1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via !type metadata) that the list of callees is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 // possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 // integer <=64 bits and all possible callees are readnone, for each class and
17 // each list of constant arguments: evaluate the function, store the return
18 // value alongside the virtual table, and rewrite each virtual call as a load
19 // from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 // propagation hold and each function returns the same constant value, replace
22 // each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 // for virtual constant propagation hold and a single vtable's function
25 // returns 0, or a single vtable's function returns 1, replace each virtual
26 // call with a comparison of the vptr against that vtable's address.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/Analysis/TypeMetadataUtils.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/Utils/Evaluator.h"
47 #include "llvm/Transforms/Utils/Local.h"
48
49 #include <set>
50
51 using namespace llvm;
52 using namespace wholeprogramdevirt;
53
54 #define DEBUG_TYPE "wholeprogramdevirt"
55
56 // Find the minimum offset that we may store a value of size Size bits at. If
57 // IsAfter is set, look for an offset before the object, otherwise look for an
58 // offset after the object.
59 uint64_t
findLowestOffset(ArrayRef<VirtualCallTarget> Targets,bool IsAfter,uint64_t Size)60 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
61 bool IsAfter, uint64_t Size) {
62 // Find a minimum offset taking into account only vtable sizes.
63 uint64_t MinByte = 0;
64 for (const VirtualCallTarget &Target : Targets) {
65 if (IsAfter)
66 MinByte = std::max(MinByte, Target.minAfterBytes());
67 else
68 MinByte = std::max(MinByte, Target.minBeforeBytes());
69 }
70
71 // Build a vector of arrays of bytes covering, for each target, a slice of the
72 // used region (see AccumBitVector::BytesUsed in
73 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
74 // this aligns the used regions to start at MinByte.
75 //
76 // In this example, A, B and C are vtables, # is a byte already allocated for
77 // a virtual function pointer, AAAA... (etc.) are the used regions for the
78 // vtables and Offset(X) is the value computed for the Offset variable below
79 // for X.
80 //
81 // Offset(A)
82 // | |
83 // |MinByte
84 // A: ################AAAAAAAA|AAAAAAAA
85 // B: ########BBBBBBBBBBBBBBBB|BBBB
86 // C: ########################|CCCCCCCCCCCCCCCC
87 // | Offset(B) |
88 //
89 // This code produces the slices of A, B and C that appear after the divider
90 // at MinByte.
91 std::vector<ArrayRef<uint8_t>> Used;
92 for (const VirtualCallTarget &Target : Targets) {
93 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
94 : Target.TM->Bits->Before.BytesUsed;
95 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
96 : MinByte - Target.minBeforeBytes();
97
98 // Disregard used regions that are smaller than Offset. These are
99 // effectively all-free regions that do not need to be checked.
100 if (VTUsed.size() > Offset)
101 Used.push_back(VTUsed.slice(Offset));
102 }
103
104 if (Size == 1) {
105 // Find a free bit in each member of Used.
106 for (unsigned I = 0;; ++I) {
107 uint8_t BitsUsed = 0;
108 for (auto &&B : Used)
109 if (I < B.size())
110 BitsUsed |= B[I];
111 if (BitsUsed != 0xff)
112 return (MinByte + I) * 8 +
113 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
114 }
115 } else {
116 // Find a free (Size/8) byte region in each member of Used.
117 // FIXME: see if alignment helps.
