1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47
48 using namespace llvm;
49
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52 cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54 cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57 cl::init(false));
58
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63 cl::init(6));
64
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71 cl::location(ClobberNonLive),
72 cl::Hidden);
73
74 static cl::opt<bool>
75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76 cl::Hidden, cl::init(true));
77
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80 static char ID; // Pass identification, replacement for typeid
81
RewriteStatepointsForGC__anon23811acf0111::RewriteStatepointsForGC82 RewriteStatepointsForGC() : ModulePass(ID) {
83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84 }
85 bool runOnFunction(Function &F);
runOnModule__anon23811acf0111::RewriteStatepointsForGC86 bool runOnModule(Module &M) override {
87 bool Changed = false;
88 for (Function &F : M)
89 Changed |= runOnFunction(F);
90
91 if (Changed) {
92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93 // returns true for at least one function in the module. Since at least
94 // one function changed, we know that the precondition is satisfied.
95 stripNonValidAttributes(M);
96 }
97
98 return Changed;
99 }
100
getAnalysisUsage__anon23811acf0111::RewriteStatepointsForGC101 void getAnalysisUsage(AnalysisUsage &AU) const override {
102 // We add and rewrite a bunch of instructions, but don't really do much
103 // else. We could in theory preserve a lot more analyses here.
104 AU.addRequired<DominatorTreeWrapperPass>();
105 AU.addRequired<TargetTransformInfoWrapperPass>();
106 }
107
108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109 /// dereferenceability that are no longer valid/correct after
110 /// RewriteStatepointsForGC has run. This is because semantically, after
111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112 /// heap. stripNonValidAttributes (conservatively) restores correctness
113 /// by erasing all attributes in the module that externally imply
114 /// dereferenceability.
115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116 /// can touch the entire heap including noalias objects.
117 void stripNonValidAttributes(Module &M);
118
119 // Helpers for stripNonValidAttributes
120 void stripNonValidAttributesFromBody(Function &F);
121 void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124
125 char RewriteStatepointsForGC::ID = 0;
126
createRewriteStatepointsForGCPass()127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128 return new RewriteStatepointsForGC();
129 }
130
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132 "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136 "Make relocations explicit at statepoints", false, false)
137
138 namespace {
139 struct GCPtrLivenessData {
140 /// Values defined in this block.
141 MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142 /// Values used in this block (and thus live); does not included values
143 /// killed within this block.
144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145
146 /// Values live into this basic block (i.e. used by any
147 /// instruction in this basic block or ones reachable from here)
148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149
150 /// Values live out of this basic block (i.e. live into
151 /// any successor block)
152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions. From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain. Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168 RematerializedValueMapTy;
169
170 struct PartiallyConstructedSafepointRecord {
171 /// The set of values known to be live across this safepoint
172 StatepointLiveSetTy LiveSet;
173
174 /// Mapping from live pointers to a base-defining-value
175 MapVector<Value *, Value *> PointerToBase;
176
177 /// The *new* gc.statepoint instruction itself. This produces the token
178 /// that normal path gc.relocates and the gc.result are tied to.
179 Instruction *StatepointToken;
180
181 /// Instruction to which exceptional gc relocates are attached
182 /// Makes it easier to iterate through them during relocationViaAlloca.
183 Instruction *UnwindToken;
184
185 /// Record live values we are rematerialized instead of relocating.
186 /// They are not included into 'LiveSet' field.
187 /// Maps rematerialized copy to it's original value.
188 RematerializedValueMapTy RematerializedValues;
189 };
190 }
191
GetDeoptBundleOperands(ImmutableCallSite CS)192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193 Optional<OperandBundleUse> DeoptBundle =
194 CS.getOperandBundle(LLVMContext::OB_deopt);
195
196 if (!DeoptBundle.hasValue()) {
197 assert(AllowStatepointWithNoDeoptInfo &&
198 "Found non-leaf call without deopt info!");
199 return None;
200 }
201
202 return DeoptBundle.getValue().Inputs;
203 }
204
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207 GCPtrLivenessData &Data);
208
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212 StatepointLiveSetTy &out);
213
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216
isGCPointerType(Type * T)217 static bool isGCPointerType(Type *T) {
218 if (auto *PT = dyn_cast<PointerType>(T))
219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220 // GC managed heap. We know that a pointer into this heap needs to be
221 // updated and that no other pointer does.
222 return PT->getAddressSpace() == 1;
223 return false;
224 }
225
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
isHandledGCPointerType(Type * T)230 static bool isHandledGCPointerType(Type *T) {
231 // We fully support gc pointers
232 if (isGCPointerType(T))
233 return true;
234 // We partially support vectors of gc pointers. The code will assert if it
235 // can't handle something.
236 if (auto VT = dyn_cast<VectorType>(T))
237 if (isGCPointerType(VT->getElementType()))
238 return true;
239 return false;
240 }
241
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
containsGCPtrType(Type * Ty)245 static bool containsGCPtrType(Type *Ty) {
246 if (isGCPointerType(Ty))
247 return true;
248 if (VectorType *VT = dyn_cast<VectorType>(Ty))
249 return isGCPointerType(VT->getScalarType());
250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251 return containsGCPtrType(AT->getElementType());
252 if (StructType *ST = dyn_cast<StructType>(Ty))
253 return any_of(ST->subtypes(), containsGCPtrType);
254 return false;
255 }
256
257 // Returns true if this is a type which a) is a gc pointer or contains a GC
258 // pointer and b) is of a type which the code doesn't expect (i.e. first class
259 // aggregates). Used to trip assertions.
isUnhandledGCPointerType(Type * Ty)260 static bool isUnhandledGCPointerType(Type *Ty) {
261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
262 }
263 #endif
264
265 // Return the name of the value suffixed with the provided value, or if the
266 // value didn't have a name, the default value specified.
suffixed_name_or(Value * V,StringRef Suffix,StringRef DefaultName)267 static std::string suffixed_name_or(Value *V, StringRef Suffix,
268 StringRef DefaultName) {
269 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
270 }
271
272 // Conservatively identifies any definitions which might be live at the
273 // given instruction. The analysis is performed immediately before the
274 // given instruction. Values defined by that instruction are not considered
275 // live. Values used by that instruction are considered live.
276 static void
analyzeParsePointLiveness(DominatorTree & DT,GCPtrLivenessData & OriginalLivenessData,CallSite CS,PartiallyConstructedSafepointRecord & Result)277 analyzeParsePointLiveness(DominatorTree &DT,
278 GCPtrLivenessData &OriginalLivenessData, CallSite CS,
279 PartiallyConstructedSafepointRecord &Result) {
280 Instruction *Inst = CS.getInstruction();
281
282 StatepointLiveSetTy LiveSet;
283 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
284
285 if (PrintLiveSet) {
286 dbgs() << "Live Variables:\n";
287 for (Value *V : LiveSet)
288 dbgs() << " " << V->getName() << " " << *V << "\n";
289 }
290 if (PrintLiveSetSize) {
291 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
292 dbgs() << "Number live values: " << LiveSet.size() << "\n";
293 }
294 Result.LiveSet = LiveSet;
295 }
296
297 static bool isKnownBaseResult(Value *V);
298 namespace {
299 /// A single base defining value - An immediate base defining value for an
300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301 /// For instructions which have multiple pointer [vector] inputs or that
302 /// transition between vector and scalar types, there is no immediate base
303 /// defining value. The 'base defining value' for 'Def' is the transitive
304 /// closure of this relation stopping at the first instruction which has no
305 /// immediate base defining value. The b.d.v. might itself be a base pointer,
306 /// but it can also be an arbitrary derived pointer.
307 struct BaseDefiningValueResult {
308 /// Contains the value which is the base defining value.
309 Value * const BDV;
310 /// True if the base defining value is also known to be an actual base
311 /// pointer.
312 const bool IsKnownBase;
BaseDefiningValueResult__anon23811acf0311::BaseDefiningValueResult313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314 : BDV(BDV), IsKnownBase(IsKnownBase) {
315 #ifndef NDEBUG
316 // Check consistency between new and old means of checking whether a BDV is
317 // a base.
318 bool MustBeBase = isKnownBaseResult(BDV);
319 assert(!MustBeBase || MustBeBase == IsKnownBase);
320 #endif
321 }
322 };
323 }
324
325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
326
327 /// Return a base defining value for the 'Index' element of the given vector
328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector
329 /// 'I'. As an optimization, this method will try to determine when the
330 /// element is known to already be a base pointer. If this can be established,
331 /// the second value in the returned pair will be true. Note that either a
332 /// vector or a pointer typed value can be returned. For the former, the
333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334 /// If the later, the return pointer is a BDV (or possibly a base) for the
335 /// particular element in 'I'.
336 static BaseDefiningValueResult
findBaseDefiningValueOfVector(Value * I)337 findBaseDefiningValueOfVector(Value *I) {
338 // Each case parallels findBaseDefiningValue below, see that code for
339 // detailed motivation.
340
341 if (isa<Argument>(I))
342 // An incoming argument to the function is a base pointer
343 return BaseDefiningValueResult(I, true);
344
345 if (isa<Constant>(I))
346 // Base of constant vector consists only of constant null pointers.
347 // For reasoning see similar case inside 'findBaseDefiningValue' function.
348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349 true);
350
351 if (isa<LoadInst>(I))
352 return BaseDefiningValueResult(I, true);
353
354 if (isa<InsertElementInst>(I))
355 // We don't know whether this vector contains entirely base pointers or
356 // not. To be conservatively correct, we treat it as a BDV and will
357 // duplicate code as needed to construct a parallel vector of bases.
358 return BaseDefiningValueResult(I, false);
359
360 if (isa<ShuffleVectorInst>(I))
361 // We don't know whether this vector contains entirely base pointers or
362 // not. To be conservatively correct, we treat it as a BDV and will
363 // duplicate code as needed to construct a parallel vector of bases.
364 // TODO: There a number of local optimizations which could be applied here
365 // for particular sufflevector patterns.
366 return BaseDefiningValueResult(I, false);
367
368 // A PHI or Select is a base defining value. The outer findBasePointer
369 // algorithm is responsible for constructing a base value for this BDV.
370 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371 "unknown vector instruction - no base found for vector element");
372 return BaseDefiningValueResult(I, false);
373 }
374
375 /// Helper function for findBasePointer - Will return a value which either a)
376 /// defines the base pointer for the input, b) blocks the simple search
377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378 /// from pointer to vector type or back.
findBaseDefiningValue(Value * I)379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
380 assert(I->getType()->isPtrOrPtrVectorTy() &&
381 "Illegal to ask for the base pointer of a non-pointer type");
382
383 if (I->getType()->isVectorTy())
384 return findBaseDefiningValueOfVector(I);
385
386 if (isa<Argument>(I))
387 // An incoming argument to the function is a base pointer
388 // We should have never reached here if this argument isn't an gc value
389 return BaseDefiningValueResult(I, true);
390
391 if (isa<Constant>(I)) {
392 // We assume that objects with a constant base (e.g. a global) can't move
393 // and don't need to be reported to the collector because they are always
394 // live. Besides global references, all kinds of constants (e.g. undef,
395 // constant expressions, null pointers) can be introduced by the inliner or
396 // the optimizer, especially on dynamically dead paths.
