• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the XCoreTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "XCoreISelLowering.h"
15 #include "XCore.h"
16 #include "XCoreMachineFunctionInfo.h"
17 #include "XCoreSubtarget.h"
18 #include "XCoreTargetMachine.h"
19 #include "XCoreTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "xcore-lower"
43 
44 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch ((XCoreISD::NodeType)Opcode)
48   {
49     case XCoreISD::FIRST_NUMBER      : break;
50     case XCoreISD::BL                : return "XCoreISD::BL";
51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57     case XCoreISD::LADD              : return "XCoreISD::LADD";
58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
68   }
69   return nullptr;
70 }
71 
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73                                          const XCoreSubtarget &Subtarget)
74     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75 
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78 
79   // Compute derived properties from the register classes
80   computeRegisterProperties(Subtarget.getRegisterInfo());
81 
82   setStackPointerRegisterToSaveRestore(XCore::SP);
83 
84   setSchedulingPreference(Sched::Source);
85 
86   // Use i32 for setcc operations results (slt, sgt, ...).
87   setBooleanContents(ZeroOrOneBooleanContent);
88   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89 
90   // XCore does not have the NodeTypes below.
91   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
92   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
93   setOperationAction(ISD::ADDC, MVT::i32, Expand);
94   setOperationAction(ISD::ADDE, MVT::i32, Expand);
95   setOperationAction(ISD::SUBC, MVT::i32, Expand);
96   setOperationAction(ISD::SUBE, MVT::i32, Expand);
97 
98   // 64bit
99   setOperationAction(ISD::ADD, MVT::i64, Custom);
100   setOperationAction(ISD::SUB, MVT::i64, Custom);
101   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
102   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
103   setOperationAction(ISD::MULHS, MVT::i32, Expand);
104   setOperationAction(ISD::MULHU, MVT::i32, Expand);
105   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
106   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
107   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
108 
109   // Bit Manipulation
110   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
111   setOperationAction(ISD::ROTL , MVT::i32, Expand);
112   setOperationAction(ISD::ROTR , MVT::i32, Expand);
113 
114   setOperationAction(ISD::TRAP, MVT::Other, Legal);
115 
116   // Jump tables.
117   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
118 
119   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
120   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
121 
122   // Conversion of i64 -> double produces constantpool nodes
123   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
124 
125   // Loads
126   for (MVT VT : MVT::integer_valuetypes()) {
127     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
130 
131     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
132     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
133   }
134 
135   // Custom expand misaligned loads / stores.
136   setOperationAction(ISD::LOAD, MVT::i32, Custom);
137   setOperationAction(ISD::STORE, MVT::i32, Custom);
138 
139   // Varargs
140   setOperationAction(ISD::VAEND, MVT::Other, Expand);
141   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
142   setOperationAction(ISD::VAARG, MVT::Other, Custom);
143   setOperationAction(ISD::VASTART, MVT::Other, Custom);
144 
145   // Dynamic stack
146   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
147   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
148   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
149 
150   // Exception handling
151   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
152   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
153 
154   // Atomic operations
155   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
156   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
157   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
158   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
159   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
160 
161   // TRAMPOLINE is custom lowered.
162   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
163   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
164 
165   // We want to custom lower some of our intrinsics.
166   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
167 
168   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
169   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
170     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
171 
172   // We have target-specific dag combine patterns for the following nodes:
173   setTargetDAGCombine(ISD::STORE);
174   setTargetDAGCombine(ISD::ADD);
175   setTargetDAGCombine(ISD::INTRINSIC_VOID);
176   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
177 
178   setMinFunctionAlignment(1);
179   setPrefFunctionAlignment(2);
180 }
181 
isZExtFree(SDValue Val,EVT VT2) const182 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
183   if (Val.getOpcode() != ISD::LOAD)
184     return false;
185 
186   EVT VT1 = Val.getValueType();
187   if (!VT1.isSimple() || !VT1.isInteger() ||
188       !VT2.isSimple() || !VT2.isInteger())
189     return false;
190 
191   switch (VT1.getSimpleVT().SimpleTy) {
192   default: break;
193   case MVT::i8:
194     return true;
195   }
196 
197   return false;
198 }
199 
200 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const201 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
202   switch (Op.getOpcode())
203   {
204   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
205   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
206   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
207   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
208   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
209   case ISD::LOAD:               return LowerLOAD(Op, DAG);
210   case ISD::STORE:              return LowerSTORE(Op, DAG);
211   case ISD::VAARG:              return LowerVAARG(Op, DAG);
212   case ISD::VASTART:            return LowerVASTART(Op, DAG);
213   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
214   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
215   // FIXME: Remove these when LegalizeDAGTypes lands.
216   case ISD::ADD:
217   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
218   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
219   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
220   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
221   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
222   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
223   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
224   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
225   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
226   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
227   default:
228     llvm_unreachable("unimplemented operand");
229   }
230 }
231 
232 /// ReplaceNodeResults - Replace the results of node with an illegal result
233 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const234 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
235                                              SmallVectorImpl<SDValue>&Results,
236                                              SelectionDAG &DAG) const {
237   switch (N->getOpcode()) {
238   default:
239     llvm_unreachable("Don't know how to custom expand this!");
240   case ISD::ADD:
241   case ISD::SUB:
242     Results.push_back(ExpandADDSUB(N, DAG));
243     return;
244   }
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //  Misc Lower Operation implementation
249 //===----------------------------------------------------------------------===//
250 
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const251 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
252                                                      const GlobalValue *GV,
253                                                      SelectionDAG &DAG) const {
254   // FIXME there is no actual debug info here
255   SDLoc dl(GA);
256 
257   if (GV->getValueType()->isFunctionTy())
258     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
259 
260   const auto *GVar = dyn_cast<GlobalVariable>(GV);
261   if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
262       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
263     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
264 
265   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
266 }
267 
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)268 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
269   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
270     return true;
271 
272   Type *ObjType = GV->getValueType();
273   if (!ObjType->isSized())
274     return false;
275 
276   auto &DL = GV->getParent()->getDataLayout();
277   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
278   return ObjSize < CodeModelLargeSize && ObjSize != 0;
279 }
280 
281 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const282 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
283 {
284   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
285   const GlobalValue *GV = GN->getGlobal();
286   SDLoc DL(GN);
287   int64_t Offset = GN->getOffset();
288   if (IsSmallObject(GV, *this)) {
289     // We can only fold positive offsets that are a multiple of the word size.
290     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
291     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
292     GA = getGlobalAddressWrapper(GA, GV, DAG);
293     // Handle the rest of the offset.
294     if (Offset != FoldedOffset) {
295       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
296       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
297     }
298     return GA;
299   } else {
300     // Ideally we would not fold in offset with an index <= 11.