118 for (unsigned I = 0;; ++I) {
119 for (auto &&B : Used) {
120 unsigned Byte = 0;
121 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
122 if (B[I + Byte])
123 goto NextI;
124 ++Byte;
125 }
126 }
127 return (MinByte + I) * 8;
128 NextI:;
129 }
130 }
131 }
132
setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocBefore,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)133 void wholeprogramdevirt::setBeforeReturnValues(
134 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
135 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
136 if (BitWidth == 1)
137 OffsetByte = -(AllocBefore / 8 + 1);
138 else
139 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
140 OffsetBit = AllocBefore % 8;
141
142 for (VirtualCallTarget &Target : Targets) {
143 if (BitWidth == 1)
144 Target.setBeforeBit(AllocBefore);
145 else
146 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
147 }
148 }
149
setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets,uint64_t AllocAfter,unsigned BitWidth,int64_t & OffsetByte,uint64_t & OffsetBit)150 void wholeprogramdevirt::setAfterReturnValues(
151 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
152 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
153 if (BitWidth == 1)
154 OffsetByte = AllocAfter / 8;
155 else
156 OffsetByte = (AllocAfter + 7) / 8;
157 OffsetBit = AllocAfter % 8;
158
159 for (VirtualCallTarget &Target : Targets) {
160 if (BitWidth == 1)
161 Target.setAfterBit(AllocAfter);
162 else
163 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
164 }
165 }
166
VirtualCallTarget(Function * Fn,const TypeMemberInfo * TM)167 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
168 : Fn(Fn), TM(TM),
169 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
170
171 namespace {
172
173 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
174 // tables, and the ByteOffset is the offset in bytes from the address point to
175 // the virtual function pointer.
176 struct VTableSlot {
177 Metadata *TypeID;
178 uint64_t ByteOffset;
179 };
180
181 }
182
183 namespace llvm {
184
185 template <> struct DenseMapInfo<VTableSlot> {
getEmptyKeyllvm::DenseMapInfo186 static VTableSlot getEmptyKey() {
187 return {DenseMapInfo<Metadata *>::getEmptyKey(),
188 DenseMapInfo<uint64_t>::getEmptyKey()};
189 }
getTombstoneKeyllvm::DenseMapInfo190 static VTableSlot getTombstoneKey() {
191 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
192 DenseMapInfo<uint64_t>::getTombstoneKey()};
193 }
getHashValuellvm::DenseMapInfo194 static unsigned getHashValue(const VTableSlot &I) {
195 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
196 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
197 }
isEqualllvm::DenseMapInfo198 static bool isEqual(const VTableSlot &LHS,
199 const VTableSlot &RHS) {
200 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
201 }
202 };
203
204 }
205
206 namespace {
207
208 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
209 // the indirect virtual call.
210 struct VirtualCallSite {
211 Value *VTable;
212 CallSite CS;
213
214 // If non-null, this field points to the associated unsafe use count stored in
215 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
216 // of that field for details.
217 unsigned *NumUnsafeUses;
218
emitRemark__anonebacb9950211::VirtualCallSite219 void emitRemark() {
220 Function *F = CS.getCaller();
221 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F,
222 CS.getInstruction()->getDebugLoc(),
223 "devirtualized call");
224 }
225
replaceAndErase__anonebacb9950211::VirtualCallSite226 void replaceAndErase(Value *New) {
227 emitRemark();
228 CS->replaceAllUsesWith(New);
229 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
230 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
231 II->getUnwindDest()->removePredecessor(II->getParent());
232 }
233 CS->eraseFromParent();
234 // This use is no longer unsafe.
235 if (NumUnsafeUses)
236 --*NumUnsafeUses;
237 }
238 };
239
240 struct DevirtModule {
241 Module &M;
242 IntegerType *Int8Ty;
243 PointerType *Int8PtrTy;
244 IntegerType *Int32Ty;
245
246 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
247
248 // This map keeps track of the number of "unsafe" uses of a loaded function
249 // pointer. The key is the associated llvm.type.test intrinsic call generated
250 // by this pass. An unsafe use is one that calls the loaded function pointer
251 // directly. Every time we eliminate an unsafe use (for example, by
252 // devirtualizing it or by applying virtual constant propagation), we
253 // decrement the value stored in this map. If a value reaches zero, we can
254 // eliminate the type check by RAUWing the associated llvm.type.test call with
255 // true.