397 // Here we treat all of them as having single null base. By doing this we
398 // trying to avoid problems reporting various conflicts in a form of
399 // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400 // See constant.ll file for relevant test cases.
401
402 return BaseDefiningValueResult(
403 ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404 }
405
406 if (CastInst *CI = dyn_cast<CastInst>(I)) {
407 Value *Def = CI->stripPointerCasts();
408 // If stripping pointer casts changes the address space there is an
409 // addrspacecast in between.
410 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411 cast<PointerType>(CI->getType())->getAddressSpace() &&
412 "unsupported addrspacecast");
413 // If we find a cast instruction here, it means we've found a cast which is
414 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
415 // handle int->ptr conversion.
416 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417 return findBaseDefiningValue(Def);
418 }
419
420 if (isa<LoadInst>(I))
421 // The value loaded is an gc base itself
422 return BaseDefiningValueResult(I, true);
423
424
425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426 // The base of this GEP is the base
427 return findBaseDefiningValue(GEP->getPointerOperand());
428
429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430 switch (II->getIntrinsicID()) {
431 default:
432 // fall through to general call handling
433 break;
434 case Intrinsic::experimental_gc_statepoint:
435 llvm_unreachable("statepoints don't produce pointers");
436 case Intrinsic::experimental_gc_relocate: {
437 // Rerunning safepoint insertion after safepoints are already
438 // inserted is not supported. It could probably be made to work,
439 // but why are you doing this? There's no good reason.
440 llvm_unreachable("repeat safepoint insertion is not supported");
441 }
442 case Intrinsic::gcroot:
443 // Currently, this mechanism hasn't been extended to work with gcroot.
444 // There's no reason it couldn't be, but I haven't thought about the
445 // implications much.
446 llvm_unreachable(
447 "interaction with the gcroot mechanism is not supported");
448 }
449 }
450 // We assume that functions in the source language only return base
451 // pointers. This should probably be generalized via attributes to support
452 // both source language and internal functions.
453 if (isa<CallInst>(I) || isa<InvokeInst>(I))
454 return BaseDefiningValueResult(I, true);
455
456 // I have absolutely no idea how to implement this part yet. It's not
457 // necessarily hard, I just haven't really looked at it yet.
458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459
460 if (isa<AtomicCmpXchgInst>(I))
461 // A CAS is effectively a atomic store and load combined under a
462 // predicate. From the perspective of base pointers, we just treat it
463 // like a load.
464 return BaseDefiningValueResult(I, true);
465
466 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
467 "binary ops which don't apply to pointers");
468
469 // The aggregate ops. Aggregates can either be in the heap or on the
470 // stack, but in either case, this is simply a field load. As a result,
471 // this is a defining definition of the base just like a load is.
472 if (isa<ExtractValueInst>(I))
473 return BaseDefiningValueResult(I, true);
474
475 // We should never see an insert vector since that would require we be
476 // tracing back a struct value not a pointer value.
477 assert(!isa<InsertValueInst>(I) &&
478 "Base pointer for a struct is meaningless");
479
480 // An extractelement produces a base result exactly when it's input does.
481 // We may need to insert a parallel instruction to extract the appropriate
482 // element out of the base vector corresponding to the input. Given this,
483 // it's analogous to the phi and select case even though it's not a merge.
484 if (isa<ExtractElementInst>(I))
485 // Note: There a lot of obvious peephole cases here. This are deliberately
486 // handled after the main base pointer inference algorithm to make writing
487 // test cases to exercise that code easier.
488 return BaseDefiningValueResult(I, false);
489
490 // The last two cases here don't return a base pointer. Instead, they
491 // return a value which dynamically selects from among several base
492 // derived pointers (each with it's own base potentially). It's the job of
493 // the caller to resolve these.
494 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
495 "missing instruction case in findBaseDefiningValing");
496 return BaseDefiningValueResult(I, false);
497 }
498
499 /// Returns the base defining value for this value.
findBaseDefiningValueCached(Value * I,DefiningValueMapTy & Cache)500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501 Value *&Cached = Cache[I];
502 if (!Cached) {
503 Cached = findBaseDefiningValue(I).BDV;
504 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505 << Cached->getName() << "\n");
506 }
507 assert(Cache[I] != nullptr);
508 return Cached;
509 }
510
511 /// Return a base pointer for this value if known. Otherwise, return it's
512 /// base defining value.
findBaseOrBDV(Value * I,DefiningValueMapTy & Cache)513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514 Value *Def = findBaseDefiningValueCached(I, Cache);
515 auto Found = Cache.find(Def);
516 if (Found != Cache.end()) {
517 // Either a base-of relation, or a self reference. Caller must check.
518 return Found->second;
519 }
520 // Only a BDV available
521 return Def;
522 }
523
524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525 /// is it known to be a base pointer? Or do we need to continue searching.
isKnownBaseResult(Value * V)526 static bool isKnownBaseResult(Value *V) {
527 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529 !isa<ShuffleVectorInst>(V)) {
530 // no recursion possible
531 return true;
532 }
533 if (isa<Instruction>(V) &&
534 cast<Instruction>(V)->getMetadata("is_base_value")) {
535 // This is a previously inserted base phi or select. We know
536 // that this is a base value.
537 return true;
538 }
539
540 // We need to keep searching
541 return false;
542 }
543
544 namespace {
545 /// Models the state of a single base defining value in the findBasePointer
546 /// algorithm for determining where a new instruction is needed to propagate
547 /// the base of this BDV.
548 class BDVState {
549 public:
550 enum Status { Unknown, Base, Conflict };
551
BDVState()552 BDVState() : Status(Unknown), BaseValue(nullptr) {}
553
BDVState(Status Status,Value * BaseValue=nullptr)554 explicit BDVState(Status Status, Value *BaseValue = nullptr)
555 : Status(Status), BaseValue(BaseValue) {
556 assert(Status != Base || BaseValue);
557 }
558
BDVState(Value * BaseValue)559 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
560
getStatus() const561 Status getStatus() const { return Status; }
getBaseValue() const562 Value *getBaseValue() const { return BaseValue; }
563
isBase() const564 bool isBase() const { return getStatus() == Base; }
isUnknown() const565 bool isUnknown() const { return getStatus() == Unknown; }
isConflict() const566 bool isConflict() const { return getStatus() == Conflict; }
567
operator ==(const BDVState & Other) const568 bool operator==(const BDVState &Other) const {
569 return BaseValue == Other.BaseValue && Status == Other.Status;
570 }
571
operator !=(const BDVState & other) const572 bool operator!=(const BDVState &other) const { return !(*this == other); }
573
574 LLVM_DUMP_METHOD
dump() const575 void dump() const {
576 print(dbgs());
577 dbgs() << '\n';
578 }
579
print(raw_ostream & OS) const580 void print(raw_ostream &OS) const {
581 switch (getStatus()) {
582 case Unknown:
583 OS << "U";
584 break;
585 case Base:
586 OS << "B";
587 break;
588 case Conflict:
589 OS << "C";
590 break;
591 };
592 OS << " (" << getBaseValue() << " - "
593 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
594 }
595
596 private:
597 Status Status;
598 AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
599 };
600 }
601
602 #ifndef NDEBUG
operator <<(raw_ostream & OS,const BDVState & State)603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
604 State.print(OS);
605 return OS;
606 }
607 #endif
608
meetBDVStateImpl(const BDVState & LHS,const BDVState & RHS)609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
610 switch (LHS.getStatus()) {
611 case BDVState::Unknown:
612 return RHS;
613
614 case BDVState::Base:
615 assert(LHS.getBaseValue() && "can't be null");
616 if (RHS.isUnknown())
617 return LHS;
618
619 if (RHS.isBase()) {
620 if (LHS.getBaseValue() == RHS.getBaseValue()) {
621 assert(LHS == RHS && "equality broken!");
622 return LHS;
623 }
624 return BDVState(BDVState::Conflict);
625 }
626 assert(RHS.isConflict() && "only three states!");
627 return BDVState(BDVState::Conflict);
628
629 case BDVState::Conflict:
630 return LHS;
631 }
632 llvm_unreachable("only three states!");
633 }
634
635 // Values of type BDVState form a lattice, and this function implements the meet
636 // operation.
meetBDVState(BDVState LHS,BDVState RHS)637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
638 BDVState Result = meetBDVStateImpl(LHS, RHS);
639 assert(Result == meetBDVStateImpl(RHS, LHS) &&
640 "Math is wrong: meet does not commute!");
641 return Result;
642 }
643
644 /// For a given value or instruction, figure out what base ptr its derived from.
645 /// For gc objects, this is simply itself. On success, returns a value which is
646 /// the base pointer. (This is reliable and can be used for relocation.) On
647 /// failure, returns nullptr.
findBasePointer(Value * I,DefiningValueMapTy & Cache)648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
649 Value *Def = findBaseOrBDV(I, Cache);
650
651 if (isKnownBaseResult(Def))
652 return Def;
653
654 // Here's the rough algorithm:
655 // - For every SSA value, construct a mapping to either an actual base
656 // pointer or a PHI which obscures the base pointer.
657 // - Construct a mapping from PHI to unknown TOP state. Use an
658 // optimistic algorithm to propagate base pointer information. Lattice
659 // looks like:
660 // UNKNOWN
661 // b1 b2 b3 b4
662 // CONFLICT
663 // When algorithm terminates, all PHIs will either have a single concrete
664 // base or be in a conflict state.
665 // - For every conflict, insert a dummy PHI node without arguments. Add
666 // these to the base[Instruction] = BasePtr mapping. For every
667 // non-conflict, add the actual base.
668 // - For every conflict, add arguments for the base[a] of each input
669 // arguments.
670 //
671 // Note: A simpler form of this would be to add the conflict form of all
672 // PHIs without running the optimistic algorithm. This would be
673 // analogous to pessimistic data flow and would likely lead to an
674 // overall worse solution.
675
676 #ifndef NDEBUG
677 auto isExpectedBDVType = [](Value *BDV) {
678 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
679 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
680 };
681 #endif
682
683 // Once populated, will contain a mapping from each potentially non-base BDV
684 // to a lattice value (described above) which corresponds to that BDV.
685 // We use the order of insertion (DFS over the def/use graph) to provide a
686 // stable deterministic ordering for visiting DenseMaps (which are unordered)
687 // below. This is important for deterministic compilation.
688 MapVector<Value *, BDVState> States;
689
690 // Recursively fill in all base defining values reachable from the initial
691 // one for which we don't already know a definite base value for
692 /* scope */ {
693 SmallVector<Value*, 16> Worklist;
694 Worklist.push_back(Def);
695 States.insert({Def, BDVState()});
696 while (!Worklist.empty()) {
697 Value *Current = Worklist.pop_back_val();
698 assert(!isKnownBaseResult(Current) && "why did it get added?");
699
700 auto visitIncomingValue = [&](Value *InVal) {
701 Value *Base = findBaseOrBDV(InVal, Cache);
702 if (isKnownBaseResult(Base))
703 // Known bases won't need new instructions introduced and can be
704 // ignored safely
705 return;
706 assert(isExpectedBDVType(Base) && "the only non-base values "
707 "we see should be base defining values");
708 if (States.insert(std::make_pair(Base, BDVState())).second)
709 Worklist.push_back(Base);
710 };
711 if (PHINode *PN = dyn_cast<PHINode>(Current)) {
712 for (Value *InVal : PN->incoming_values())
713 visitIncomingValue(InVal);
714 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
715 visitIncomingValue(SI->getTrueValue());
716 visitIncomingValue(SI->getFalseValue());
717 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
718 visitIncomingValue(EE->getVectorOperand());
719 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
720 visitIncomingValue(IE->getOperand(0)); // vector operand
721 visitIncomingValue(IE->getOperand(1)); // scalar operand
722 } else {
723 // There is one known class of instructions we know we don't handle.
