1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZSelectionDAGInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/CodeGen/SelectionDAG.h"
16
17 using namespace llvm;
18
19 #define DEBUG_TYPE "systemz-selectiondag-info"
20
21 // Decide whether it is best to use a loop or straight-line code for
22 // a block operation of Size bytes with source address Src and destination
23 // address Dest. Sequence is the opcode to use for straight-line code
24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
25 // Return the chain for the completed operation.
emitMemMem(SelectionDAG & DAG,const SDLoc & DL,unsigned Sequence,unsigned Loop,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size)26 static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence,
27 unsigned Loop, SDValue Chain, SDValue Dst,
28 SDValue Src, uint64_t Size) {
29 EVT PtrVT = Src.getValueType();
30 // The heuristic we use is to prefer loops for anything that would
31 // require 7 or more MVCs. With these kinds of sizes there isn't
32 // much to choose between straight-line code and looping code,
33 // since the time will be dominated by the MVCs themselves.
34 // However, the loop has 4 or 5 instructions (depending on whether
35 // the base addresses can be proved equal), so there doesn't seem
36 // much point using a loop for 5 * 256 bytes or fewer. Anything in
37 // the range (5 * 256, 6 * 256) will need another instruction after
38 // the loop, so it doesn't seem worth using a loop then either.
39 // The next value up, 6 * 256, can be implemented in the same
40 // number of straight-line MVCs as 6 * 256 - 1.
41 if (Size > 6 * 256)
42 return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
43 DAG.getConstant(Size, DL, PtrVT),
44 DAG.getConstant(Size / 256, DL, PtrVT));
45 return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
46 DAG.getConstant(Size, DL, PtrVT));
47 }
48
EmitTargetCodeForMemcpy(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool IsVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo) const49 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy(
50 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src,
51 SDValue Size, unsigned Align, bool IsVolatile, bool AlwaysInline,
52 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
53 if (IsVolatile)
54 return SDValue();
55
56 if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
57 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
58 Chain, Dst, Src, CSize->getZExtValue());
59 return SDValue();
60 }
61
62 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
63 // Chain, Dst, ByteVal and Size. These cases are expected to use
64 // MVI, MVHHI, MVHI and MVGHI respectively.
memsetStore(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dst,uint64_t ByteVal,uint64_t Size,unsigned Align,MachinePointerInfo DstPtrInfo)65 static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
66 SDValue Dst, uint64_t ByteVal, uint64_t Size,
67 unsigned Align, MachinePointerInfo DstPtrInfo) {
68 uint64_t StoreVal = ByteVal;
69 for (unsigned I = 1; I < Size; ++I)
70 StoreVal |= ByteVal << (I * 8);
71 return DAG.getStore(Chain, DL,
72 DAG.getConstant(StoreVal, DL,
73 MVT::getIntegerVT(Size * 8)),
74 Dst, DstPtrInfo, false, false, Align);
75 }
76
EmitTargetCodeForMemset(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dst,SDValue Byte,SDValue Size,unsigned Align,bool IsVolatile,MachinePointerInfo DstPtrInfo) const77 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset(
78 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst,
79 SDValue Byte, SDValue Size, unsigned Align, bool IsVolatile,
80 MachinePointerInfo DstPtrInfo) const {
81 EVT PtrVT = Dst.getValueType();
82
83 if (IsVolatile)
84 return SDValue();
85
86 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
87 uint64_t Bytes = CSize->getZExtValue();
88 if (Bytes == 0)
89 return SDValue();
90 if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
91 // Handle cases that can be done using at most two of
92 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be
93 // used if ByteVal is all zeros or all ones; in other casees,
94 // we can move at most 2 halfwords.
95 uint64_t ByteVal = CByte->getZExtValue();
96 if (ByteVal == 0 || ByteVal == 255 ?
97 Bytes <= 16 && countPopulation(Bytes) <= 2 :
98 Bytes <= 4) {
99 unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
100 unsigned Size2 = Bytes - Size1;
101 SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
102 Align, DstPtrInfo);
103 if (Size2 == 0)
104 return Chain1;
105 Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
106 DAG.getConstant(Size1, DL, PtrVT));
107 DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
108 SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
109 std::min(Align, Size1), DstPtrInfo);
110 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
111 }
112 } else {
113 // Handle one and two bytes using STC.
114 if (Bytes <= 2) {
115 SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
116 false, false, Align);
117 if (Bytes == 1)
118 return Chain1;
119 SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
120 DAG.getConstant(1, DL, PtrVT));
121 SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
122 DstPtrInfo.getWithOffset(1),
123 false, false, 1);
124 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
125 }
126 }
127 assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
128
129 // Handle the special case of a memset of 0, which can use XC.
130 auto *CByte = dyn_cast<ConstantSDNode>(Byte);
131 if (CByte && CByte->getZExtValue() == 0)
132 return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
133 Chain, Dst, Dst, Bytes);
134
135 // Copy the byte to the first location and then use MVC to copy
136 // it to the rest.