256 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
257
DevirtModule__anonebacb9950211::DevirtModule258 DevirtModule(Module &M)
259 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
260 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
261 Int32Ty(Type::getInt32Ty(M.getContext())) {}
262
263 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
264 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
265
266 void buildTypeIdentifierMap(
267 std::vector<VTableBits> &Bits,
268 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
269 bool
270 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
271 const std::set<TypeMemberInfo> &TypeMemberInfos,
272 uint64_t ByteOffset);
273 bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
274 MutableArrayRef<VirtualCallSite> CallSites);
275 bool tryEvaluateFunctionsWithArgs(
276 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
277 ArrayRef<ConstantInt *> Args);
278 bool tryUniformRetValOpt(IntegerType *RetType,
279 ArrayRef<VirtualCallTarget> TargetsForSlot,
280 MutableArrayRef<VirtualCallSite> CallSites);
281 bool tryUniqueRetValOpt(unsigned BitWidth,
282 ArrayRef<VirtualCallTarget> TargetsForSlot,
283 MutableArrayRef<VirtualCallSite> CallSites);
284 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
285 ArrayRef<VirtualCallSite> CallSites);
286
287 void rebuildGlobal(VTableBits &B);
288
289 bool run();
290 };
291
292 struct WholeProgramDevirt : public ModulePass {
293 static char ID;
WholeProgramDevirt__anonebacb9950211::WholeProgramDevirt294 WholeProgramDevirt() : ModulePass(ID) {
295 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
296 }
runOnModule__anonebacb9950211::WholeProgramDevirt297 bool runOnModule(Module &M) {
298 if (skipModule(M))
299 return false;
300
301 return DevirtModule(M).run();
302 }
303 };
304
305 } // anonymous namespace
306
307 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
308 "Whole program devirtualization", false, false)
309 char WholeProgramDevirt::ID = 0;
310
createWholeProgramDevirtPass()311 ModulePass *llvm::createWholeProgramDevirtPass() {
312 return new WholeProgramDevirt;
313 }
314
run(Module & M,ModuleAnalysisManager &)315 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
316 ModuleAnalysisManager &) {
317 if (!DevirtModule(M).run())
318 return PreservedAnalyses::all();
319 return PreservedAnalyses::none();
320 }
321
buildTypeIdentifierMap(std::vector<VTableBits> & Bits,DenseMap<Metadata *,std::set<TypeMemberInfo>> & TypeIdMap)322 void DevirtModule::buildTypeIdentifierMap(
323 std::vector<VTableBits> &Bits,
324 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
325 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
326 Bits.reserve(M.getGlobalList().size());
327 SmallVector<MDNode *, 2> Types;
328 for (GlobalVariable &GV : M.globals()) {
329 Types.clear();
330 GV.getMetadata(LLVMContext::MD_type, Types);
331 if (Types.empty())
332 continue;
333
334 VTableBits *&BitsPtr = GVToBits[&GV];
335 if (!BitsPtr) {
336 Bits.emplace_back();
337 Bits.back().GV = &GV;
338 Bits.back().ObjectSize =
339 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
340 BitsPtr = &Bits.back();
341 }
342
343 for (MDNode *Type : Types) {
344 auto TypeID = Type->getOperand(1).get();
345
346 uint64_t Offset =
347 cast<ConstantInt>(
348 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
349 ->getZExtValue();
350
351 TypeIdMap[TypeID].insert({BitsPtr, Offset});
352 }
353 }
354 }
355
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> & TargetsForSlot,const std::set<TypeMemberInfo> & TypeMemberInfos,uint64_t ByteOffset)356 bool DevirtModule::tryFindVirtualCallTargets(
357 std::vector<VirtualCallTarget> &TargetsForSlot,
358 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
359 for (const TypeMemberInfo &TM : TypeMemberInfos) {
360 if (!TM.Bits->GV->isConstant())
361 return false;
362
363 auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer());
364 if (!Init)
365 return false;
366 ArrayType *VTableTy = Init->getType();
367
368 uint64_t ElemSize =
369 M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
370 uint64_t GlobalSlotOffset = TM.Offset + ByteOffset;
371 if (GlobalSlotOffset % ElemSize != 0)
372 return false;
373
374 unsigned Op = GlobalSlotOffset / ElemSize;
375 if (Op >= Init->getNumOperands())
376 return false;
377
378 auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
379 if (!Fn)
380 return false;
381
382 // We can disregard __cxa_pure_virtual as a possible call target, as
383 // calls to pure virtuals are UB.