724 assert(isa<ShuffleVectorInst>(Current));
725 llvm_unreachable("Unimplemented instruction case");
726 }
727 }
728 }
729
730 #ifndef NDEBUG
731 DEBUG(dbgs() << "States after initialization:\n");
732 for (auto Pair : States) {
733 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
734 }
735 #endif
736
737 // Return a phi state for a base defining value. We'll generate a new
738 // base state for known bases and expect to find a cached state otherwise.
739 auto getStateForBDV = [&](Value *baseValue) {
740 if (isKnownBaseResult(baseValue))
741 return BDVState(baseValue);
742 auto I = States.find(baseValue);
743 assert(I != States.end() && "lookup failed!");
744 return I->second;
745 };
746
747 bool Progress = true;
748 while (Progress) {
749 #ifndef NDEBUG
750 const size_t OldSize = States.size();
751 #endif
752 Progress = false;
753 // We're only changing values in this loop, thus safe to keep iterators.
754 // Since this is computing a fixed point, the order of visit does not
755 // effect the result. TODO: We could use a worklist here and make this run
756 // much faster.
757 for (auto Pair : States) {
758 Value *BDV = Pair.first;
759 assert(!isKnownBaseResult(BDV) && "why did it get added?");
760
761 // Given an input value for the current instruction, return a BDVState
762 // instance which represents the BDV of that value.
763 auto getStateForInput = [&](Value *V) mutable {
764 Value *BDV = findBaseOrBDV(V, Cache);
765 return getStateForBDV(BDV);
766 };
767
768 BDVState NewState;
769 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
770 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
771 NewState =
772 meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
773 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
774 for (Value *Val : PN->incoming_values())
775 NewState = meetBDVState(NewState, getStateForInput(Val));
776 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
777 // The 'meet' for an extractelement is slightly trivial, but it's still
778 // useful in that it drives us to conflict if our input is.
779 NewState =
780 meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
781 } else {
782 // Given there's a inherent type mismatch between the operands, will
783 // *always* produce Conflict.
784 auto *IE = cast<InsertElementInst>(BDV);
785 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
786 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
787 }
788
789 BDVState OldState = States[BDV];
790 if (OldState != NewState) {
791 Progress = true;
792 States[BDV] = NewState;
793 }
794 }
795
796 assert(OldSize == States.size() &&
797 "fixed point shouldn't be adding any new nodes to state");
798 }
799
800 #ifndef NDEBUG
801 DEBUG(dbgs() << "States after meet iteration:\n");
802 for (auto Pair : States) {
803 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
804 }
805 #endif
806
807 // Insert Phis for all conflicts
808 // TODO: adjust naming patterns to avoid this order of iteration dependency
809 for (auto Pair : States) {
810 Instruction *I = cast<Instruction>(Pair.first);
811 BDVState State = Pair.second;
812 assert(!isKnownBaseResult(I) && "why did it get added?");
813 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
814
815 // extractelement instructions are a bit special in that we may need to
816 // insert an extract even when we know an exact base for the instruction.
817 // The problem is that we need to convert from a vector base to a scalar
818 // base for the particular indice we're interested in.
819 if (State.isBase() && isa<ExtractElementInst>(I) &&
820 isa<VectorType>(State.getBaseValue()->getType())) {
821 auto *EE = cast<ExtractElementInst>(I);
822 // TODO: In many cases, the new instruction is just EE itself. We should
823 // exploit this, but can't do it here since it would break the invariant
824 // about the BDV not being known to be a base.
825 auto *BaseInst = ExtractElementInst::Create(
826 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
827 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
828 States[I] = BDVState(BDVState::Base, BaseInst);
829 }
830
831 // Since we're joining a vector and scalar base, they can never be the
832 // same. As a result, we should always see insert element having reached
833 // the conflict state.
834 assert(!isa<InsertElementInst>(I) || State.isConflict());
835
836 if (!State.isConflict())
837 continue;
838
839 /// Create and insert a new instruction which will represent the base of
840 /// the given instruction 'I'.
841 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
842 if (isa<PHINode>(I)) {
843 BasicBlock *BB = I->getParent();
844 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
845 assert(NumPreds > 0 && "how did we reach here");
846 std::string Name = suffixed_name_or(I, ".base", "base_phi");
847 return PHINode::Create(I->getType(), NumPreds, Name, I);
848 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
849 // The undef will be replaced later
850 UndefValue *Undef = UndefValue::get(SI->getType());
851 std::string Name = suffixed_name_or(I, ".base", "base_select");
852 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
853 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
854 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
855 std::string Name = suffixed_name_or(I, ".base", "base_ee");
856 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
857 EE);
858 } else {
859 auto *IE = cast<InsertElementInst>(I);
860 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
861 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
862 std::string Name = suffixed_name_or(I, ".base", "base_ie");
863 return InsertElementInst::Create(VecUndef, ScalarUndef,
864 IE->getOperand(2), Name, IE);
865 }
866 };
867 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
868 // Add metadata marking this as a base value
869 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
870 States[I] = BDVState(BDVState::Conflict, BaseInst);
871 }
872
873 // Returns a instruction which produces the base pointer for a given
874 // instruction. The instruction is assumed to be an input to one of the BDVs
875 // seen in the inference algorithm above. As such, we must either already
876 // know it's base defining value is a base, or have inserted a new
877 // instruction to propagate the base of it's BDV and have entered that newly
878 // introduced instruction into the state table. In either case, we are
879 // assured to be able to determine an instruction which produces it's base
880 // pointer.
881 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
882 Value *BDV = findBaseOrBDV(Input, Cache);
883 Value *Base = nullptr;
884 if (isKnownBaseResult(BDV)) {
885 Base = BDV;
886 } else {
887 // Either conflict or base.
888 assert(States.count(BDV));
889 Base = States[BDV].getBaseValue();
890 }
891 assert(Base && "Can't be null");
892 // The cast is needed since base traversal may strip away bitcasts
893 if (Base->getType() != Input->getType() && InsertPt)
894 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
895 return Base;
896 };
897
898 // Fixup all the inputs of the new PHIs. Visit order needs to be
899 // deterministic and predictable because we're naming newly created
900 // instructions.
901 for (auto Pair : States) {
902 Instruction *BDV = cast<Instruction>(Pair.first);
903 BDVState State = Pair.second;
904
905 assert(!isKnownBaseResult(BDV) && "why did it get added?");
906 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
907 if (!State.isConflict())
908 continue;
909
910 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
911 PHINode *PN = cast<PHINode>(BDV);
912 unsigned NumPHIValues = PN->getNumIncomingValues();
913 for (unsigned i = 0; i < NumPHIValues; i++) {
914 Value *InVal = PN->getIncomingValue(i);
915 BasicBlock *InBB = PN->getIncomingBlock(i);
916
917 // If we've already seen InBB, add the same incoming value
918 // we added for it earlier. The IR verifier requires phi
919 // nodes with multiple entries from the same basic block
920 // to have the same incoming value for each of those
921 // entries. If we don't do this check here and basephi
922 // has a different type than base, we'll end up adding two
923 // bitcasts (and hence two distinct values) as incoming
924 // values for the same basic block.
925
926 int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
927 if (BlockIndex != -1) {
928 Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
929 BasePHI->addIncoming(OldBase, InBB);
930
931 #ifndef NDEBUG
932 Value *Base = getBaseForInput(InVal, nullptr);
933 // In essence this assert states: the only way two values
934 // incoming from the same basic block may be different is by
935 // being different bitcasts of the same value. A cleanup
936 // that remains TODO is changing findBaseOrBDV to return an
937 // llvm::Value of the correct type (and still remain pure).
938 // This will remove the need to add bitcasts.
939 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
940 "Sanity -- findBaseOrBDV should be pure!");
941 #endif
942 continue;
943 }
944
945 // Find the instruction which produces the base for each input. We may
946 // need to insert a bitcast in the incoming block.
947 // TODO: Need to split critical edges if insertion is needed
948 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
949 BasePHI->addIncoming(Base, InBB);
950 }
951 assert(BasePHI->getNumIncomingValues() == NumPHIValues);
952 } else if (SelectInst *BaseSI =
953 dyn_cast<SelectInst>(State.getBaseValue())) {
954 SelectInst *SI = cast<SelectInst>(BDV);
955
956 // Find the instruction which produces the base for each input.
957 // We may need to insert a bitcast.
958 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
959 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
960 } else if (auto *BaseEE =
961 dyn_cast<ExtractElementInst>(State.getBaseValue())) {
962 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
963 // Find the instruction which produces the base for each input. We may
964 // need to insert a bitcast.
965 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
966 } else {
967 auto *BaseIE = cast<InsertElementInst>(State.getBaseValue());
968 auto *BdvIE = cast<InsertElementInst>(BDV);
969 auto UpdateOperand = [&](int OperandIdx) {
970 Value *InVal = BdvIE->getOperand(OperandIdx);
971 Value *Base = getBaseForInput(InVal, BaseIE);
972 BaseIE->setOperand(OperandIdx, Base);
973 };
974 UpdateOperand(0); // vector operand
975 UpdateOperand(1); // scalar operand
976 }
977 }
978
979 // Cache all of our results so we can cheaply reuse them
980 // NOTE: This is actually two caches: one of the base defining value
981 // relation and one of the base pointer relation! FIXME
982 for (auto Pair : States) {
983 auto *BDV = Pair.first;
984 Value *Base = Pair.second.getBaseValue();
985 assert(BDV && Base);
986 assert(!isKnownBaseResult(BDV) && "why did it get added?");
987
988 DEBUG(dbgs() << "Updating base value cache"
989 << " for: " << BDV->getName() << " from: "
990 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
991 << " to: " << Base->getName() << "\n");
992
993 if (Cache.count(BDV)) {
994 assert(isKnownBaseResult(Base) &&
995 "must be something we 'know' is a base pointer");
996 // Once we transition from the BDV relation being store in the Cache to
997 // the base relation being stored, it must be stable
998 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
999 "base relation should be stable");
1000 }
1001 Cache[BDV] = Base;
1002 }
1003 assert(Cache.count(Def));
1004 return Cache[Def];
1005 }
1006
1007 // For a set of live pointers (base and/or derived), identify the base
1008 // pointer of the object which they are derived from. This routine will
1009 // mutate the IR graph as needed to make the 'base' pointer live at the
1010 // definition site of 'derived'. This ensures that any use of 'derived' can
1011 // also use 'base'. This may involve the insertion of a number of
1012 // additional PHI nodes.
1013 //
1014 // preconditions: live is a set of pointer type Values
1015 //
1016 // side effects: may insert PHI nodes into the existing CFG, will preserve
1017 // CFG, will not remove or mutate any existing nodes
1018 //
1019 // post condition: PointerToBase contains one (derived, base) pair for every
1020 // pointer in live. Note that derived can be equal to base if the original
1021 // pointer was a base pointer.