301     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
302     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
303     Ty = Type::getInt32Ty(*DAG.getContext());
304     Constant *Idx = ConstantInt::get(Ty, Offset);
305     Constant *GAI = ConstantExpr::getGetElementPtr(
306         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
307     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
308     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
309                        DAG.getEntryNode(), CP, MachinePointerInfo(), false,
310                        false, false, 0);
311   }
312 }
313 
314 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const315 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
316 {
317   SDLoc DL(Op);
318   auto PtrVT = getPointerTy(DAG.getDataLayout());
319   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
320   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
321 
322   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
323 }
324 
325 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const326 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
327 {
328   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
329   // FIXME there isn't really debug info here
330   SDLoc dl(CP);
331   EVT PtrVT = Op.getValueType();
332   SDValue Res;
333   if (CP->isMachineConstantPoolEntry()) {
334     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
335                                     CP->getAlignment(), CP->getOffset());
336   } else {
337     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
338                                     CP->getAlignment(), CP->getOffset());
339   }
340   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
341 }
342 
getJumpTableEncoding() const343 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
344   return MachineJumpTableInfo::EK_Inline;
345 }
346 
347 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const348 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
349 {
350   SDValue Chain = Op.getOperand(0);
351   SDValue Table = Op.getOperand(1);
352   SDValue Index = Op.getOperand(2);
353   SDLoc dl(Op);
354   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
355   unsigned JTI = JT->getIndex();
356   MachineFunction &MF = DAG.getMachineFunction();
357   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
358   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
359 
360   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
361   if (NumEntries <= 32) {
362     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
363   }
364   assert((NumEntries >> 31) == 0);
365   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
366                                     DAG.getConstant(1, dl, MVT::i32));
367   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
368                      ScaledIndex);
369 }
370 
lowerLoadWordFromAlignedBasePlusOffset(const SDLoc & DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const371 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
372     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
373     SelectionDAG &DAG) const {
374   auto PtrVT = getPointerTy(DAG.getDataLayout());
375   if ((Offset & 0x3) == 0) {
376     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false,
377                        false, false, 0);
378   }
379   // Lower to pair of consecutive word aligned loads plus some bit shifting.
380   int32_t HighOffset = alignTo(Offset, 4);
381   int32_t LowOffset = HighOffset - 4;
382   SDValue LowAddr, HighAddr;
383   if (GlobalAddressSDNode *GASD =
384         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
385     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
386                                    LowOffset);
387     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
388                                     HighOffset);
389   } else {
390     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
391                           DAG.getConstant(LowOffset, DL, MVT::i32));
392     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
393                            DAG.getConstant(HighOffset, DL, MVT::i32));
394   }
395   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
396   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
397 
398   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(),
399                             false, false, false, 0);
400   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(),
401                              false, false, false, 0);
402   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
403   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
404   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
405   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
406                       High.getValue(1));
407   SDValue Ops[] = { Result, Chain };
408   return DAG.getMergeValues(Ops, DL);
409 }
410 
isWordAligned(SDValue Value,SelectionDAG & DAG)411 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
412 {
413   APInt KnownZero, KnownOne;
414   DAG.computeKnownBits(Value, KnownZero, KnownOne);
415   return KnownZero.countTrailingOnes() >= 2;
416 }
417 
418 SDValue XCoreTargetLowering::
LowerLOAD(SDValue Op,SelectionDAG & DAG) const419 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
421   LoadSDNode *LD = cast<LoadSDNode>(Op);
422   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
423          "Unexpected extension type");
424   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
425   if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
426                                      LD->getAddressSpace(),
427                                      LD->getAlignment()))
428     return SDValue();
429 
430   auto &TD = DAG.getDataLayout();
431   unsigned ABIAlignment = TD.getABITypeAlignment(
432       LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
433   // Leave aligned load alone.
434   if (LD->getAlignment() >= ABIAlignment)
435     return SDValue();
436 
437   SDValue Chain = LD->getChain();
438   SDValue BasePtr = LD->getBasePtr();
439   SDLoc DL(Op);
440 
441   if (!LD->isVolatile()) {
442     const GlobalValue *GV;
443     int64_t Offset = 0;
444     if (DAG.isBaseWithConstantOffset(BasePtr) &&
445         isWordAligned(BasePtr->getOperand(0), DAG)) {
446       SDValue NewBasePtr = BasePtr->getOperand(0);
447       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
448       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
449                                                     Offset, DAG);
450     }
451     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
452         MinAlign(GV->getAlignment(), 4) == 4) {
453       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
454                                                 BasePtr->getValueType(0));
455       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
456                                                     Offset, DAG);
457     }
458   }
459 
460   if (LD->getAlignment() == 2) {
461     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
462                                  BasePtr, LD->getPointerInfo(), MVT::i16,
463                                  LD->isVolatile(), LD->isNonTemporal(),
464                                  LD->isInvariant(), 2);
465     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
466                                    DAG.getConstant(2, DL, MVT::i32));
467     SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
468                                   HighAddr,
469                                   LD->getPointerInfo().getWithOffset(2),
470                                   MVT::i16, LD->isVolatile(),
471                                   LD->isNonTemporal(), LD->isInvariant(), 2);
472     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
473                                       DAG.getConstant(16, DL, MVT::i32));
474     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
475     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
476                              High.getValue(1));
477     SDValue Ops[] = { Result, Chain };
478     return DAG.getMergeValues(Ops, DL);
479   }
480 
481   // Lower to a call to __misaligned_load(BasePtr).
482   Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
483   TargetLowering::ArgListTy Args;
484   TargetLowering::ArgListEntry Entry;
485 
486   Entry.Ty = IntPtrTy;
487   Entry.Node = BasePtr;
488   Args.push_back(Entry);
489 
490   TargetLowering::CallLoweringInfo CLI(DAG);
491   CLI.setDebugLoc(DL).setChain(Chain).setCallee(
492       CallingConv::C, IntPtrTy,
493       DAG.getExternalSymbol("__misaligned_load",
494                             getPointerTy(DAG.getDataLayout())),
495       std::move(Args));
496 
497   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
498   SDValue Ops[] = { CallResult.first, CallResult.second };
499   return DAG.getMergeValues(Ops, DL);
500 }
501 
502 SDValue XCoreTargetLowering::
LowerSTORE(SDValue Op,SelectionDAG & DAG) const503 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
504 {
505   StoreSDNode *ST = cast<StoreSDNode>(Op);
506   assert(!ST->isTruncatingStore() && "Unexpected store type");
507   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
508   if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
509                                      ST->getAddressSpace(),
510                                      ST->getAlignment())) {
511     return SDValue();
512   }
513   unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
514       ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
515   // Leave aligned store alone.
516   if (ST->getAlignment() >= ABIAlignment) {
517     return SDValue();
518   }
519   SDValue Chain = ST->getChain();
520   SDValue BasePtr = ST->getBasePtr();
521   SDValue Value = ST->getValue();
522   SDLoc dl(Op);
523 
524   if (ST->getAlignment() == 2) {
525     SDValue Low = Value;
526     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
527                                       DAG.getConstant(16, dl, MVT::i32));
528     SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
529                                          ST->getPointerInfo(), MVT::i16,
530                                          ST->isVolatile(), ST->isNonTemporal(),
531                                          2);
532     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
533                                    DAG.getConstant(2, dl, MVT::i32));
534     SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
535                                           ST->getPointerInfo().getWithOffset(2),
536                                           MVT::i16, ST->isVolatile(),
537                                           ST->isNonTemporal(), 2);
538     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
539   }
540 
541   // Lower to a call to __misaligned_store(BasePtr, Value).