384 if (Fn->getName() == "__cxa_pure_virtual")
385 continue;
386
387 TargetsForSlot.push_back({Fn, &TM});
388 }
389
390 // Give up if we couldn't find any targets.
391 return !TargetsForSlot.empty();
392 }
393
trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,MutableArrayRef<VirtualCallSite> CallSites)394 bool DevirtModule::trySingleImplDevirt(
395 ArrayRef<VirtualCallTarget> TargetsForSlot,
396 MutableArrayRef<VirtualCallSite> CallSites) {
397 // See if the program contains a single implementation of this virtual
398 // function.
399 Function *TheFn = TargetsForSlot[0].Fn;
400 for (auto &&Target : TargetsForSlot)
401 if (TheFn != Target.Fn)
402 return false;
403
404 // If so, update each call site to call that implementation directly.
405 for (auto &&VCallSite : CallSites) {
406 VCallSite.emitRemark();
407 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
408 TheFn, VCallSite.CS.getCalledValue()->getType()));
409 // This use is no longer unsafe.
410 if (VCallSite.NumUnsafeUses)
411 --*VCallSite.NumUnsafeUses;
412 }
413 return true;
414 }
415
tryEvaluateFunctionsWithArgs(MutableArrayRef<VirtualCallTarget> TargetsForSlot,ArrayRef<ConstantInt * > Args)416 bool DevirtModule::tryEvaluateFunctionsWithArgs(
417 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
418 ArrayRef<ConstantInt *> Args) {
419 // Evaluate each function and store the result in each target's RetVal
420 // field.
421 for (VirtualCallTarget &Target : TargetsForSlot) {
422 if (Target.Fn->arg_size() != Args.size() + 1)
423 return false;
424 for (unsigned I = 0; I != Args.size(); ++I)
425 if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
426 Args[I]->getType())
427 return false;
428
429 Evaluator Eval(M.getDataLayout(), nullptr);
430 SmallVector<Constant *, 2> EvalArgs;
431 EvalArgs.push_back(
432 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
433 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
434 Constant *RetVal;
435 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
436 !isa<ConstantInt>(RetVal))
437 return false;
438 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
439 }
440 return true;
441 }
442
tryUniformRetValOpt(IntegerType * RetType,ArrayRef<VirtualCallTarget> TargetsForSlot,MutableArrayRef<VirtualCallSite> CallSites)443 bool DevirtModule::tryUniformRetValOpt(
444 IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
445 MutableArrayRef<VirtualCallSite> CallSites) {
446 // Uniform return value optimization. If all functions return the same
447 // constant, replace all calls with that constant.
448 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
449 for (const VirtualCallTarget &Target : TargetsForSlot)
450 if (Target.RetVal != TheRetVal)
451 return false;
452
453 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
454 for (auto Call : CallSites)
455 Call.replaceAndErase(TheRetValConst);
456 return true;
457 }
458
tryUniqueRetValOpt(unsigned BitWidth,ArrayRef<VirtualCallTarget> TargetsForSlot,MutableArrayRef<VirtualCallSite> CallSites)459 bool DevirtModule::tryUniqueRetValOpt(
460 unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
461 MutableArrayRef<VirtualCallSite> CallSites) {
462 // IsOne controls whether we look for a 0 or a 1.
463 auto tryUniqueRetValOptFor = [&](bool IsOne) {
464 const TypeMemberInfo *UniqueMember = 0;
465 for (const VirtualCallTarget &Target : TargetsForSlot) {
466 if (Target.RetVal == (IsOne ? 1 : 0)) {
467 if (UniqueMember)
468 return false;
469 UniqueMember = Target.TM;
470 }
471 }
472
473 // We should have found a unique member or bailed out by now. We already
474 // checked for a uniform return value in tryUniformRetValOpt.