1022 static void
findBasePointers(const StatepointLiveSetTy & live,MapVector<Value *,Value * > & PointerToBase,DominatorTree * DT,DefiningValueMapTy & DVCache)1023 findBasePointers(const StatepointLiveSetTy &live,
1024 MapVector<Value *, Value *> &PointerToBase,
1025 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1026 for (Value *ptr : live) {
1027 Value *base = findBasePointer(ptr, DVCache);
1028 assert(base && "failed to find base pointer");
1029 PointerToBase[ptr] = base;
1030 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1031 DT->dominates(cast<Instruction>(base)->getParent(),
1032 cast<Instruction>(ptr)->getParent())) &&
1033 "The base we found better dominate the derived pointer");
1034 }
1035 }
1036
1037 /// Find the required based pointers (and adjust the live set) for the given
1038 /// parse point.
findBasePointers(DominatorTree & DT,DefiningValueMapTy & DVCache,CallSite CS,PartiallyConstructedSafepointRecord & result)1039 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1040 CallSite CS,
1041 PartiallyConstructedSafepointRecord &result) {
1042 MapVector<Value *, Value *> PointerToBase;
1043 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1044
1045 if (PrintBasePointers) {
1046 errs() << "Base Pairs (w/o Relocation):\n";
1047 for (auto &Pair : PointerToBase) {
1048 errs() << " derived ";
1049 Pair.first->printAsOperand(errs(), false);
1050 errs() << " base ";
1051 Pair.second->printAsOperand(errs(), false);
1052 errs() << "\n";;
1053 }
1054 }
1055
1056 result.PointerToBase = PointerToBase;
1057 }
1058
1059 /// Given an updated version of the dataflow liveness results, update the
1060 /// liveset and base pointer maps for the call site CS.
1061 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1062 CallSite CS,
1063 PartiallyConstructedSafepointRecord &result);
1064
recomputeLiveInValues(Function & F,DominatorTree & DT,ArrayRef<CallSite> toUpdate,MutableArrayRef<struct PartiallyConstructedSafepointRecord> records)1065 static void recomputeLiveInValues(
1066 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1067 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1068 // TODO-PERF: reuse the original liveness, then simply run the dataflow
1069 // again. The old values are still live and will help it stabilize quickly.
1070 GCPtrLivenessData RevisedLivenessData;
1071 computeLiveInValues(DT, F, RevisedLivenessData);
1072 for (size_t i = 0; i < records.size(); i++) {
1073 struct PartiallyConstructedSafepointRecord &info = records[i];
1074 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1075 }
1076 }
1077
1078 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1079 // no uses of the original value / return value between the gc.statepoint and
1080 // the gc.relocate / gc.result call. One case which can arise is a phi node
1081 // starting one of the successor blocks. We also need to be able to insert the
1082 // gc.relocates only on the path which goes through the statepoint. We might
1083 // need to split an edge to make this possible.
1084 static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock * BB,BasicBlock * InvokeParent,DominatorTree & DT)1085 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1086 DominatorTree &DT) {
1087 BasicBlock *Ret = BB;
1088 if (!BB->getUniquePredecessor())
1089 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1090
1091 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1092 // from it
1093 FoldSingleEntryPHINodes(Ret);
1094 assert(!isa<PHINode>(Ret->begin()) &&
1095 "All PHI nodes should have been removed!");
1096
1097 // At this point, we can safely insert a gc.relocate or gc.result as the first
1098 // instruction in Ret if needed.
1099 return Ret;
1100 }
1101
1102 // Create new attribute set containing only attributes which can be transferred
1103 // from original call to the safepoint.
legalizeCallAttributes(AttributeSet AS)1104 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1105 AttributeSet Ret;
1106
1107 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1108 unsigned Index = AS.getSlotIndex(Slot);
1109
1110 if (Index == AttributeSet::ReturnIndex ||
1111 Index == AttributeSet::FunctionIndex) {
1112
1113 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1114
1115 // Do not allow certain attributes - just skip them
1116 // Safepoint can not be read only or read none.
1117 if (Attr.hasAttribute(Attribute::ReadNone) ||
1118 Attr.hasAttribute(Attribute::ReadOnly))
1119 continue;
1120
1121 // These attributes control the generation of the gc.statepoint call /
1122 // invoke itself; and once the gc.statepoint is in place, they're of no
1123 // use.
1124 if (isStatepointDirectiveAttr(Attr))
1125 continue;
1126
1127 Ret = Ret.addAttributes(
1128 AS.getContext(), Index,
1129 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1130 }
1131 }
1132
1133 // Just skip parameter attributes for now
1134 }
1135
1136 return Ret;
1137 }
1138
1139 /// Helper function to place all gc relocates necessary for the given
1140 /// statepoint.
1141 /// Inputs:
1142 /// liveVariables - list of variables to be relocated.
1143 /// liveStart - index of the first live variable.
1144 /// basePtrs - base pointers.
1145 /// statepointToken - statepoint instruction to which relocates should be
1146 /// bound.
1147 /// Builder - Llvm IR builder to be used to construct new calls.
CreateGCRelocates(ArrayRef<Value * > LiveVariables,const int LiveStart,ArrayRef<Value * > BasePtrs,Instruction * StatepointToken,IRBuilder<> Builder)1148 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1149 const int LiveStart,
1150 ArrayRef<Value *> BasePtrs,
1151 Instruction *StatepointToken,
1152 IRBuilder<> Builder) {
1153 if (LiveVariables.empty())
1154 return;
1155
1156 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1157 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1158 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1159 size_t Index = std::distance(LiveVec.begin(), ValIt);
1160 assert(Index < LiveVec.size() && "Bug in std::find?");
1161 return Index;
1162 };
1163 Module *M = StatepointToken->getModule();
1164
1165 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1166 // element type is i8 addrspace(1)*). We originally generated unique
1167 // declarations for each pointer type, but this proved problematic because
1168 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1169 // towards a single unified pointer type anyways, we can just cast everything
1170 // to an i8* of the right address space. A bitcast is added later to convert
1171 // gc_relocate to the actual value's type.
1172 auto getGCRelocateDecl = [&] (Type *Ty) {
1173 assert(isHandledGCPointerType(Ty));
1174 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1175 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1176 if (auto *VT = dyn_cast<VectorType>(Ty))
1177 NewTy = VectorType::get(NewTy, VT->getNumElements());
1178 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1179 {NewTy});
1180 };
1181
1182 // Lazily populated map from input types to the canonicalized form mentioned
1183 // in the comment above. This should probably be cached somewhere more
1184 // broadly.
1185 DenseMap<Type*, Value*> TypeToDeclMap;
1186
1187 for (unsigned i = 0; i < LiveVariables.size(); i++) {
1188 // Generate the gc.relocate call and save the result
1189 Value *BaseIdx =
1190 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1191 Value *LiveIdx = Builder.getInt32(LiveStart + i);
1192
1193 Type *Ty = LiveVariables[i]->getType();
1194 if (!TypeToDeclMap.count(Ty))
1195 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1196 Value *GCRelocateDecl = TypeToDeclMap[Ty];
1197
1198 // only specify a debug name if we can give a useful one
1199 CallInst *Reloc = Builder.CreateCall(
1200 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1201 suffixed_name_or(LiveVariables[i], ".relocated", ""));
1202 // Trick CodeGen into thinking there are lots of free registers at this
1203 // fake call.
1204 Reloc->setCallingConv(CallingConv::Cold);
1205 }
1206 }
1207
1208 namespace {
1209
1210 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1211 /// avoids having to worry about keeping around dangling pointers to Values.
1212 class DeferredReplacement {
1213 AssertingVH<Instruction> Old;
1214 AssertingVH<Instruction> New;
1215 bool IsDeoptimize = false;
1216
DeferredReplacement()1217 DeferredReplacement() {}
1218
1219 public:
createRAUW(Instruction * Old,Instruction * New)1220 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1221 assert(Old != New && Old && New &&
1222 "Cannot RAUW equal values or to / from null!");
1223
1224 DeferredReplacement D;
1225 D.Old = Old;
1226 D.New = New;
1227 return D;
1228 }
1229
createDelete(Instruction * ToErase)1230 static DeferredReplacement createDelete(Instruction *ToErase) {
1231 DeferredReplacement D;
1232 D.Old = ToErase;
1233 return D;
1234 }
1235
createDeoptimizeReplacement(Instruction * Old)1236 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1237 #ifndef NDEBUG
1238 auto *F = cast<CallInst>(Old)->getCalledFunction();
1239 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1240 "Only way to construct a deoptimize deferred replacement");
1241 #endif
1242 DeferredReplacement D;
1243 D.Old = Old;
1244 D.IsDeoptimize = true;
1245 return D;
1246 }
1247
1248 /// Does the task represented by this instance.
doReplacement()1249 void doReplacement() {
1250 Instruction *OldI = Old;
1251 Instruction *NewI = New;
1252
1253 assert(OldI != NewI && "Disallowed at construction?!");
1254 assert((!IsDeoptimize || !New) &&
1255 "Deoptimize instrinsics are not replaced!");
1256
1257 Old = nullptr;
1258 New = nullptr;
1259
1260 if (NewI)
1261 OldI->replaceAllUsesWith(NewI);
1262
1263 if (IsDeoptimize) {
1264 // Note: we've inserted instructions, so the call to llvm.deoptimize may
1265 // not necessarilly be followed by the matching return.
1266 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1267 new UnreachableInst(RI->getContext(), RI);
1268 RI->eraseFromParent();
1269 }
1270
1271 OldI->eraseFromParent();
1272 }
1273 };
1274 }
1275
1276 static void
makeStatepointExplicitImpl(const CallSite CS,const SmallVectorImpl<Value * > & BasePtrs,const SmallVectorImpl<Value * > & LiveVariables,PartiallyConstructedSafepointRecord & Result,std::vector<DeferredReplacement> & Replacements)1277 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1278 const SmallVectorImpl<Value *> &BasePtrs,
1279 const SmallVectorImpl<Value *> &LiveVariables,
1280 PartiallyConstructedSafepointRecord &Result,
1281 std::vector<DeferredReplacement> &Replacements) {
1282 assert(BasePtrs.size() == LiveVariables.size());
1283
1284 // Then go ahead and use the builder do actually do the inserts. We insert
1285 // immediately before the previous instruction under the assumption that all
1286 // arguments will be available here. We can't insert afterwards since we may
1287 // be replacing a terminator.
1288 Instruction *InsertBefore = CS.getInstruction();
1289 IRBuilder<> Builder(InsertBefore);
1290
1291 ArrayRef<Value *> GCArgs(LiveVariables);
1292 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1293 uint32_t NumPatchBytes = 0;
1294 uint32_t Flags = uint32_t(StatepointFlags::None);
1295
1296 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1297 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1298 ArrayRef<Use> TransitionArgs;
1299 if (auto TransitionBundle =
1300 CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1301 Flags |= uint32_t(StatepointFlags::GCTransition);
1302 TransitionArgs = TransitionBundle->Inputs;
1303 }
1304
1305 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1306 // with a return value, we lower then as never returning calls to
1307 // __llvm_deoptimize that are followed by unreachable to get better codegen.