542   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
543   TargetLowering::ArgListTy Args;
544   TargetLowering::ArgListEntry Entry;
545 
546   Entry.Ty = IntPtrTy;
547   Entry.Node = BasePtr;
548   Args.push_back(Entry);
549 
550   Entry.Node = Value;
551   Args.push_back(Entry);
552 
553   TargetLowering::CallLoweringInfo CLI(DAG);
554   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
555       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
556       DAG.getExternalSymbol("__misaligned_store",
557                             getPointerTy(DAG.getDataLayout())),
558       std::move(Args));
559 
560   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
561   return CallResult.second;
562 }
563 
564 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const565 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
566 {
567   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
568          "Unexpected operand to lower!");
569   SDLoc dl(Op);
570   SDValue LHS = Op.getOperand(0);
571   SDValue RHS = Op.getOperand(1);
572   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
573   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
574                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
575                            LHS, RHS);
576   SDValue Lo(Hi.getNode(), 1);
577   SDValue Ops[] = { Lo, Hi };
578   return DAG.getMergeValues(Ops, dl);
579 }
580 
581 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const582 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
583 {
584   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
585          "Unexpected operand to lower!");
586   SDLoc dl(Op);
587   SDValue LHS = Op.getOperand(0);
588   SDValue RHS = Op.getOperand(1);
589   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
590   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
591                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
592                            Zero, Zero);
593   SDValue Lo(Hi.getNode(), 1);
594   SDValue Ops[] = { Lo, Hi };
595   return DAG.getMergeValues(Ops, dl);
596 }
597 
598 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
599 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
600 /// each intermediate result in the calculation must also have a single use.
601 /// If the Op is in the correct form the constituent parts are written to Mul0,
602 /// Mul1, Addend0 and Addend1.
603 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)604 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
605             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
606 {
607   if (Op.getOpcode() != ISD::ADD)
608     return false;
609   SDValue N0 = Op.getOperand(0);
610   SDValue N1 = Op.getOperand(1);
611   SDValue AddOp;
612   SDValue OtherOp;
613   if (N0.getOpcode() == ISD::ADD) {
614     AddOp = N0;
615     OtherOp = N1;
616   } else if (N1.getOpcode() == ISD::ADD) {
617     AddOp = N1;
618     OtherOp = N0;
619   } else {
620     return false;
621   }
622   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
623     return false;
624   if (OtherOp.getOpcode() == ISD::MUL) {
625     // add(add(a,b),mul(x,y))
626     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
627       return false;
628     Mul0 = OtherOp.getOperand(0);
629     Mul1 = OtherOp.getOperand(1);
630     Addend0 = AddOp.getOperand(0);
631     Addend1 = AddOp.getOperand(1);
632     return true;
633   }
634   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
635     // add(add(mul(x,y),a),b)
636     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
637       return false;
638     Mul0 = AddOp.getOperand(0).getOperand(0);
639     Mul1 = AddOp.getOperand(0).getOperand(1);
640     Addend0 = AddOp.getOperand(1);
641     Addend1 = OtherOp;
642     return true;
643   }
644   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
645     // add(add(a,mul(x,y)),b)
646     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
647       return false;
648     Mul0 = AddOp.getOperand(1).getOperand(0);
649     Mul1 = AddOp.getOperand(1).getOperand(1);
650     Addend0 = AddOp.getOperand(0);
651     Addend1 = OtherOp;
652     return true;
653   }
654   return false;
655 }
656 
657 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const658 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
659 {
660   SDValue Mul;
661   SDValue Other;
662   if (N->getOperand(0).getOpcode() == ISD::MUL) {
663     Mul = N->getOperand(0);
664     Other = N->getOperand(1);
665   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
666     Mul = N->getOperand(1);
667     Other = N->getOperand(0);
668   } else {
669     return SDValue();
670   }
671   SDLoc dl(N);
672   SDValue LL, RL, AddendL, AddendH;
673   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
674                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
675   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
676                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
677   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678                         Other, DAG.getConstant(0, dl, MVT::i32));
679   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680                         Other, DAG.getConstant(1, dl, MVT::i32));
681   APInt HighMask = APInt::getHighBitsSet(64, 32);
682   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
683   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
684   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
685       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
686     // The inputs are both zero-extended.
687     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
688                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
689                              AddendL, LL, RL);
690     SDValue Lo(Hi.getNode(), 1);
691     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
692   }
693   if (LHSSB > 32 && RHSSB > 32) {
694     // The inputs are both sign-extended.
695     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
696                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
697                              AddendL, LL, RL);
698     SDValue Lo(Hi.getNode(), 1);
699     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
700   }
701   SDValue LH, RH;
702   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
703                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
704   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
705                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
706   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
707                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
708                            AddendL, LL, RL);
709   SDValue Lo(Hi.getNode(), 1);
710   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
711   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
712   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
713   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
714   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
715 }
716 
717 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const718 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
719 {
720   assert(N->getValueType(0) == MVT::i64 &&
721          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
722         "Unknown operand to lower!");
723 
724   if (N->getOpcode() == ISD::ADD)
725     if (SDValue Result = TryExpandADDWithMul(N, DAG))
726       return Result;
727 
728   SDLoc dl(N);
729 
730   // Extract components
731   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
732                              N->getOperand(0),
733                              DAG.getConstant(0, dl, MVT::i32));
734   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
735                              N->getOperand(0),
736                              DAG.getConstant(1, dl, MVT::i32));
737   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738                              N->getOperand(1),
739                              DAG.getConstant(0, dl, MVT::i32));
740   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
741                              N->getOperand(1),
742                              DAG.getConstant(1, dl, MVT::i32));
743 
744   // Expand
745   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
746                                                    XCoreISD::LSUB;
747   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
748   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
749                            LHSL, RHSL, Zero);
750   SDValue Carry(Lo.getNode(), 1);
751 
752   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
753                            LHSH, RHSH, Carry);
754   SDValue Ignored(Hi.getNode(), 1);
755   // Merge the pieces
756   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
757 }
758 
759 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const760 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
761 {
762   // Whist llvm does not support aggregate varargs we can ignore
763   // the possibility of the ValueType being an implicit byVal vararg.
764   SDNode *Node = Op.getNode();
765   EVT VT = Node->getValueType(0); // not an aggregate
766   SDValue InChain = Node->getOperand(0);
767   SDValue VAListPtr = Node->getOperand(1);
768   EVT PtrVT = VAListPtr.getValueType();
769   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
770   SDLoc dl(Node);
771   SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
772                                VAListPtr, MachinePointerInfo(SV),
773                                false, false, false, 0);
774   // Increment the pointer, VAList, to the next vararg
775   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
776                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
777                                                       dl));
778   // Store the incremented VAList to the legalized pointer
779   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
780                          MachinePointerInfo(SV), false, false, 0);
781   // Load the actual argument out of the pointer VAList
782   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
783                      false, false, false, 0);
784 }
785 
786 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const787 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
788 {
789   SDLoc dl(Op);
790   // vastart stores the address of the VarArgsFrameIndex slot into the
791   // memory location argument
792   MachineFunction &MF = DAG.getMachineFunction();
793   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
794   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
795   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
796                       MachinePointerInfo(), false, false, 0);
797 }
798 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const799 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
800                                             SelectionDAG &DAG) const {
801   // This nodes represent llvm.frameaddress on the DAG.
802   // It takes one operand, the index of the frame address to return.
803   // An index of zero corresponds to the current function's frame address.
804   // An index of one to the parent's frame address, and so on.
805   // Depths > 0 not supported yet!