475 assert(UniqueMember);
476
477 // Replace each call with the comparison.
478 for (auto &&Call : CallSites) {
479 IRBuilder<> B(Call.CS.getInstruction());
480 Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy);
481 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset);
482 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
483 Call.VTable, OneAddr);
484 Call.replaceAndErase(Cmp);
485 }
486 return true;
487 };
488
489 if (BitWidth == 1) {
490 if (tryUniqueRetValOptFor(true))
491 return true;
492 if (tryUniqueRetValOptFor(false))
493 return true;
494 }
495 return false;
496 }
497
tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,ArrayRef<VirtualCallSite> CallSites)498 bool DevirtModule::tryVirtualConstProp(
499 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
500 ArrayRef<VirtualCallSite> CallSites) {
501 // This only works if the function returns an integer.
502 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
503 if (!RetType)
504 return false;
505 unsigned BitWidth = RetType->getBitWidth();
506 if (BitWidth > 64)
507 return false;
508
509 // Make sure that each function does not access memory, takes at least one
510 // argument, does not use its first argument (which we assume is 'this'),
511 // and has the same return type.
512 for (VirtualCallTarget &Target : TargetsForSlot) {
513 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
514 !Target.Fn->arg_begin()->use_empty() ||
515 Target.Fn->getReturnType() != RetType)
516 return false;
517 }
518
519 // Group call sites by the list of constant arguments they pass.
520 // The comparator ensures deterministic ordering.
521 struct ByAPIntValue {
522 bool operator()(const std::vector<ConstantInt *> &A,
523 const std::vector<ConstantInt *> &B) const {
524 return std::lexicographical_compare(
525 A.begin(), A.end(), B.begin(), B.end(),
526 [](ConstantInt *AI, ConstantInt *BI) {
527 return AI->getValue().ult(BI->getValue());
528 });
529 }
530 };
531 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
532 ByAPIntValue>
533 VCallSitesByConstantArg;
534 for (auto &&VCallSite : CallSites) {
535 std::vector<ConstantInt *> Args;
536 if (VCallSite.CS.getType() != RetType)
537 continue;
538 for (auto &&Arg :
539 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
540 if (!isa<ConstantInt>(Arg))
541 break;
542 Args.push_back(cast<ConstantInt>(&Arg));
543 }
544 if (Args.size() + 1 != VCallSite.CS.arg_size())
545 continue;
546
547 VCallSitesByConstantArg[Args].push_back(VCallSite);
548 }
549
550 for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
551 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
552 continue;
553
554 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
555 continue;
556
557 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
558 continue;
559
560 // Find an allocation offset in bits in all vtables associated with the
561 // type.
562 uint64_t AllocBefore =
563 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
564 uint64_t AllocAfter =
565 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
566
567 // Calculate the total amount of padding needed to store a value at both
568 // ends of the object.
569 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
570 for (auto &&Target : TargetsForSlot) {
571 TotalPaddingBefore += std::max<int64_t>(
572 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
573 TotalPaddingAfter += std::max<int64_t>(
574 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
575 }
576
577 // If the amount of padding is too large, give up.
578 // FIXME: do something smarter here.
579 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
580 continue;
581
582 // Calculate the offset to the value as a (possibly negative) byte offset
583 // and (if applicable) a bit offset, and store the values in the targets.
584 int64_t OffsetByte;
585 uint64_t OffsetBit;
586 if (TotalPaddingBefore <= TotalPaddingAfter)
587 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
588 OffsetBit);
589 else
590 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
591 OffsetBit);
592
593 // Rewrite each call to a load from OffsetByte/OffsetBit.