1308 bool IsDeoptimize = false;
1309
1310 StatepointDirectives SD =
1311 parseStatepointDirectivesFromAttrs(CS.getAttributes());
1312 if (SD.NumPatchBytes)
1313 NumPatchBytes = *SD.NumPatchBytes;
1314 if (SD.StatepointID)
1315 StatepointID = *SD.StatepointID;
1316
1317 Value *CallTarget = CS.getCalledValue();
1318 if (Function *F = dyn_cast<Function>(CallTarget)) {
1319 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1320 // Calls to llvm.experimental.deoptimize are lowered to calls to the
1321 // __llvm_deoptimize symbol. We want to resolve this now, since the
1322 // verifier does not allow taking the address of an intrinsic function.
1323
1324 SmallVector<Type *, 8> DomainTy;
1325 for (Value *Arg : CallArgs)
1326 DomainTy.push_back(Arg->getType());
1327 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1328 /* isVarArg = */ false);
1329
1330 // Note: CallTarget can be a bitcast instruction of a symbol if there are
1331 // calls to @llvm.experimental.deoptimize with different argument types in
1332 // the same module. This is fine -- we assume the frontend knew what it
1333 // was doing when generating this kind of IR.
1334 CallTarget =
1335 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1336
1337 IsDeoptimize = true;
1338 }
1339 }
1340
1341 // Create the statepoint given all the arguments
1342 Instruction *Token = nullptr;
1343 AttributeSet ReturnAttrs;
1344 if (CS.isCall()) {
1345 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1346 CallInst *Call = Builder.CreateGCStatepointCall(
1347 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1348 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1349
1350 Call->setTailCall(ToReplace->isTailCall());
1351 Call->setCallingConv(ToReplace->getCallingConv());
1352
1353 // Currently we will fail on parameter attributes and on certain
1354 // function attributes.
1355 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1356 // In case if we can handle this set of attributes - set up function attrs
1357 // directly on statepoint and return attrs later for gc_result intrinsic.
1358 Call->setAttributes(NewAttrs.getFnAttributes());
1359 ReturnAttrs = NewAttrs.getRetAttributes();
1360
1361 Token = Call;
1362
1363 // Put the following gc_result and gc_relocate calls immediately after the
1364 // the old call (which we're about to delete)
1365 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1366 Builder.SetInsertPoint(ToReplace->getNextNode());
1367 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1368 } else {
1369 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1370
1371 // Insert the new invoke into the old block. We'll remove the old one in a
1372 // moment at which point this will become the new terminator for the
1373 // original block.
1374 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1375 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1376 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1377 GCArgs, "statepoint_token");
1378
1379 Invoke->setCallingConv(ToReplace->getCallingConv());
1380
1381 // Currently we will fail on parameter attributes and on certain
1382 // function attributes.
1383 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1384 // In case if we can handle this set of attributes - set up function attrs
1385 // directly on statepoint and return attrs later for gc_result intrinsic.
1386 Invoke->setAttributes(NewAttrs.getFnAttributes());
1387 ReturnAttrs = NewAttrs.getRetAttributes();
1388
1389 Token = Invoke;
1390
1391 // Generate gc relocates in exceptional path
1392 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1393 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1394 UnwindBlock->getUniquePredecessor() &&
1395 "can't safely insert in this block!");
1396
1397 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1398 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1399
1400 // Attach exceptional gc relocates to the landingpad.
1401 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1402 Result.UnwindToken = ExceptionalToken;
1403
1404 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1405 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1406 Builder);
1407
1408 // Generate gc relocates and returns for normal block
1409 BasicBlock *NormalDest = ToReplace->getNormalDest();
1410 assert(!isa<PHINode>(NormalDest->begin()) &&
1411 NormalDest->getUniquePredecessor() &&
1412 "can't safely insert in this block!");
1413
1414 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1415
1416 // gc relocates will be generated later as if it were regular call
1417 // statepoint
1418 }
1419 assert(Token && "Should be set in one of the above branches!");
1420
1421 if (IsDeoptimize) {
1422 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1423 // transform the tail-call like structure to a call to a void function
1424 // followed by unreachable to get better codegen.
1425 Replacements.push_back(
1426 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1427 } else {
1428 Token->setName("statepoint_token");
1429 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1430 StringRef Name =
1431 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1432 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1433 GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1434
1435 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1436 // live set of some other safepoint, in which case that safepoint's
1437 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1438 // llvm::Instruction. Instead, we defer the replacement and deletion to
1439 // after the live sets have been made explicit in the IR, and we no longer
1440 // have raw pointers to worry about.
1441 Replacements.emplace_back(
1442 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1443 } else {
1444 Replacements.emplace_back(
1445 DeferredReplacement::createDelete(CS.getInstruction()));
1446 }
1447 }
1448
1449 Result.StatepointToken = Token;
1450
1451 // Second, create a gc.relocate for every live variable
1452 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1453 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1454 }
1455
1456 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1457 // which make the relocations happening at this safepoint explicit.
1458 //
1459 // WARNING: Does not do any fixup to adjust users of the original live
1460 // values. That's the callers responsibility.
1461 static void
makeStatepointExplicit(DominatorTree & DT,CallSite CS,PartiallyConstructedSafepointRecord & Result,std::vector<DeferredReplacement> & Replacements)1462 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1463 PartiallyConstructedSafepointRecord &Result,
1464 std::vector<DeferredReplacement> &Replacements) {
1465 const auto &LiveSet = Result.LiveSet;
1466 const auto &PointerToBase = Result.PointerToBase;
1467
1468 // Convert to vector for efficient cross referencing.
1469 SmallVector<Value *, 64> BaseVec, LiveVec;
1470 LiveVec.reserve(LiveSet.size());
1471 BaseVec.reserve(LiveSet.size());
1472 for (Value *L : LiveSet) {
1473 LiveVec.push_back(L);
1474 assert(PointerToBase.count(L));
1475 Value *Base = PointerToBase.find(L)->second;
1476 BaseVec.push_back(Base);
1477 }
1478 assert(LiveVec.size() == BaseVec.size());
1479
1480 // Do the actual rewriting and delete the old statepoint
1481 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1482 }
1483
1484 // Helper function for the relocationViaAlloca.
1485 //
1486 // It receives iterator to the statepoint gc relocates and emits a store to the
1487 // assigned location (via allocaMap) for the each one of them. It adds the
1488 // visited values into the visitedLiveValues set, which we will later use them
1489 // for sanity checking.
1490 static void
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,DenseMap<Value *,Value * > & AllocaMap,DenseSet<Value * > & VisitedLiveValues)1491 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1492 DenseMap<Value *, Value *> &AllocaMap,
1493 DenseSet<Value *> &VisitedLiveValues) {
1494
1495 for (User *U : GCRelocs) {
1496 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1497 if (!Relocate)
1498 continue;
1499
1500 Value *OriginalValue = Relocate->getDerivedPtr();
1501 assert(AllocaMap.count(OriginalValue));
1502 Value *Alloca = AllocaMap[OriginalValue];
1503
1504 // Emit store into the related alloca
1505 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1506 // the correct type according to alloca.
1507 assert(Relocate->getNextNode() &&
1508 "Should always have one since it's not a terminator");
1509 IRBuilder<> Builder(Relocate->getNextNode());
1510 Value *CastedRelocatedValue =
1511 Builder.CreateBitCast(Relocate,
1512 cast<AllocaInst>(Alloca)->getAllocatedType(),
1513 suffixed_name_or(Relocate, ".casted", ""));
1514
1515 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1516 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1517
1518 #ifndef NDEBUG
1519 VisitedLiveValues.insert(OriginalValue);
1520 #endif
1521 }
1522 }
1523
1524 // Helper function for the "relocationViaAlloca". Similar to the
1525 // "insertRelocationStores" but works for rematerialized values.
insertRematerializationStores(const RematerializedValueMapTy & RematerializedValues,DenseMap<Value *,Value * > & AllocaMap,DenseSet<Value * > & VisitedLiveValues)1526 static void insertRematerializationStores(
1527 const RematerializedValueMapTy &RematerializedValues,
1528 DenseMap<Value *, Value *> &AllocaMap,
1529 DenseSet<Value *> &VisitedLiveValues) {
1530
1531 for (auto RematerializedValuePair: RematerializedValues) {
1532 Instruction *RematerializedValue = RematerializedValuePair.first;
1533 Value *OriginalValue = RematerializedValuePair.second;
1534
1535 assert(AllocaMap.count(OriginalValue) &&
1536 "Can not find alloca for rematerialized value");
1537 Value *Alloca = AllocaMap[OriginalValue];
1538
1539 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1540 Store->insertAfter(RematerializedValue);
1541
1542 #ifndef NDEBUG
1543 VisitedLiveValues.insert(OriginalValue);
1544 #endif
1545 }
1546 }
1547
1548 /// Do all the relocation update via allocas and mem2reg
relocationViaAlloca(Function & F,DominatorTree & DT,ArrayRef<Value * > Live,ArrayRef<PartiallyConstructedSafepointRecord> Records)1549 static void relocationViaAlloca(
1550 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1551 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1552 #ifndef NDEBUG
1553 // record initial number of (static) allocas; we'll check we have the same
1554 // number when we get done.
1555 int InitialAllocaNum = 0;
1556 for (Instruction &I : F.getEntryBlock())
1557 if (isa<AllocaInst>(I))
1558 InitialAllocaNum++;
1559 #endif
1560
1561 // TODO-PERF: change data structures, reserve
1562 DenseMap<Value *, Value *> AllocaMap;
1563 SmallVector<AllocaInst *, 200> PromotableAllocas;
1564 // Used later to chack that we have enough allocas to store all values
1565 std::size_t NumRematerializedValues = 0;
1566 PromotableAllocas.reserve(Live.size());
1567
1568 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1569 // "PromotableAllocas"
1570 auto emitAllocaFor = [&](Value *LiveValue) {
1571 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1572 F.getEntryBlock().getFirstNonPHI());
1573 AllocaMap[LiveValue] = Alloca;
1574 PromotableAllocas.push_back(Alloca);
1575 };
1576
1577 // Emit alloca for each live gc pointer
1578 for (Value *V : Live)
1579 emitAllocaFor(V);
1580
1581 // Emit allocas for rematerialized values
1582 for (const auto &Info : Records)
1583 for (auto RematerializedValuePair : Info.RematerializedValues) {
1584 Value *OriginalValue = RematerializedValuePair.second;
1585 if (AllocaMap.count(OriginalValue) != 0)
1586 continue;
1587
1588 emitAllocaFor(OriginalValue);
1589 ++NumRematerializedValues;
1590 }
1591
1592 // The next two loops are part of the same conceptual operation. We need to
1593 // insert a store to the alloca after the original def and at each
1594 // redefinition. We need to insert a load before each use. These are split
1595 // into distinct loops for performance reasons.
1596
1597 // Update gc pointer after each statepoint: either store a relocated value or
1598 // null (if no relocated value was found for this gc pointer and it is not a
1599 // gc_result). This must happen before we update the statepoint with load of
1600 // alloca otherwise we lose the link between statepoint and old def.
1601 for (const auto &Info : Records) {
1602 Value *Statepoint = Info.StatepointToken;
1603
1604 // This will be used for consistency check
1605 DenseSet<Value *> VisitedLiveValues;
1606
1607 // Insert stores for normal statepoint gc relocates
1608 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1609
1610 // In case if it was invoke statepoint
1611 // we will insert stores for exceptional path gc relocates.