806   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
807     return SDValue();
808 
809   MachineFunction &MF = DAG.getMachineFunction();
810   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
811   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
812                             RegInfo->getFrameRegister(MF), MVT::i32);
813 }
814 
815 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const816 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
817   // This nodes represent llvm.returnaddress on the DAG.
818   // It takes one operand, the index of the return address to return.
819   // An index of zero corresponds to the current function's return address.
820   // An index of one to the parent's return address, and so on.
821   // Depths > 0 not supported yet!
822   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
823     return SDValue();
824 
825   MachineFunction &MF = DAG.getMachineFunction();
826   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
827   int FI = XFI->createLRSpillSlot(MF);
828   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
829   return DAG.getLoad(
830       getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN,
831       MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0);
832 }
833 
834 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const835 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
836   // This node represents offset from frame pointer to first on-stack argument.
837   // This is needed for correct stack adjustment during unwind.
838   // However, we don't know the offset until after the frame has be finalised.
839   // This is done during the XCoreFTAOElim pass.
840   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
841 }
842 
843 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const844 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
845   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
846   // This node represents 'eh_return' gcc dwarf builtin, which is used to
847   // return from exception. The general meaning is: adjust stack by OFFSET and
848   // pass execution to HANDLER.
849   MachineFunction &MF = DAG.getMachineFunction();
850   SDValue Chain     = Op.getOperand(0);
851   SDValue Offset    = Op.getOperand(1);
852   SDValue Handler   = Op.getOperand(2);
853   SDLoc dl(Op);
854 
855   // Absolute SP = (FP + FrameToArgs) + Offset
856   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
857   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
858                             RegInfo->getFrameRegister(MF), MVT::i32);
859   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
860                                     MVT::i32);
861   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
862   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
863 
864   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
865   // which leaves 2 caller saved registers, R2 & R3 for us to use.
866   unsigned StackReg = XCore::R2;
867   unsigned HandlerReg = XCore::R3;
868 
869   SDValue OutChains[] = {
870     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
871     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
872   };
873 
874   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
875 
876   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
877                      DAG.getRegister(StackReg, MVT::i32),
878                      DAG.getRegister(HandlerReg, MVT::i32));
879 
880 }
881 
882 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const883 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
884   return Op.getOperand(0);
885 }
886 
887 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const888 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
889   SDValue Chain = Op.getOperand(0);
890   SDValue Trmp = Op.getOperand(1); // trampoline
891   SDValue FPtr = Op.getOperand(2); // nested function
892   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
893 
894   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
895 
896   // .align 4
897   // LDAPF_u10 r11, nest
898   // LDW_2rus r11, r11[0]
899   // STWSP_ru6 r11, sp[0]
900   // LDAPF_u10 r11, fptr
901   // LDW_2rus r11, r11[0]
902   // BAU_1r r11
903   // nest:
904   // .word nest
905   // fptr:
906   // .word fptr
907   SDValue OutChains[5];
908 
909   SDValue Addr = Trmp;
910 
911   SDLoc dl(Op);
912   OutChains[0] = DAG.getStore(Chain, dl,
913                               DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
914                               MachinePointerInfo(TrmpAddr), false, false, 0);
915 
916   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
917                      DAG.getConstant(4, dl, MVT::i32));
918   OutChains[1] = DAG.getStore(Chain, dl,
919                               DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
920                               MachinePointerInfo(TrmpAddr, 4), false, false, 0);
921 
922   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
923                      DAG.getConstant(8, dl, MVT::i32));
924   OutChains[2] = DAG.getStore(Chain, dl,
925                               DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
926                               MachinePointerInfo(TrmpAddr, 8), false, false, 0);
927 
928   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
929                      DAG.getConstant(12, dl, MVT::i32));
930   OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
931                               MachinePointerInfo(TrmpAddr, 12), false, false,
932                               0);
933 
934   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
935                      DAG.getConstant(16, dl, MVT::i32));
936   OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
937                               MachinePointerInfo(TrmpAddr, 16), false, false,
938                               0);
939 
940   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
941 }
942 
943 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const944 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
945   SDLoc DL(Op);
946   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
947   switch (IntNo) {
948     case Intrinsic::xcore_crc8:
949       EVT VT = Op.getValueType();
950       SDValue Data =
951         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
952                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
953       SDValue Crc(Data.getNode(), 1);
954       SDValue Results[] = { Crc, Data };
955       return DAG.getMergeValues(Results, DL);
956   }
957   return SDValue();
958 }
959 
960 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const961 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
962   SDLoc DL(Op);
963   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
964 }
965 
966 SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const967 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
968   AtomicSDNode *N = cast<AtomicSDNode>(Op);
969   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
970   assert((N->getOrdering() == AtomicOrdering::Unordered ||
971           N->getOrdering() == AtomicOrdering::Monotonic) &&
972          "setInsertFencesForAtomic(true) expects unordered / monotonic");
973   if (N->getMemoryVT() == MVT::i32) {
974     if (N->getAlignment() < 4)
975       report_fatal_error("atomic load must be aligned");
976     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
977                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
978                        N->isVolatile(), N->isNonTemporal(), N->isInvariant(),
979                        N->getAlignment(), N->getAAInfo(), N->getRanges());
980   }
981   if (N->getMemoryVT() == MVT::i16) {
982     if (N->getAlignment() < 2)
983       report_fatal_error("atomic load must be aligned");
984     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
985                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
986                           N->isVolatile(), N->isNonTemporal(),
987                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
988   }
989   if (N->getMemoryVT() == MVT::i8)
990     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
991                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
992                           N->isVolatile(), N->isNonTemporal(),
993                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
994   return SDValue();
995 }
996 
997 SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const998 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
999   AtomicSDNode *N = cast<AtomicSDNode>(Op);
1000   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1001   assert((N->getOrdering() == AtomicOrdering::Unordered ||
1002           N->getOrdering() == AtomicOrdering::Monotonic) &&
1003          "setInsertFencesForAtomic(true) expects unordered / monotonic");
1004   if (N->getMemoryVT() == MVT::i32) {
1005     if (N->getAlignment() < 4)
1006       report_fatal_error("atomic store must be aligned");
1007     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1008                         N->getBasePtr(), N->getPointerInfo(),
1009                         N->isVolatile(), N->isNonTemporal(),
1010                         N->getAlignment(), N->getAAInfo());
1011   }
1012   if (N->getMemoryVT() == MVT::i16) {
1013     if (N->getAlignment() < 2)
1014       report_fatal_error("atomic store must be aligned");
1015     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1016                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1017                              N->isVolatile(), N->isNonTemporal(),
1018                              N->getAlignment(), N->getAAInfo());
1019   }
1020   if (N->getMemoryVT() == MVT::i8)
1021     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1022                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1023                              N->isVolatile(), N->isNonTemporal(),
1024                              N->getAlignment(), N->getAAInfo());
1025   return SDValue();
1026 }
1027 
1028 //===----------------------------------------------------------------------===//
1029 //                      Calling Convention Implementation
1030 //===----------------------------------------------------------------------===//
1031 
1032 #include "XCoreGenCallingConv.inc"
1033 
1034 //===----------------------------------------------------------------------===//
1035 //                  Call Calling Convention Implementation
1036 //===----------------------------------------------------------------------===//
1037 
1038 /// XCore call implementation
1039 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1040 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1041                                SmallVectorImpl<SDValue> &InVals) const {
1042   SelectionDAG &DAG                     = CLI.DAG;
1043   SDLoc &dl                             = CLI.DL;
1044   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1045   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1046   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1047   SDValue Chain                         = CLI.Chain;
1048   SDValue Callee                        = CLI.Callee;
1049   bool &isTailCall                      = CLI.IsTailCall;
1050   CallingConv::ID CallConv              = CLI.CallConv;
1051   bool isVarArg                         = CLI.IsVarArg;
1052 
1053   // XCore target does not yet support tail call optimization.