137 Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
138 false, false, Align);
139 SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
140 DAG.getConstant(1, DL, PtrVT));
141 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
142 Chain, DstPlus1, Dst, Bytes - 1);
143 }
144 return SDValue();
145 }
146
147 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
148 // deciding whether to use a loop or straight-line code.
emitCLC(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src1,SDValue Src2,uint64_t Size)149 static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
150 SDValue Src1, SDValue Src2, uint64_t Size) {
151 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
152 EVT PtrVT = Src1.getValueType();
153 // A two-CLC sequence is a clear win over a loop, not least because it
154 // needs only one branch. A three-CLC sequence needs the same number
155 // of branches as a loop (i.e. 2), but is shorter. That brings us to
156 // lengths greater than 768 bytes. It seems relatively likely that
157 // a difference will be found within the first 768 bytes, so we just
158 // optimize for the smallest number of branch instructions, in order
159 // to avoid polluting the prediction buffer too much. A loop only ever
160 // needs 2 branches, whereas a straight-line sequence would need 3 or more.
161 if (Size > 3 * 256)
162 return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
163 DAG.getConstant(Size, DL, PtrVT),
164 DAG.getConstant(Size / 256, DL, PtrVT));
165 return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
166 DAG.getConstant(Size, DL, PtrVT));
167 }
168
169 // Convert the current CC value into an integer that is 0 if CC == 0,
170 // less than zero if CC == 1 and greater than zero if CC >= 2.
171 // The sequence starts with IPM, which puts CC into bits 29 and 28
172 // of an integer and clears bits 30 and 31.
addIPMSequence(const SDLoc & DL,SDValue Glue,SelectionDAG & DAG)173 static SDValue addIPMSequence(const SDLoc &DL, SDValue Glue,
174 SelectionDAG &DAG) {
175 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
176 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
177 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
178 SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
179 DAG.getConstant(31, DL, MVT::i32));
180 return ROTL;
181 }
182
EmitTargetCodeForMemcmp(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src1,SDValue Src2,SDValue Size,MachinePointerInfo Op1PtrInfo,MachinePointerInfo Op2PtrInfo) const183 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(
184 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
185 SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo,
186 MachinePointerInfo Op2PtrInfo) const {
187 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
188 uint64_t Bytes = CSize->getZExtValue();
189 assert(Bytes > 0 && "Caller should have handled 0-size case");
190 Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
191 SDValue Glue = Chain.getValue(1);
192 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
193 }
194 return std::make_pair(SDValue(), SDValue());
195 }
196
EmitTargetCodeForMemchr(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,SDValue Char,SDValue Length,MachinePointerInfo SrcPtrInfo) const197 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr(
198 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
199 SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const {
200 // Use SRST to find the character. End is its address on success.
201 EVT PtrVT = Src.getValueType();
202 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
203 Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
204 Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
205 Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
206 DAG.getConstant(255, DL, MVT::i32));
207 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
208 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
209 Limit, Src, Char);
210 Chain = End.getValue(1);
211 SDValue Glue = End.getValue(2);
212
213 // Now select between End and null, depending on whether the character
214 // was found.
215 SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT),
216 DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
217 DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32),
218 Glue};
219 VTs = DAG.getVTList(PtrVT, MVT::Glue);
220 End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
221 return std::make_pair(End, Chain);
222 }
223
EmitTargetCodeForStrcpy(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dest,SDValue Src,MachinePointerInfo DestPtrInfo,MachinePointerInfo SrcPtrInfo,bool isStpcpy) const224 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy(
225 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest,
226 SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo,
227 bool isStpcpy) const {
228 SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
229 SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
230 DAG.getConstant(0, DL, MVT::i32));
231 return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
232 }
233
EmitTargetCodeForStrcmp(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src1,SDValue Src2,MachinePointerInfo Op1PtrInfo,MachinePointerInfo Op2PtrInfo) const234 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp(
235 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
236 SDValue Src2, MachinePointerInfo Op1PtrInfo,
237 MachinePointerInfo Op2PtrInfo) const {
238 SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
239 SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
240 DAG.getConstant(0, DL, MVT::i32));
241 Chain = Unused.getValue(1);
242 SDValue Glue = Chain.getValue(2);
243 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
244 }
245
246 // Search from Src for a null character, stopping once Src reaches Limit.
247 // Return a pair of values, the first being the number of nonnull characters
248 // and the second being the out chain.
249 //
250 // This can be used for strlen by setting Limit to 0.
getBoundedStrlen(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,SDValue Limit)251 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG,
252 const SDLoc &DL,
253 SDValue Chain, SDValue Src,
254 SDValue Limit) {
255 EVT PtrVT = Src.getValueType();
256 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
257 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
258 Limit, Src, DAG.getConstant(0, DL, MVT::i32));
259 Chain = End.getValue(1);
260 SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
261 return std::make_pair(Len, Chain);
262 }
263
EmitTargetCodeForStrlen(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,MachinePointerInfo SrcPtrInfo) const264 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen(
265 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
266 MachinePointerInfo SrcPtrInfo) const {
267 EVT PtrVT = Src.getValueType();
268 return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
269 }
270
EmitTargetCodeForStrnlen(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,SDValue MaxLength,MachinePointerInfo SrcPtrInfo) const271 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen(
272 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
273 SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const {
274 EVT PtrVT = Src.getValueType();
275 MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
276 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
277 return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
278 }
279