1612 if (isa<InvokeInst>(Statepoint)) {
1613 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1614 VisitedLiveValues);
1615 }
1616
1617 // Do similar thing with rematerialized values
1618 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1619 VisitedLiveValues);
1620
1621 if (ClobberNonLive) {
1622 // As a debugging aid, pretend that an unrelocated pointer becomes null at
1623 // the gc.statepoint. This will turn some subtle GC problems into
1624 // slightly easier to debug SEGVs. Note that on large IR files with
1625 // lots of gc.statepoints this is extremely costly both memory and time
1626 // wise.
1627 SmallVector<AllocaInst *, 64> ToClobber;
1628 for (auto Pair : AllocaMap) {
1629 Value *Def = Pair.first;
1630 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1631
1632 // This value was relocated
1633 if (VisitedLiveValues.count(Def)) {
1634 continue;
1635 }
1636 ToClobber.push_back(Alloca);
1637 }
1638
1639 auto InsertClobbersAt = [&](Instruction *IP) {
1640 for (auto *AI : ToClobber) {
1641 auto PT = cast<PointerType>(AI->getAllocatedType());
1642 Constant *CPN = ConstantPointerNull::get(PT);
1643 StoreInst *Store = new StoreInst(CPN, AI);
1644 Store->insertBefore(IP);
1645 }
1646 };
1647
1648 // Insert the clobbering stores. These may get intermixed with the
1649 // gc.results and gc.relocates, but that's fine.
1650 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1651 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1652 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1653 } else {
1654 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1655 }
1656 }
1657 }
1658
1659 // Update use with load allocas and add store for gc_relocated.
1660 for (auto Pair : AllocaMap) {
1661 Value *Def = Pair.first;
1662 Value *Alloca = Pair.second;
1663
1664 // We pre-record the uses of allocas so that we dont have to worry about
1665 // later update that changes the user information..
1666
1667 SmallVector<Instruction *, 20> Uses;
1668 // PERF: trade a linear scan for repeated reallocation
1669 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1670 for (User *U : Def->users()) {
1671 if (!isa<ConstantExpr>(U)) {
1672 // If the def has a ConstantExpr use, then the def is either a
1673 // ConstantExpr use itself or null. In either case
1674 // (recursively in the first, directly in the second), the oop
1675 // it is ultimately dependent on is null and this particular
1676 // use does not need to be fixed up.
1677 Uses.push_back(cast<Instruction>(U));
1678 }
1679 }
1680
1681 std::sort(Uses.begin(), Uses.end());
1682 auto Last = std::unique(Uses.begin(), Uses.end());
1683 Uses.erase(Last, Uses.end());
1684
1685 for (Instruction *Use : Uses) {
1686 if (isa<PHINode>(Use)) {
1687 PHINode *Phi = cast<PHINode>(Use);
1688 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1689 if (Def == Phi->getIncomingValue(i)) {
1690 LoadInst *Load = new LoadInst(
1691 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1692 Phi->setIncomingValue(i, Load);
1693 }
1694 }
1695 } else {
1696 LoadInst *Load = new LoadInst(Alloca, "", Use);
1697 Use->replaceUsesOfWith(Def, Load);
1698 }
1699 }
1700
1701 // Emit store for the initial gc value. Store must be inserted after load,
1702 // otherwise store will be in alloca's use list and an extra load will be
1703 // inserted before it.
1704 StoreInst *Store = new StoreInst(Def, Alloca);
1705 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1706 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1707 // InvokeInst is a TerminatorInst so the store need to be inserted
1708 // into its normal destination block.
1709 BasicBlock *NormalDest = Invoke->getNormalDest();
1710 Store->insertBefore(NormalDest->getFirstNonPHI());
1711 } else {
1712 assert(!Inst->isTerminator() &&
1713 "The only TerminatorInst that can produce a value is "
1714 "InvokeInst which is handled above.");
1715 Store->insertAfter(Inst);
1716 }
1717 } else {
1718 assert(isa<Argument>(Def));
1719 Store->insertAfter(cast<Instruction>(Alloca));
1720 }
1721 }
1722
1723 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1724 "we must have the same allocas with lives");
1725 if (!PromotableAllocas.empty()) {
1726 // Apply mem2reg to promote alloca to SSA
1727 PromoteMemToReg(PromotableAllocas, DT);
1728 }
1729
1730 #ifndef NDEBUG
1731 for (auto &I : F.getEntryBlock())
1732 if (isa<AllocaInst>(I))
1733 InitialAllocaNum--;
1734 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1735 #endif
1736 }
1737
1738 /// Implement a unique function which doesn't require we sort the input
1739 /// vector. Doing so has the effect of changing the output of a couple of
1740 /// tests in ways which make them less useful in testing fused safepoints.
unique_unsorted(SmallVectorImpl<T> & Vec)1741 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1742 SmallSet<T, 8> Seen;
1743 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1744 return !Seen.insert(V).second;
1745 }), Vec.end());
1746 }
1747
1748 /// Insert holders so that each Value is obviously live through the entire
1749 /// lifetime of the call.
insertUseHolderAfter(CallSite & CS,const ArrayRef<Value * > Values,SmallVectorImpl<CallInst * > & Holders)1750 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1751 SmallVectorImpl<CallInst *> &Holders) {
1752 if (Values.empty())
1753 // No values to hold live, might as well not insert the empty holder
1754 return;
1755
1756 Module *M = CS.getInstruction()->getModule();
1757 // Use a dummy vararg function to actually hold the values live
1758 Function *Func = cast<Function>(M->getOrInsertFunction(
1759 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1760 if (CS.isCall()) {
1761 // For call safepoints insert dummy calls right after safepoint
1762 Holders.push_back(CallInst::Create(Func, Values, "",
1763 &*++CS.getInstruction()->getIterator()));
1764 return;
1765 }
1766 // For invoke safepooints insert dummy calls both in normal and
1767 // exceptional destination blocks
1768 auto *II = cast<InvokeInst>(CS.getInstruction());
1769 Holders.push_back(CallInst::Create(
1770 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1771 Holders.push_back(CallInst::Create(
1772 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1773 }
1774
findLiveReferences(Function & F,DominatorTree & DT,ArrayRef<CallSite> toUpdate,MutableArrayRef<struct PartiallyConstructedSafepointRecord> records)1775 static void findLiveReferences(
1776 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1777 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1778 GCPtrLivenessData OriginalLivenessData;
1779 computeLiveInValues(DT, F, OriginalLivenessData);
1780 for (size_t i = 0; i < records.size(); i++) {
1781 struct PartiallyConstructedSafepointRecord &info = records[i];
1782 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1783 }
1784 }
1785
1786 // Helper function for the "rematerializeLiveValues". It walks use chain
1787 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1788 // values are visited (currently it is GEP's and casts). Returns true if it
1789 // successfully reached "BaseValue" and false otherwise.
1790 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1791 // recorded.
findRematerializableChainToBasePointer(SmallVectorImpl<Instruction * > & ChainToBase,Value * CurrentValue,Value * BaseValue)1792 static bool findRematerializableChainToBasePointer(
1793 SmallVectorImpl<Instruction*> &ChainToBase,
1794 Value *CurrentValue, Value *BaseValue) {
1795
1796 // We have found a base value
1797 if (CurrentValue == BaseValue) {
1798 return true;
1799 }
1800
1801 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1802 ChainToBase.push_back(GEP);
1803 return findRematerializableChainToBasePointer(ChainToBase,
1804 GEP->getPointerOperand(),
1805 BaseValue);
1806 }
1807
1808 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1809 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1810 return false;
1811
1812 ChainToBase.push_back(CI);
1813 return findRematerializableChainToBasePointer(ChainToBase,
1814 CI->getOperand(0), BaseValue);
1815 }
1816
1817 // Not supported instruction in the chain
1818 return false;
1819 }
1820
1821 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1822 // chain we are going to rematerialize.
1823 static unsigned
chainToBasePointerCost(SmallVectorImpl<Instruction * > & Chain,TargetTransformInfo & TTI)1824 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1825 TargetTransformInfo &TTI) {
1826 unsigned Cost = 0;
1827
1828 for (Instruction *Instr : Chain) {
1829 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1830 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1831 "non noop cast is found during rematerialization");
1832
1833 Type *SrcTy = CI->getOperand(0)->getType();
1834 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1835
1836 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1837 // Cost of the address calculation
1838 Type *ValTy = GEP->getSourceElementType();
1839 Cost += TTI.getAddressComputationCost(ValTy);
1840
1841 // And cost of the GEP itself
1842 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1843 // allowed for the external usage)
1844 if (!GEP->hasAllConstantIndices())
1845 Cost += 2;
1846
1847 } else {
1848 llvm_unreachable("unsupported instruciton type during rematerialization");
1849 }
1850 }
1851
1852 return Cost;
1853 }
1854
1855 // From the statepoint live set pick values that are cheaper to recompute then
1856 // to relocate. Remove this values from the live set, rematerialize them after
1857 // statepoint and record them in "Info" structure. Note that similar to
1858 // relocated values we don't do any user adjustments here.
rematerializeLiveValues(CallSite CS,PartiallyConstructedSafepointRecord & Info,TargetTransformInfo & TTI)1859 static void rematerializeLiveValues(CallSite CS,
1860 PartiallyConstructedSafepointRecord &Info,
1861 TargetTransformInfo &TTI) {
1862 const unsigned int ChainLengthThreshold = 10;
1863
1864 // Record values we are going to delete from this statepoint live set.
1865 // We can not di this in following loop due to iterator invalidation.
1866 SmallVector<Value *, 32> LiveValuesToBeDeleted;
1867
1868 for (Value *LiveValue: Info.LiveSet) {
1869 // For each live pointer find it's defining chain
1870 SmallVector<Instruction *, 3> ChainToBase;
1871 assert(Info.PointerToBase.count(LiveValue));
1872 bool FoundChain =
1873 findRematerializableChainToBasePointer(ChainToBase,
1874 LiveValue,
1875 Info.PointerToBase[LiveValue]);
1876 // Nothing to do, or chain is too long
1877 if (!FoundChain ||
1878 ChainToBase.size() == 0 ||
1879 ChainToBase.size() > ChainLengthThreshold)
1880 continue;
1881
1882 // Compute cost of this chain
1883 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1884 // TODO: We can also account for cases when we will be able to remove some
1885 // of the rematerialized values by later optimization passes. I.e if
1886 // we rematerialized several intersecting chains. Or if original values
1887 // don't have any uses besides this statepoint.
1888
1889 // For invokes we need to rematerialize each chain twice - for normal and
1890 // for unwind basic blocks. Model this by multiplying cost by two.
1891 if (CS.isInvoke()) {
1892 Cost *= 2;
1893 }
1894 // If it's too expensive - skip it
1895 if (Cost >= RematerializationThreshold)
1896 continue;
1897
1898 // Remove value from the live set
1899 LiveValuesToBeDeleted.push_back(LiveValue);
1900
1901 // Clone instructions and record them inside "Info" structure
1902
1903 // Walk backwards to visit top-most instructions first
1904 std::reverse(ChainToBase.begin(), ChainToBase.end());
1905
1906 // Utility function which clones all instructions from "ChainToBase"
1907 // and inserts them before "InsertBefore". Returns rematerialized value
1908 // which should be used after statepoint.