594 for (auto Call : CSByConstantArg.second) {
595 IRBuilder<> B(Call.CS.getInstruction());
596 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
597 if (BitWidth == 1) {
598 Value *Bits = B.CreateLoad(Addr);
599 Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
600 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
601 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
602 Call.replaceAndErase(IsBitSet);
603 } else {
604 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
605 Value *Val = B.CreateLoad(RetType, ValAddr);
606 Call.replaceAndErase(Val);
607 }
608 }
609 }
610 return true;
611 }
612
rebuildGlobal(VTableBits & B)613 void DevirtModule::rebuildGlobal(VTableBits &B) {
614 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
615 return;
616
617 // Align each byte array to pointer width.
618 unsigned PointerSize = M.getDataLayout().getPointerSize();
619 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
620 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
621
622 // Before was stored in reverse order; flip it now.
623 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
624 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
625
626 // Build an anonymous global containing the before bytes, followed by the
627 // original initializer, followed by the after bytes.
628 auto NewInit = ConstantStruct::getAnon(
629 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
630 B.GV->getInitializer(),
631 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
632 auto NewGV =
633 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
634 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
635 NewGV->setSection(B.GV->getSection());
636 NewGV->setComdat(B.GV->getComdat());
637
638 // Copy the original vtable's metadata to the anonymous global, adjusting
639 // offsets as required.
640 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
641
642 // Build an alias named after the original global, pointing at the second
643 // element (the original initializer).
644 auto Alias = GlobalAlias::create(
645 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
646 ConstantExpr::getGetElementPtr(
647 NewInit->getType(), NewGV,
648 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
649 ConstantInt::get(Int32Ty, 1)}),
650 &M);
651 Alias->setVisibility(B.GV->getVisibility());
652 Alias->takeName(B.GV);
653
654 B.GV->replaceAllUsesWith(Alias);
655 B.GV->eraseFromParent();
656 }
657
scanTypeTestUsers(Function * TypeTestFunc,Function * AssumeFunc)658 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
659 Function *AssumeFunc) {
660 // Find all virtual calls via a virtual table pointer %p under an assumption
661 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
662 // points to a member of the type identifier %md. Group calls by (type ID,
663 // offset) pair (effectively the identity of the virtual function) and store
664 // to CallSlots.
665 DenseSet<Value *> SeenPtrs;
666 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
667 I != E;) {
668 auto CI = dyn_cast<CallInst>(I->getUser());
669 ++I;
670 if (!CI)
671 continue;
672
673 // Search for virtual calls based on %p and add them to DevirtCalls.
674 SmallVector<DevirtCallSite, 1> DevirtCalls;
675 SmallVector<CallInst *, 1> Assumes;
676 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
677
678 // If we found any, add them to CallSlots. Only do this if we haven't seen
679 // the vtable pointer before, as it may have been CSE'd with pointers from
680 // other call sites, and we don't want to process call sites multiple times.
681 if (!Assumes.empty()) {
682 Metadata *TypeId =
683 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
684 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
685 if (SeenPtrs.insert(Ptr).second) {
686 for (DevirtCallSite Call : DevirtCalls) {
687 CallSlots[{TypeId, Call.Offset}].push_back(
688 {CI->getArgOperand(0), Call.CS, nullptr});
689 }
690 }
691 }
692
693 // We no longer need the assumes or the type test.
694 for (auto Assume : Assumes)
695 Assume->eraseFromParent();
696 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
697 // may use the vtable argument later.
698 if (CI->use_empty())
699 CI->eraseFromParent();
700 }
701 }
702
scanTypeCheckedLoadUsers(Function * TypeCheckedLoadFunc)703 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
704 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
705
706 for (auto I = TypeCheckedLoadFunc->use_begin(),
707 E = TypeCheckedLoadFunc->use_end();
708 I != E;) {
709 auto CI = dyn_cast<CallInst>(I->getUser());
710 ++I;
711 if (!CI)
712 continue;
713
714 Value *Ptr = CI->getArgOperand(0);
715 Value *Offset = CI->getArgOperand(1);
716 Value *TypeIdValue = CI->getArgOperand(2);
717 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
718
719 SmallVector<DevirtCallSite, 1> DevirtCalls;
720 SmallVector<Instruction *, 1> LoadedPtrs;
721 SmallVector<Instruction *, 1> Preds;
722 bool HasNonCallUses = false;
723 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
724 HasNonCallUses, CI);
725
726 // Start by generating "pessimistic" code that explicitly loads the function
727 // pointer from the vtable and performs the type check. If possible, we will
728 // eliminate the load and the type check later.