1054   isTailCall = false;
1055 
1056   // For now, only CallingConv::C implemented
1057   switch (CallConv)
1058   {
1059     default:
1060       llvm_unreachable("Unsupported calling convention");
1061     case CallingConv::Fast:
1062     case CallingConv::C:
1063       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1064                             Outs, OutVals, Ins, dl, DAG, InVals);
1065   }
1066 }
1067 
1068 /// LowerCallResult - Lower the result values of a call into the
1069 /// appropriate copies out of appropriate physical registers / memory locations.
LowerCallResult(SDValue Chain,SDValue InFlag,const SmallVectorImpl<CCValAssign> & RVLocs,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)1070 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1071                                const SmallVectorImpl<CCValAssign> &RVLocs,
1072                                const SDLoc &dl, SelectionDAG &DAG,
1073                                SmallVectorImpl<SDValue> &InVals) {
1074   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1075   // Copy results out of physical registers.
1076   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1077     const CCValAssign &VA = RVLocs[i];
1078     if (VA.isRegLoc()) {
1079       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1080                                  InFlag).getValue(1);
1081       InFlag = Chain.getValue(2);
1082       InVals.push_back(Chain.getValue(0));
1083     } else {
1084       assert(VA.isMemLoc());
1085       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1086                                              InVals.size()));
1087       // Reserve space for this result.
1088       InVals.push_back(SDValue());
1089     }
1090   }
1091 
1092   // Copy results out of memory.
1093   SmallVector<SDValue, 4> MemOpChains;
1094   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1095     int offset = ResultMemLocs[i].first;
1096     unsigned index = ResultMemLocs[i].second;
1097     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1098     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1099     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1100     InVals[index] = load;
1101     MemOpChains.push_back(load.getValue(1));
1102   }
1103 
1104   // Transform all loads nodes into one single node because
1105   // all load nodes are independent of each other.
1106   if (!MemOpChains.empty())
1107     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1108 
1109   return Chain;
1110 }
1111 
1112 /// LowerCCCCallTo - functions arguments are copied from virtual
1113 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1114 /// CALLSEQ_END are emitted.
1115 /// TODO: isTailCall, sret.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1116 SDValue XCoreTargetLowering::LowerCCCCallTo(
1117     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1118     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1119     const SmallVectorImpl<SDValue> &OutVals,
1120     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1121     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1122 
1123   // Analyze operands of the call, assigning locations to each operand.
1124   SmallVector<CCValAssign, 16> ArgLocs;
1125   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1126                  *DAG.getContext());
1127 
1128   // The ABI dictates there should be one stack slot available to the callee
1129   // on function entry (for saving lr).
1130   CCInfo.AllocateStack(4, 4);
1131 
1132   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1133 
1134   SmallVector<CCValAssign, 16> RVLocs;
1135   // Analyze return values to determine the number of bytes of stack required.
1136   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1137                     *DAG.getContext());
1138   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1139   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1140 
1141   // Get a count of how many bytes are to be pushed on the stack.
1142   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1143   auto PtrVT = getPointerTy(DAG.getDataLayout());
1144 
1145   Chain = DAG.getCALLSEQ_START(Chain,
1146                                DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
1147 
1148   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1149   SmallVector<SDValue, 12> MemOpChains;
1150 
1151   // Walk the register/memloc assignments, inserting copies/loads.
1152   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1153     CCValAssign &VA = ArgLocs[i];
1154     SDValue Arg = OutVals[i];
1155 
1156     // Promote the value if needed.
1157     switch (VA.getLocInfo()) {
1158       default: llvm_unreachable("Unknown loc info!");
1159       case CCValAssign::Full: break;
1160       case CCValAssign::SExt:
1161         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1162         break;
1163       case CCValAssign::ZExt:
1164         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1165         break;
1166       case CCValAssign::AExt:
1167         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1168         break;
1169     }
1170 
1171     // Arguments that can be passed on register must be kept at
1172     // RegsToPass vector
1173     if (VA.isRegLoc()) {
1174       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1175     } else {
1176       assert(VA.isMemLoc());
1177 
1178       int Offset = VA.getLocMemOffset();
1179 
1180       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1181                                         Chain, Arg,
1182                                         DAG.getConstant(Offset/4, dl,
1183                                                         MVT::i32)));
1184     }
1185   }
1186 
1187   // Transform all store nodes into one single node because
1188   // all store nodes are independent of each other.
1189   if (!MemOpChains.empty())
1190     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1191 
1192   // Build a sequence of copy-to-reg nodes chained together with token
1193   // chain and flag operands which copy the outgoing args into registers.
1194   // The InFlag in necessary since all emitted instructions must be
1195   // stuck together.
1196   SDValue InFlag;
1197   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1198     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1199                              RegsToPass[i].second, InFlag);
1200     InFlag = Chain.getValue(1);
1201   }
1202 
1203   // If the callee is a GlobalAddress node (quite common, every direct call is)
1204   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1205   // Likewise ExternalSymbol -> TargetExternalSymbol.
1206   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1207     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1208   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1209     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1210 
1211   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1212   //             = Chain, Callee, Reg#1, Reg#2, ...
1213   //
1214   // Returns a chain & a flag for retval copy to use.
1215   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1216   SmallVector<SDValue, 8> Ops;
1217   Ops.push_back(Chain);
1218   Ops.push_back(Callee);
1219 
1220   // Add argument registers to the end of the list so that they are
1221   // known live into the call.
1222   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1223     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1224                                   RegsToPass[i].second.getValueType()));
1225 
1226   if (InFlag.getNode())
1227     Ops.push_back(InFlag);
1228 
1229   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1230   InFlag = Chain.getValue(1);
1231 
1232   // Create the CALLSEQ_END node.
1233   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1234                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1235   InFlag = Chain.getValue(1);
1236 
1237   // Handle result values, copying them out of physregs into vregs that we
1238   // return.
1239   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1240 }
1241 
1242 //===----------------------------------------------------------------------===//
1243 //             Formal Arguments Calling Convention Implementation
1244 //===----------------------------------------------------------------------===//
1245 
1246 namespace {
1247   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1248 }
1249 
1250 /// XCore formal arguments implementation
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1251 SDValue XCoreTargetLowering::LowerFormalArguments(
1252     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1253     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1254     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1255   switch (CallConv)
1256   {
1257     default:
1258       llvm_unreachable("Unsupported calling convention");
1259     case CallingConv::C:
1260     case CallingConv::Fast:
1261       return LowerCCCArguments(Chain, CallConv, isVarArg,
1262                                Ins, dl, DAG, InVals);
1263   }
1264 }
1265 
1266 /// LowerCCCArguments - transform physical registers into
1267 /// virtual registers and generate load operations for
1268 /// arguments places on the stack.