1909 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1910 Instruction *LastClonedValue = nullptr;
1911 Instruction *LastValue = nullptr;
1912 for (Instruction *Instr: ChainToBase) {
1913 // Only GEP's and casts are suported as we need to be careful to not
1914 // introduce any new uses of pointers not in the liveset.
1915 // Note that it's fine to introduce new uses of pointers which were
1916 // otherwise not used after this statepoint.
1917 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1918
1919 Instruction *ClonedValue = Instr->clone();
1920 ClonedValue->insertBefore(InsertBefore);
1921 ClonedValue->setName(Instr->getName() + ".remat");
1922
1923 // If it is not first instruction in the chain then it uses previously
1924 // cloned value. We should update it to use cloned value.
1925 if (LastClonedValue) {
1926 assert(LastValue);
1927 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1928 #ifndef NDEBUG
1929 // Assert that cloned instruction does not use any instructions from
1930 // this chain other than LastClonedValue
1931 for (auto OpValue : ClonedValue->operand_values()) {
1932 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1933 ChainToBase.end() &&
1934 "incorrect use in rematerialization chain");
1935 }
1936 #endif
1937 }
1938
1939 LastClonedValue = ClonedValue;
1940 LastValue = Instr;
1941 }
1942 assert(LastClonedValue);
1943 return LastClonedValue;
1944 };
1945
1946 // Different cases for calls and invokes. For invokes we need to clone
1947 // instructions both on normal and unwind path.
1948 if (CS.isCall()) {
1949 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1950 assert(InsertBefore);
1951 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1952 Info.RematerializedValues[RematerializedValue] = LiveValue;
1953 } else {
1954 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1955
1956 Instruction *NormalInsertBefore =
1957 &*Invoke->getNormalDest()->getFirstInsertionPt();
1958 Instruction *UnwindInsertBefore =
1959 &*Invoke->getUnwindDest()->getFirstInsertionPt();
1960
1961 Instruction *NormalRematerializedValue =
1962 rematerializeChain(NormalInsertBefore);
1963 Instruction *UnwindRematerializedValue =
1964 rematerializeChain(UnwindInsertBefore);
1965
1966 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1967 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1968 }
1969 }
1970
1971 // Remove rematerializaed values from the live set
1972 for (auto LiveValue: LiveValuesToBeDeleted) {
1973 Info.LiveSet.remove(LiveValue);
1974 }
1975 }
1976
insertParsePoints(Function & F,DominatorTree & DT,TargetTransformInfo & TTI,SmallVectorImpl<CallSite> & ToUpdate)1977 static bool insertParsePoints(Function &F, DominatorTree &DT,
1978 TargetTransformInfo &TTI,
1979 SmallVectorImpl<CallSite> &ToUpdate) {
1980 #ifndef NDEBUG
1981 // sanity check the input
1982 std::set<CallSite> Uniqued;
1983 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1984 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
1985
1986 for (CallSite CS : ToUpdate)
1987 assert(CS.getInstruction()->getFunction() == &F);
1988 #endif
1989
1990 // When inserting gc.relocates for invokes, we need to be able to insert at
1991 // the top of the successor blocks. See the comment on
1992 // normalForInvokeSafepoint on exactly what is needed. Note that this step
1993 // may restructure the CFG.
1994 for (CallSite CS : ToUpdate) {
1995 if (!CS.isInvoke())
1996 continue;
1997 auto *II = cast<InvokeInst>(CS.getInstruction());
1998 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
1999 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2000 }
2001
2002 // A list of dummy calls added to the IR to keep various values obviously
2003 // live in the IR. We'll remove all of these when done.
2004 SmallVector<CallInst *, 64> Holders;
2005
2006 // Insert a dummy call with all of the arguments to the vm_state we'll need
2007 // for the actual safepoint insertion. This ensures reference arguments in
2008 // the deopt argument list are considered live through the safepoint (and
2009 // thus makes sure they get relocated.)
2010 for (CallSite CS : ToUpdate) {
2011 SmallVector<Value *, 64> DeoptValues;
2012
2013 for (Value *Arg : GetDeoptBundleOperands(CS)) {
2014 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2015 "support for FCA unimplemented");
2016 if (isHandledGCPointerType(Arg->getType()))
2017 DeoptValues.push_back(Arg);
2018 }
2019
2020 insertUseHolderAfter(CS, DeoptValues, Holders);
2021 }
2022
2023 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2024
2025 // A) Identify all gc pointers which are statically live at the given call
2026 // site.
2027 findLiveReferences(F, DT, ToUpdate, Records);
2028
2029 // B) Find the base pointers for each live pointer
2030 /* scope for caching */ {
2031 // Cache the 'defining value' relation used in the computation and
2032 // insertion of base phis and selects. This ensures that we don't insert
2033 // large numbers of duplicate base_phis.
2034 DefiningValueMapTy DVCache;
2035
2036 for (size_t i = 0; i < Records.size(); i++) {
2037 PartiallyConstructedSafepointRecord &info = Records[i];
2038 findBasePointers(DT, DVCache, ToUpdate[i], info);
2039 }
2040 } // end of cache scope
2041
2042 // The base phi insertion logic (for any safepoint) may have inserted new
2043 // instructions which are now live at some safepoint. The simplest such
2044 // example is:
2045 // loop:
2046 // phi a <-- will be a new base_phi here
2047 // safepoint 1 <-- that needs to be live here
2048 // gep a + 1
2049 // safepoint 2
2050 // br loop
2051 // We insert some dummy calls after each safepoint to definitely hold live
2052 // the base pointers which were identified for that safepoint. We'll then
2053 // ask liveness for _every_ base inserted to see what is now live. Then we
2054 // remove the dummy calls.
2055 Holders.reserve(Holders.size() + Records.size());
2056 for (size_t i = 0; i < Records.size(); i++) {
2057 PartiallyConstructedSafepointRecord &Info = Records[i];
2058
2059 SmallVector<Value *, 128> Bases;
2060 for (auto Pair : Info.PointerToBase)
2061 Bases.push_back(Pair.second);
2062
2063 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2064 }
2065
2066 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2067 // need to rerun liveness. We may *also* have inserted new defs, but that's
2068 // not the key issue.
2069 recomputeLiveInValues(F, DT, ToUpdate, Records);
2070
2071 if (PrintBasePointers) {
2072 for (auto &Info : Records) {
2073 errs() << "Base Pairs: (w/Relocation)\n";
2074 for (auto Pair : Info.PointerToBase) {
2075 errs() << " derived ";
2076 Pair.first->printAsOperand(errs(), false);
2077 errs() << " base ";
2078 Pair.second->printAsOperand(errs(), false);
2079 errs() << "\n";
2080 }
2081 }
2082 }
2083
2084 // It is possible that non-constant live variables have a constant base. For
2085 // example, a GEP with a variable offset from a global. In this case we can
2086 // remove it from the liveset. We already don't add constants to the liveset
2087 // because we assume they won't move at runtime and the GC doesn't need to be
2088 // informed about them. The same reasoning applies if the base is constant.
2089 // Note that the relocation placement code relies on this filtering for
2090 // correctness as it expects the base to be in the liveset, which isn't true
2091 // if the base is constant.
2092 for (auto &Info : Records)
2093 for (auto &BasePair : Info.PointerToBase)
2094 if (isa<Constant>(BasePair.second))
2095 Info.LiveSet.remove(BasePair.first);
2096
2097 for (CallInst *CI : Holders)
2098 CI->eraseFromParent();
2099
2100 Holders.clear();
2101
2102 // In order to reduce live set of statepoint we might choose to rematerialize
2103 // some values instead of relocating them. This is purely an optimization and
2104 // does not influence correctness.
2105 for (size_t i = 0; i < Records.size(); i++)
2106 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2107
2108 // We need this to safely RAUW and delete call or invoke return values that
2109 // may themselves be live over a statepoint. For details, please see usage in
2110 // makeStatepointExplicitImpl.
2111 std::vector<DeferredReplacement> Replacements;
2112
2113 // Now run through and replace the existing statepoints with new ones with
2114 // the live variables listed. We do not yet update uses of the values being
2115 // relocated. We have references to live variables that need to
2116 // survive to the last iteration of this loop. (By construction, the
2117 // previous statepoint can not be a live variable, thus we can and remove
2118 // the old statepoint calls as we go.)
2119 for (size_t i = 0; i < Records.size(); i++)
2120 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2121
2122 ToUpdate.clear(); // prevent accident use of invalid CallSites
2123
2124 for (auto &PR : Replacements)
2125 PR.doReplacement();
2126
2127 Replacements.clear();
2128
2129 for (auto &Info : Records) {
2130 // These live sets may contain state Value pointers, since we replaced calls
2131 // with operand bundles with calls wrapped in gc.statepoint, and some of
2132 // those calls may have been def'ing live gc pointers. Clear these out to
2133 // avoid accidentally using them.
2134 //
2135 // TODO: We should create a separate data structure that does not contain
2136 // these live sets, and migrate to using that data structure from this point
2137 // onward.
2138 Info.LiveSet.clear();
2139 Info.PointerToBase.clear();
2140 }
2141
2142 // Do all the fixups of the original live variables to their relocated selves
2143 SmallVector<Value *, 128> Live;
2144 for (size_t i = 0; i < Records.size(); i++) {
2145 PartiallyConstructedSafepointRecord &Info = Records[i];
2146
2147 // We can't simply save the live set from the original insertion. One of
2148 // the live values might be the result of a call which needs a safepoint.
2149 // That Value* no longer exists and we need to use the new gc_result.
2150 // Thankfully, the live set is embedded in the statepoint (and updated), so
2151 // we just grab that.
2152 Statepoint Statepoint(Info.StatepointToken);
2153 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2154 Statepoint.gc_args_end());
2155 #ifndef NDEBUG
2156 // Do some basic sanity checks on our liveness results before performing
2157 // relocation. Relocation can and will turn mistakes in liveness results
2158 // into non-sensical code which is must harder to debug.
2159 // TODO: It would be nice to test consistency as well
2160 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2161 "statepoint must be reachable or liveness is meaningless");
2162 for (Value *V : Statepoint.gc_args()) {
2163 if (!isa<Instruction>(V))
2164 // Non-instruction values trivial dominate all possible uses
2165 continue;
2166 auto *LiveInst = cast<Instruction>(V);
2167 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2168 "unreachable values should never be live");
2169 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2170 "basic SSA liveness expectation violated by liveness analysis");
2171 }
2172 #endif
2173 }
2174 unique_unsorted(Live);
2175
2176 #ifndef NDEBUG
2177 // sanity check
2178 for (auto *Ptr : Live)
2179 assert(isHandledGCPointerType(Ptr->getType()) &&
2180 "must be a gc pointer type");
2181 #endif
2182
2183 relocationViaAlloca(F, DT, Live, Records);
2184 return !Records.empty();
2185 }
2186
2187 // Handles both return values and arguments for Functions and CallSites.