729
730 // If possible, only generate the load at the point where it is used.
731 // This helps avoid unnecessary spills.
732 IRBuilder<> LoadB(
733 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
734 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
735 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
736 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
737
738 for (Instruction *LoadedPtr : LoadedPtrs) {
739 LoadedPtr->replaceAllUsesWith(LoadedValue);
740 LoadedPtr->eraseFromParent();
741 }
742
743 // Likewise for the type test.
744 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
745 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
746
747 for (Instruction *Pred : Preds) {
748 Pred->replaceAllUsesWith(TypeTestCall);
749 Pred->eraseFromParent();
750 }
751
752 // We have already erased any extractvalue instructions that refer to the
753 // intrinsic call, but the intrinsic may have other non-extractvalue uses
754 // (although this is unlikely). In that case, explicitly build a pair and
755 // RAUW it.
756 if (!CI->use_empty()) {
757 Value *Pair = UndefValue::get(CI->getType());
758 IRBuilder<> B(CI);
759 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
760 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
761 CI->replaceAllUsesWith(Pair);
762 }
763
764 // The number of unsafe uses is initially the number of uses.
765 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
766 NumUnsafeUses = DevirtCalls.size();
767
768 // If the function pointer has a non-call user, we cannot eliminate the type
769 // check, as one of those users may eventually call the pointer. Increment
770 // the unsafe use count to make sure it cannot reach zero.
771 if (HasNonCallUses)
772 ++NumUnsafeUses;
773 for (DevirtCallSite Call : DevirtCalls) {
774 CallSlots[{TypeId, Call.Offset}].push_back(
775 {Ptr, Call.CS, &NumUnsafeUses});
776 }
777
778 CI->eraseFromParent();
779 }
780 }
781
run()782 bool DevirtModule::run() {
783 Function *TypeTestFunc =
784 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
785 Function *TypeCheckedLoadFunc =
786 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
787 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
788
789 if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
790 AssumeFunc->use_empty()) &&
791 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
792 return false;
793
794 if (TypeTestFunc && AssumeFunc)
795 scanTypeTestUsers(TypeTestFunc, AssumeFunc);
796
797 if (TypeCheckedLoadFunc)
798 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
799
800 // Rebuild type metadata into a map for easy lookup.
801 std::vector<VTableBits> Bits;
802 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
803 buildTypeIdentifierMap(Bits, TypeIdMap);
804 if (TypeIdMap.empty())
805 return true;
806
807 // For each (type, offset) pair:
808 bool DidVirtualConstProp = false;
809 for (auto &S : CallSlots) {
810 // Search each of the members of the type identifier for the virtual
811 // function implementation at offset S.first.ByteOffset, and add to
812 // TargetsForSlot.
813 std::vector<VirtualCallTarget> TargetsForSlot;
814 if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
815 S.first.ByteOffset))
816 continue;
817
818 if (trySingleImplDevirt(TargetsForSlot, S.second))
819 continue;
820
821 DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
822 }
823
824 // If we were able to eliminate all unsafe uses for a type checked load,
825 // eliminate the type test by replacing it with true.
826 if (TypeCheckedLoadFunc) {
827 auto True = ConstantInt::getTrue(M.getContext());
828 for (auto &&U : NumUnsafeUsesForTypeTest) {
829 if (U.second == 0) {
830 U.first->replaceAllUsesWith(True);
831 U.first->eraseFromParent();
832 }
833 }
834 }
835
836 // Rebuild each global we touched as part of virtual constant propagation to
837 // include the before and after bytes.
838 if (DidVirtualConstProp)
839 for (VTableBits &B : Bits)
840 rebuildGlobal(B);
841
842 return true;
843 }
844