1269 /// TODO: sret
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1270 SDValue XCoreTargetLowering::LowerCCCArguments(
1271     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1272     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1273     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1274   MachineFunction &MF = DAG.getMachineFunction();
1275   MachineFrameInfo *MFI = MF.getFrameInfo();
1276   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1277   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1278 
1279   // Assign locations to all of the incoming arguments.
1280   SmallVector<CCValAssign, 16> ArgLocs;
1281   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1282                  *DAG.getContext());
1283 
1284   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1285 
1286   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1287 
1288   unsigned LRSaveSize = StackSlotSize;
1289 
1290   if (!isVarArg)
1291     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1292 
1293   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1294   // scheduler clobbering a register before it has been copied.
1295   // The stages are:
1296   // 1. CopyFromReg (and load) arg & vararg registers.
1297   // 2. Chain CopyFromReg nodes into a TokenFactor.
1298   // 3. Memcpy 'byVal' args & push final InVals.
1299   // 4. Chain mem ops nodes into a TokenFactor.
1300   SmallVector<SDValue, 4> CFRegNode;
1301   SmallVector<ArgDataPair, 4> ArgData;
1302   SmallVector<SDValue, 4> MemOps;
1303 
1304   // 1a. CopyFromReg (and load) arg registers.
1305   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1306 
1307     CCValAssign &VA = ArgLocs[i];
1308     SDValue ArgIn;
1309 
1310     if (VA.isRegLoc()) {
1311       // Arguments passed in registers
1312       EVT RegVT = VA.getLocVT();
1313       switch (RegVT.getSimpleVT().SimpleTy) {
1314       default:
1315         {
1316 #ifndef NDEBUG
1317           errs() << "LowerFormalArguments Unhandled argument type: "
1318                  << RegVT.getEVTString() << "\n";
1319 #endif
1320           llvm_unreachable(nullptr);
1321         }
1322       case MVT::i32:
1323         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1324         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1325         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1326         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1327       }
1328     } else {
1329       // sanity check
1330       assert(VA.isMemLoc());
1331       // Load the argument to a virtual register
1332       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1333       if (ObjSize > StackSlotSize) {
1334         errs() << "LowerFormalArguments Unhandled argument type: "
1335                << EVT(VA.getLocVT()).getEVTString()
1336                << "\n";
1337       }
1338       // Create the frame index object for this incoming parameter...
1339       int FI = MFI->CreateFixedObject(ObjSize,
1340                                       LRSaveSize + VA.getLocMemOffset(),
1341                                       true);
1342 
1343       // Create the SelectionDAG nodes corresponding to a load
1344       //from this parameter
1345       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1346       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1347                           MachinePointerInfo::getFixedStack(MF, FI), false,
1348                           false, false, 0);
1349     }
1350     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1351     ArgData.push_back(ADP);
1352   }
1353 
1354   // 1b. CopyFromReg vararg registers.
1355   if (isVarArg) {
1356     // Argument registers
1357     static const MCPhysReg ArgRegs[] = {
1358       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1359     };
1360     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1361     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1362     if (FirstVAReg < array_lengthof(ArgRegs)) {
1363       int offset = 0;
1364       // Save remaining registers, storing higher register numbers at a higher
1365       // address
1366       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1367         // Create a stack slot
1368         int FI = MFI->CreateFixedObject(4, offset, true);
1369         if (i == (int)FirstVAReg) {
1370           XFI->setVarArgsFrameIndex(FI);
1371         }
1372         offset -= StackSlotSize;
1373         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1374         // Move argument from phys reg -> virt reg
1375         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1376         RegInfo.addLiveIn(ArgRegs[i], VReg);
1377         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1378         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1379         // Move argument from virt reg -> stack
1380         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1381                                      MachinePointerInfo(), false, false, 0);
1382         MemOps.push_back(Store);
1383       }
1384     } else {
1385       // This will point to the next argument passed via stack.
1386       XFI->setVarArgsFrameIndex(
1387         MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1388                                true));
1389     }
1390   }
1391 
1392   // 2. chain CopyFromReg nodes into a TokenFactor.
1393   if (!CFRegNode.empty())
1394     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1395 
1396   // 3. Memcpy 'byVal' args & push final InVals.
1397   // Aggregates passed "byVal" need to be copied by the callee.
1398   // The callee will use a pointer to this copy, rather than the original
1399   // pointer.
1400   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1401                                                     ArgDE = ArgData.end();
1402        ArgDI != ArgDE; ++ArgDI) {
1403     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1404       unsigned Size = ArgDI->Flags.getByValSize();
1405       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1406       // Create a new object on the stack and copy the pointee into it.
1407       int FI = MFI->CreateStackObject(Size, Align, false);
1408       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1409       InVals.push_back(FIN);
1410       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1411                                      DAG.getConstant(Size, dl, MVT::i32),
1412                                      Align, false, false, false,
1413                                      MachinePointerInfo(),
1414                                      MachinePointerInfo()));
1415     } else {
1416       InVals.push_back(ArgDI->SDV);
1417     }
1418   }
1419 
1420   // 4, chain mem ops nodes into a TokenFactor.
1421   if (!MemOps.empty()) {
1422     MemOps.push_back(Chain);
1423     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1424   }
1425 
1426   return Chain;
1427 }
1428 
1429 //===----------------------------------------------------------------------===//
1430 //               Return Value Calling Convention Implementation
1431 //===----------------------------------------------------------------------===//
1432 
1433 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1434 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1435                bool isVarArg,
1436                const SmallVectorImpl<ISD::OutputArg> &Outs,
1437                LLVMContext &Context) const {
1438   SmallVector<CCValAssign, 16> RVLocs;
1439   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1440   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1441     return false;
1442   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1443     return false;
1444   return true;
1445 }
1446 
1447 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1448 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1449                                  bool isVarArg,
1450                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1451                                  const SmallVectorImpl<SDValue> &OutVals,
1452                                  const SDLoc &dl, SelectionDAG &DAG) const {
1453 
1454   XCoreFunctionInfo *XFI =
1455     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1456   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1457 
1458   // CCValAssign - represent the assignment of
1459   // the return value to a location
1460   SmallVector<CCValAssign, 16> RVLocs;
1461 
1462   // CCState - Info about the registers and stack slot.
1463   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1464                  *DAG.getContext());
1465 
1466   // Analyze return values.
1467   if (!isVarArg)
1468     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1469 
1470   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1471 
1472   SDValue Flag;
1473   SmallVector<SDValue, 4> RetOps(1, Chain);
1474 
1475   // Return on XCore is always a "retsp 0"
1476   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1477 
1478   SmallVector<SDValue, 4> MemOpChains;
1479   // Handle return values that must be copied to memory.
1480   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1481     CCValAssign &VA = RVLocs[i];
1482     if (VA.isRegLoc())
1483       continue;
1484     assert(VA.isMemLoc());
1485     if (isVarArg) {
1486       report_fatal_error("Can't return value from vararg function in memory");
1487     }
1488 
1489     int Offset = VA.getLocMemOffset();
1490     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1491     // Create the frame index object for the memory location.
1492     int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1493 
1494     // Create a SelectionDAG node corresponding to a store
1495     // to this memory location.
1496     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1497     MemOpChains.push_back(DAG.getStore(
1498         Chain, dl, OutVals[i], FIN,
1499         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
1500         false, 0));
1501   }
1502 
1503   // Transform all store nodes into one single node because
1504   // all stores are independent of each other.
1505   if (!MemOpChains.empty())
1506     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1507 
1508   // Now handle return values copied to registers.
1509   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1510     CCValAssign &VA = RVLocs[i];
1511     if (!VA.isRegLoc())
1512       continue;
1513     // Copy the result values into the output registers.
1514     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1515 
1516     // guarantee that all emitted copies are
1517     // stuck together, avoiding something bad
1518     Flag = Chain.getValue(1);
1519     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1520   }
1521 
1522   RetOps[0] = Chain;  // Update chain.
1523 
1524   // Add the flag if we have it.
1525   if (Flag.getNode())
1526     RetOps.push_back(Flag);
1527 
1528   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 //  Other Lowering Code
1533 //===----------------------------------------------------------------------===//
1534 
1535 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1536 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1537                                                  MachineBasicBlock *BB) const {
1538   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1539   DebugLoc dl = MI.getDebugLoc();
1540   assert((MI.getOpcode() == XCore::SELECT_CC) &&
1541          "Unexpected instr type to insert");
1542 
1543   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1544   // control-flow pattern.  The incoming instruction knows the destination vreg
1545   // to set, the condition code register to branch on, the true/false values to
1546   // select between, and a branch opcode to use.
1547   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1548   MachineFunction::iterator It = ++BB->getIterator();
1549 
1550   //  thisMBB:
1551   //  ...
1552   //   TrueVal = ...
1553   //   cmpTY ccX, r1, r2
1554   //   bCC copy1MBB
1555   //   fallthrough --> copy0MBB
1556   MachineBasicBlock *thisMBB = BB;
1557   MachineFunction *F = BB->getParent();
1558   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1559   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1560   F->insert(It, copy0MBB);
1561   F->insert(It, sinkMBB);
1562 
1563   // Transfer the remainder of BB and its successor edges to sinkMBB.
1564   sinkMBB->splice(sinkMBB->begin(), BB,
1565                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1566   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1567 
1568   // Next, add the true and fallthrough blocks as its successors.
1569   BB->addSuccessor(copy0MBB);
1570   BB->addSuccessor(sinkMBB);
1571 
1572   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1573       .addReg(MI.getOperand(1).getReg())
1574       .addMBB(sinkMBB);
1575 
1576   //  copy0MBB:
1577   //   %FalseValue = ...
1578   //   # fallthrough to sinkMBB
1579   BB = copy0MBB;
1580 
1581   // Update machine-CFG edges
1582   BB->addSuccessor(sinkMBB);
1583 
1584   //  sinkMBB:
1585   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1586   //  ...
1587   BB = sinkMBB;
1588   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1589       .addReg(MI.getOperand(3).getReg())
1590       .addMBB(copy0MBB)
1591       .addReg(MI.getOperand(2).getReg())
1592       .addMBB(thisMBB);
1593 
1594   MI.eraseFromParent(); // The pseudo instruction is gone now.
1595   return BB;
1596 }
1597 
1598 //===----------------------------------------------------------------------===//
1599 // Target Optimization Hooks
1600 //===----------------------------------------------------------------------===//
1601 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1602 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1603                                              DAGCombinerInfo &DCI) const {
1604   SelectionDAG &DAG = DCI.DAG;
1605   SDLoc dl(N);
1606   switch (N->getOpcode()) {
1607   default: break;
1608   case ISD::INTRINSIC_VOID:
1609     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1610     case Intrinsic::xcore_outt:
1611     case Intrinsic::xcore_outct:
1612     case Intrinsic::xcore_chkct: {
1613       SDValue OutVal = N->getOperand(3);
1614       // These instructions ignore the high bits.
1615       if (OutVal.hasOneUse()) {
1616         unsigned BitWidth = OutVal.getValueSizeInBits();
1617         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1618         APInt KnownZero, KnownOne;
1619         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1620                                               !DCI.isBeforeLegalizeOps());
1621         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1622         if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1623             TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1624                                      TLO))
1625           DCI.CommitTargetLoweringOpt(TLO);
1626       }
1627       break;
1628     }
1629     case Intrinsic::xcore_setpt: {
1630       SDValue Time = N->getOperand(3);
1631       // This instruction ignores the high bits.
1632       if (Time.hasOneUse()) {
1633         unsigned BitWidth = Time.getValueSizeInBits();
1634         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1635         APInt KnownZero, KnownOne;
1636         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1637                                               !DCI.isBeforeLegalizeOps());
1638         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1639         if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1640             TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1641                                      TLO))
1642           DCI.CommitTargetLoweringOpt(TLO);
1643       }
1644       break;
1645     }
1646     }
1647     break;
1648   case XCoreISD::LADD: {
1649     SDValue N0 = N->getOperand(0);
1650     SDValue N1 = N->getOperand(1);
1651     SDValue N2 = N->getOperand(2);
1652     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1653     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1654     EVT VT = N0.getValueType();
1655 
1656     // canonicalize constant to RHS
1657     if (N0C && !N1C)
1658       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1659 
1660     // fold (ladd 0, 0, x) -> 0, x & 1
1661     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1662       SDValue Carry = DAG.getConstant(0, dl, VT);
1663       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1664                                    DAG.getConstant(1, dl, VT));
1665       SDValue Ops[] = { Result, Carry };
1666       return DAG.getMergeValues(Ops, dl);
1667     }
1668 
1669     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1670     // low bit set
1671     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1672       APInt KnownZero, KnownOne;
1673       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1674                                          VT.getSizeInBits() - 1);
1675       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1676       if ((KnownZero & Mask) == Mask) {
1677         SDValue Carry = DAG.getConstant(0, dl, VT);
1678         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1679         SDValue Ops[] = { Result, Carry };
1680         return DAG.getMergeValues(Ops, dl);
1681       }
1682     }
1683   }
1684   break;
1685   case XCoreISD::LSUB: {
1686     SDValue N0 = N->getOperand(0);
1687     SDValue N1 = N->getOperand(1);
1688     SDValue N2 = N->getOperand(2);
1689     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1690     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1691     EVT VT = N0.getValueType();
1692 
1693     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1694     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1695       APInt KnownZero, KnownOne;
1696       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1697                                          VT.getSizeInBits() - 1);
1698       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1699       if ((KnownZero & Mask) == Mask) {
1700         SDValue Borrow = N2;
1701         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1702                                      DAG.getConstant(0, dl, VT), N2);
1703         SDValue Ops[] = { Result, Borrow };
1704         return DAG.getMergeValues(Ops, dl);
1705       }
1706     }
1707 
1708     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1709     // low bit set
1710     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1711       APInt KnownZero, KnownOne;
1712       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1713                                          VT.getSizeInBits() - 1);
1714       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1715       if ((KnownZero & Mask) == Mask) {
1716         SDValue Borrow = DAG.getConstant(0, dl, VT);
1717         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1718         SDValue Ops[] = { Result, Borrow };
1719         return DAG.getMergeValues(Ops, dl);
1720       }
1721     }
1722   }
1723   break;
1724   case XCoreISD::LMUL: {
1725     SDValue N0 = N->getOperand(0);
1726     SDValue N1 = N->getOperand(1);
1727     SDValue N2 = N->getOperand(2);
1728     SDValue N3 = N->getOperand(3);
1729     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1730     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1731     EVT VT = N0.getValueType();
1732     // Canonicalize multiplicative constant to RHS. If both multiplicative
1733     // operands are constant canonicalize smallest to RHS.