2188 template <typename AttrHolder>
RemoveNonValidAttrAtIndex(LLVMContext & Ctx,AttrHolder & AH,unsigned Index)2189 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2190 unsigned Index) {
2191 AttrBuilder R;
2192 if (AH.getDereferenceableBytes(Index))
2193 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2194 AH.getDereferenceableBytes(Index)));
2195 if (AH.getDereferenceableOrNullBytes(Index))
2196 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2197 AH.getDereferenceableOrNullBytes(Index)));
2198 if (AH.doesNotAlias(Index))
2199 R.addAttribute(Attribute::NoAlias);
2200
2201 if (!R.empty())
2202 AH.setAttributes(AH.getAttributes().removeAttributes(
2203 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2204 }
2205
2206 void
stripNonValidAttributesFromPrototype(Function & F)2207 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2208 LLVMContext &Ctx = F.getContext();
2209
2210 for (Argument &A : F.args())
2211 if (isa<PointerType>(A.getType()))
2212 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2213
2214 if (isa<PointerType>(F.getReturnType()))
2215 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2216 }
2217
stripNonValidAttributesFromBody(Function & F)2218 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2219 if (F.empty())
2220 return;
2221
2222 LLVMContext &Ctx = F.getContext();
2223 MDBuilder Builder(Ctx);
2224
2225 for (Instruction &I : instructions(F)) {
2226 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2227 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2228 bool IsImmutableTBAA =
2229 MD->getNumOperands() == 4 &&
2230 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2231
2232 if (!IsImmutableTBAA)
2233 continue; // no work to do, MD_tbaa is already marked mutable
2234
2235 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2236 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2237 uint64_t Offset =
2238 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2239
2240 MDNode *MutableTBAA =
2241 Builder.createTBAAStructTagNode(Base, Access, Offset);
2242 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2243 }
2244
2245 if (CallSite CS = CallSite(&I)) {
2246 for (int i = 0, e = CS.arg_size(); i != e; i++)
2247 if (isa<PointerType>(CS.getArgument(i)->getType()))
2248 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2249 if (isa<PointerType>(CS.getType()))
2250 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2251 }
2252 }
2253 }
2254
2255 /// Returns true if this function should be rewritten by this pass. The main
2256 /// point of this function is as an extension point for custom logic.
shouldRewriteStatepointsIn(Function & F)2257 static bool shouldRewriteStatepointsIn(Function &F) {
2258 // TODO: This should check the GCStrategy
2259 if (F.hasGC()) {
2260 const auto &FunctionGCName = F.getGC();
2261 const StringRef StatepointExampleName("statepoint-example");
2262 const StringRef CoreCLRName("coreclr");
2263 return (StatepointExampleName == FunctionGCName) ||
2264 (CoreCLRName == FunctionGCName);
2265 } else
2266 return false;
2267 }
2268
stripNonValidAttributes(Module & M)2269 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2270 #ifndef NDEBUG
2271 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2272 "precondition!");
2273 #endif
2274
2275 for (Function &F : M)
2276 stripNonValidAttributesFromPrototype(F);
2277
2278 for (Function &F : M)
2279 stripNonValidAttributesFromBody(F);
2280 }
2281
runOnFunction(Function & F)2282 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2283 // Nothing to do for declarations.
2284 if (F.isDeclaration() || F.empty())
2285 return false;
2286
2287 // Policy choice says not to rewrite - the most common reason is that we're
2288 // compiling code without a GCStrategy.
2289 if (!shouldRewriteStatepointsIn(F))
2290 return false;
2291
2292 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2293 TargetTransformInfo &TTI =
2294 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2295
2296 auto NeedsRewrite = [](Instruction &I) {
2297 if (ImmutableCallSite CS = ImmutableCallSite(&I))
2298 return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2299 return false;
2300 };
2301
2302 // Gather all the statepoints which need rewritten. Be careful to only
2303 // consider those in reachable code since we need to ask dominance queries
2304 // when rewriting. We'll delete the unreachable ones in a moment.
2305 SmallVector<CallSite, 64> ParsePointNeeded;
2306 bool HasUnreachableStatepoint = false;
2307 for (Instruction &I : instructions(F)) {
2308 // TODO: only the ones with the flag set!
2309 if (NeedsRewrite(I)) {
2310 if (DT.isReachableFromEntry(I.getParent()))
2311 ParsePointNeeded.push_back(CallSite(&I));
2312 else
2313 HasUnreachableStatepoint = true;
2314 }
2315 }
2316
2317 bool MadeChange = false;
2318
2319 // Delete any unreachable statepoints so that we don't have unrewritten
2320 // statepoints surviving this pass. This makes testing easier and the
2321 // resulting IR less confusing to human readers. Rather than be fancy, we
2322 // just reuse a utility function which removes the unreachable blocks.
2323 if (HasUnreachableStatepoint)
2324 MadeChange |= removeUnreachableBlocks(F);
2325
2326 // Return early if no work to do.
2327 if (ParsePointNeeded.empty())
2328 return MadeChange;
2329
2330 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2331 // These are created by LCSSA. They have the effect of increasing the size
2332 // of liveness sets for no good reason. It may be harder to do this post
2333 // insertion since relocations and base phis can confuse things.
2334 for (BasicBlock &BB : F)
2335 if (BB.getUniquePredecessor()) {
2336 MadeChange = true;
2337 FoldSingleEntryPHINodes(&BB);
2338 }
2339
2340 // Before we start introducing relocations, we want to tweak the IR a bit to
2341 // avoid unfortunate code generation effects. The main example is that we
2342 // want to try to make sure the comparison feeding a branch is after any
2343 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2344 // values feeding a branch after relocation. This is semantically correct,
2345 // but results in extra register pressure since both the pre-relocation and
2346 // post-relocation copies must be available in registers. For code without
2347 // relocations this is handled elsewhere, but teaching the scheduler to
2348 // reverse the transform we're about to do would be slightly complex.
2349 // Note: This may extend the live range of the inputs to the icmp and thus
2350 // increase the liveset of any statepoint we move over. This is profitable
2351 // as long as all statepoints are in rare blocks. If we had in-register
2352 // lowering for live values this would be a much safer transform.
2353 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2354 if (auto *BI = dyn_cast<BranchInst>(TI))
2355 if (BI->isConditional())
2356 return dyn_cast<Instruction>(BI->getCondition());
2357 // TODO: Extend this to handle switches
2358 return nullptr;
2359 };
2360 for (BasicBlock &BB : F) {
2361 TerminatorInst *TI = BB.getTerminator();
2362 if (auto *Cond = getConditionInst(TI))
2363 // TODO: Handle more than just ICmps here. We should be able to move
2364 // most instructions without side effects or memory access.
2365 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2366 MadeChange = true;
2367 Cond->moveBefore(TI);
2368 }
2369 }
2370
2371 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2372 return MadeChange;
2373 }
2374
2375 // liveness computation via standard dataflow
2376 // -------------------------------------------------------------------
2377
2378 // TODO: Consider using bitvectors for liveness, the set of potentially
2379 // interesting values should be small and easy to pre-compute.
2380
2381 /// Compute the live-in set for the location rbegin starting from
2382 /// the live-out set of the basic block
computeLiveInValues(BasicBlock::reverse_iterator Begin,BasicBlock::reverse_iterator End,SetVector<Value * > & LiveTmp)2383 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2384 BasicBlock::reverse_iterator End,
2385 SetVector<Value *> &LiveTmp) {
2386 for (auto &I : make_range(Begin, End)) {
2387 // KILL/Def - Remove this definition from LiveIn
2388 LiveTmp.remove(&I);
2389
2390 // Don't consider *uses* in PHI nodes, we handle their contribution to
2391 // predecessor blocks when we seed the LiveOut sets
2392 if (isa<PHINode>(I))
2393 continue;
2394
2395 // USE - Add to the LiveIn set for this instruction
2396 for (Value *V : I.operands()) {
2397 assert(!isUnhandledGCPointerType(V->getType()) &&
2398 "support for FCA unimplemented");
2399 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2400 // The choice to exclude all things constant here is slightly subtle.
2401 // There are two independent reasons:
2402 // - We assume that things which are constant (from LLVM's definition)
2403 // do not move at runtime. For example, the address of a global
2404 // variable is fixed, even though it's contents may not be.
2405 // - Second, we can't disallow arbitrary inttoptr constants even
2406 // if the language frontend does. Optimization passes are free to
2407 // locally exploit facts without respect to global reachability. This
2408 // can create sections of code which are dynamically unreachable and
2409 // contain just about anything. (see constants.ll in tests)
2410 LiveTmp.insert(V);
2411 }
2412 }
2413 }
2414 }
2415
computeLiveOutSeed(BasicBlock * BB,SetVector<Value * > & LiveTmp)2416 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2417 for (BasicBlock *Succ : successors(BB)) {
2418 for (auto &I : *Succ) {
2419 PHINode *PN = dyn_cast<PHINode>(&I);
2420 if (!PN)
2421 break;
2422
2423 Value *V = PN->getIncomingValueForBlock(BB);
2424 assert(!isUnhandledGCPointerType(V->getType()) &&
2425 "support for FCA unimplemented");
2426 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2427 LiveTmp.insert(V);
2428 }
2429 }
2430 }
2431
computeKillSet(BasicBlock * BB)2432 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2433 SetVector<Value *> KillSet;
2434 for (Instruction &I : *BB)
2435 if (isHandledGCPointerType(I.getType()))
2436 KillSet.insert(&I);
2437 return KillSet;
2438 }
2439
2440 #ifndef NDEBUG
2441 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2442 /// sanity check for the liveness computation.
checkBasicSSA(DominatorTree & DT,SetVector<Value * > & Live,TerminatorInst * TI,bool TermOkay=false)2443 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2444 TerminatorInst *TI, bool TermOkay = false) {
2445 for (Value *V : Live) {
2446 if (auto *I = dyn_cast<Instruction>(V)) {
2447 // The terminator can be a member of the LiveOut set. LLVM's definition
2448 // of instruction dominance states that V does not dominate itself. As
2449 // such, we need to special case this to allow it.
2450 if (TermOkay && TI == I)
2451 continue;
2452 assert(DT.dominates(I, TI) &&
2453 "basic SSA liveness expectation violated by liveness analysis");
2454 }
2455 }
2456 }
2457
2458 /// Check that all the liveness sets used during the computation of liveness
2459 /// obey basic SSA properties. This is useful for finding cases where we miss
2460 /// a def.
checkBasicSSA(DominatorTree & DT,GCPtrLivenessData & Data,BasicBlock & BB)2461 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2462 BasicBlock &BB) {
2463 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2464 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2465 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2466 }
2467 #endif
2468
computeLiveInValues(DominatorTree & DT,Function & F,GCPtrLivenessData & Data)2469 static void computeLiveInValues(DominatorTree &DT, Function &F,
2470 GCPtrLivenessData &Data) {
2471 SmallSetVector<BasicBlock *, 32> Worklist;
2472
2473 // Seed the liveness for each individual block
2474 for (BasicBlock &BB : F) {
2475 Data.KillSet[&BB] = computeKillSet(&BB);
2476 Data.LiveSet[&BB].clear();
2477 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2478
2479 #ifndef NDEBUG
2480 for (Value *Kill : Data.KillSet[&BB])
2481 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2482 #endif
2483
2484 Data.LiveOut[&BB] = SetVector<Value *>();
2485 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2486 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2487 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2488 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2489 if (!Data.LiveIn[&BB].empty())
2490 Worklist.insert(pred_begin(&BB), pred_end(&BB));
2491 }
2492
2493 // