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
337
338  // Same idea for ceil, where mode 6 is round towards +inf.
339  def : Pat<(fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
340  def : Pat<(fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
341  def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
342
343  // Same idea for trunc, where mode 5 is round towards zero.
344  def : Pat<(ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
345  def : Pat<(ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
346  def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
347
348  // Same idea for round, where mode 1 is round towards nearest with
349  // ties away from zero.
350  def : Pat<(frnd FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
351  def : Pat<(frnd FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
352  def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
353}
354
355//===----------------------------------------------------------------------===//
356// Binary arithmetic
357//===----------------------------------------------------------------------===//
358
359// Addition.
360let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
361  let isCommutable = 1 in {
362    def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32,  FP32>;
363    def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64,  FP64>;
364    def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>;
365  }
366  def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>;
367  def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>;
368}
369
370// Subtraction.
371let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
372  def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32,  FP32>;
373  def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64,  FP64>;
374  def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>;
375
376  def SEB : BinaryRXE<"seb",  0xED0B, fsub, FP32, load, 4>;
377  def SDB : BinaryRXE<"sdb",  0xED1B, fsub, FP64, load, 8>;
378}
379
380// Multiplication.
381let isCommutable = 1 in {
382  def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32,  FP32>;
383  def MDBR  : BinaryRRE<"mdb",  0xB31C, fmul, FP64,  FP64>;
384  def MXBR  : BinaryRRE<"mxb",  0xB34C, fmul, FP128, FP128>;
385}
386def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>;
387def MDB  : BinaryRXE<"mdb",  0xED1C, fmul, FP64, load, 8>;
388
389// f64 multiplication of two FP32 registers.
390def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>;
391def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
392          (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
393                                FP32:$src1, subreg_r32), FP32:$src2)>;
394
395// f64 multiplication of an FP32 register and an f32 memory.
396def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
397def : Pat<(fmul (f64 (fextend FP32:$src1)),
398                (f64 (extloadf32 bdxaddr12only:$addr))),
399          (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_r32),
400                bdxaddr12only:$addr)>;
401
402// f128 multiplication of two FP64 registers.
403def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>;
404def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
405          (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
406                                FP64:$src1, subreg_h64), FP64:$src2)>;
407
408// f128 multiplication of an FP64 register and an f64 memory.
409def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
410def : Pat<(fmul (f128 (fextend FP64:$src1)),
411                (f128 (extloadf64 bdxaddr12only:$addr))),
412          (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
413                bdxaddr12only:$addr)>;
414
415// Fused multiply-add.
416def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>;
417def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>;
418
419def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>;
420def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>;
421
422// Fused multiply-subtract.
423def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>;
424def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>;
425
426def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>;
427def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>;
428
429// Division.
430def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32,  FP32>;
431def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64,  FP64>;
432def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>;
433
434def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>;
435def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>;
436
437//===----------------------------------------------------------------------===//
438// Comparisons
439//===----------------------------------------------------------------------===//
440
441let Defs = [CC], CCValues = 0xF in {
442  def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32,  FP32>;
443  def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64,  FP64>;
444  def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>;
445
446  def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
447  def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
448}
449
450// Test Data Class.
451let Defs = [CC], CCValues = 0xC in {
452  def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
453  def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
454  def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
455}
456
457//===----------------------------------------------------------------------===//
458// Peepholes
459//===----------------------------------------------------------------------===//
460
461def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
462def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
463def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
464