1734     if ((N0C && !N1C) ||
1735         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1736       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1737                          N1, N0, N2, N3);
1738 
1739     // lmul(x, 0, a, b)
1740     if (N1C && N1C->isNullValue()) {
1741       // If the high result is unused fold to add(a, b)
1742       if (N->hasNUsesOfValue(0, 0)) {
1743         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1744         SDValue Ops[] = { Lo, Lo };
1745         return DAG.getMergeValues(Ops, dl);
1746       }
1747       // Otherwise fold to ladd(a, b, 0)
1748       SDValue Result =
1749         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1750       SDValue Carry(Result.getNode(), 1);
1751       SDValue Ops[] = { Carry, Result };
1752       return DAG.getMergeValues(Ops, dl);
1753     }
1754   }
1755   break;
1756   case ISD::ADD: {
1757     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1758     // lmul(x, y, a, b). The high result of lmul will be ignored.
1759     // This is only profitable if the intermediate results are unused
1760     // elsewhere.
1761     SDValue Mul0, Mul1, Addend0, Addend1;
1762     if (N->getValueType(0) == MVT::i32 &&
1763         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1764       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1765                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1766                                     Mul1, Addend0, Addend1);
1767       SDValue Result(Ignored.getNode(), 1);
1768       return Result;
1769     }
1770     APInt HighMask = APInt::getHighBitsSet(64, 32);
1771     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1772     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1773     // before type legalization as it is messy to match the operands after
1774     // that.
1775     if (N->getValueType(0) == MVT::i64 &&
1776         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1777         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1778         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1779         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1780         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1781       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1782                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1783       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1784                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1785       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1786                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1787       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1788                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1789       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1790                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1791                                Addend0L, Addend1L);
1792       SDValue Lo(Hi.getNode(), 1);
1793       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1794     }
1795   }
1796   break;
1797   case ISD::STORE: {
1798     // Replace unaligned store of unaligned load with memmove.
1799     StoreSDNode *ST  = cast<StoreSDNode>(N);
1800     if (!DCI.isBeforeLegalize() ||
1801         allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1802                                        ST->getAddressSpace(),
1803                                        ST->getAlignment()) ||
1804         ST->isVolatile() || ST->isIndexed()) {
1805       break;
1806     }
1807     SDValue Chain = ST->getChain();
1808 
1809     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1810     assert((StoreBits % 8) == 0 &&
1811            "Store size in bits must be a multiple of 8");
1812     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1813         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1814     unsigned Alignment = ST->getAlignment();
1815     if (Alignment >= ABIAlignment) {
1816       break;
1817     }
1818 
1819     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1820       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1821         LD->getAlignment() == Alignment &&
1822         !LD->isVolatile() && !LD->isIndexed() &&
1823         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1824         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1825         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1826                               LD->getBasePtr(),
1827                               DAG.getConstant(StoreBits/8, dl, MVT::i32),
1828                               Alignment, false, isTail, ST->getPointerInfo(),
1829                               LD->getPointerInfo());
1830       }
1831     }
1832     break;
1833   }
1834   }
1835   return SDValue();
1836 }
1837 
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1838 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1839                                                         APInt &KnownZero,
1840                                                         APInt &KnownOne,
1841                                                         const SelectionDAG &DAG,
1842                                                         unsigned Depth) const {
1843   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1844   switch (Op.getOpcode()) {
1845   default: break;
1846   case XCoreISD::LADD:
1847   case XCoreISD::LSUB:
1848     if (Op.getResNo() == 1) {
1849       // Top bits of carry / borrow are clear.
1850       KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1851                                         KnownZero.getBitWidth() - 1);
1852     }
1853     break;
1854   case ISD::INTRINSIC_W_CHAIN:
1855     {
1856       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1857       switch (IntNo) {
1858       case Intrinsic::xcore_getts:
1859         // High bits are known to be zero.
1860         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1861                                           KnownZero.getBitWidth() - 16);
1862         break;
1863       case Intrinsic::xcore_int:
1864       case Intrinsic::xcore_inct:
1865         // High bits are known to be zero.
1866         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1867                                           KnownZero.getBitWidth() - 8);
1868         break;
1869       case Intrinsic::xcore_testct:
1870         // Result is either 0 or 1.
1871         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1872                                           KnownZero.getBitWidth() - 1);
1873         break;
1874       case Intrinsic::xcore_testwct:
1875         // Result is in the range 0 - 4.
1876         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1877                                           KnownZero.getBitWidth() - 3);
1878         break;
1879       }
1880     }
1881     break;
1882   }
1883 }
1884 
1885 //===----------------------------------------------------------------------===//
1886 //  Addressing mode description hooks
1887 //===----------------------------------------------------------------------===//
1888 
isImmUs(int64_t val)1889 static inline bool isImmUs(int64_t val)
1890 {
1891   return (val >= 0 && val <= 11);
1892 }
1893 
isImmUs2(int64_t val)1894 static inline bool isImmUs2(int64_t val)
1895 {
1896   return (val%2 == 0 && isImmUs(val/2));
1897 }
1898 
isImmUs4(int64_t val)1899 static inline bool isImmUs4(int64_t val)
1900 {
1901   return (val%4 == 0 && isImmUs(val/4));
1902 }
1903 
1904 /// isLegalAddressingMode - Return true if the addressing mode represented
1905 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const1906 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1907                                                 const AddrMode &AM, Type *Ty,
1908                                                 unsigned AS) const {
1909   if (Ty->getTypeID() == Type::VoidTyID)
1910     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1911 
1912   unsigned Size = DL.getTypeAllocSize(Ty);
1913   if (AM.BaseGV) {
1914     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1915                  AM.BaseOffs%4 == 0;
1916   }
1917 
1918   switch (Size) {
1919   case 1:
1920     // reg + imm
1921     if (AM.Scale == 0) {
1922       return isImmUs(AM.BaseOffs);
1923     }
1924     // reg + reg
1925     return AM.Scale == 1 && AM.BaseOffs == 0;
1926   case 2:
1927   case 3:
1928     // reg + imm
1929     if (AM.Scale == 0) {
1930       return isImmUs2(AM.BaseOffs);
1931     }
1932     // reg + reg<<1
1933     return AM.Scale == 2 && AM.BaseOffs == 0;
1934   default:
1935     // reg + imm
1936     if (AM.Scale == 0) {
1937       return isImmUs4(AM.BaseOffs);
1938     }
1939     // reg + reg<<2
1940     return AM.Scale == 4 && AM.BaseOffs == 0;
1941   }
1942 }
1943 
1944 //===----------------------------------------------------------------------===//
1945 //                           XCore Inline Assembly Support
1946 //===----------------------------------------------------------------------===//
1947 
1948 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1949 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1950                                                   StringRef Constraint,
1951                                                   MVT VT) const {
1952   if (Constraint.size() == 1) {
1953     switch (Constraint[0]) {
1954     default : break;
1955     case 'r':
1956       return std::make_pair(0U, &XCore::GRRegsRegClass);
1957     }
1958   }
1959   // Use the default implementation in TargetLowering to convert the register
1960   // constraint into a member of a register class.
1961   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1962 }
1963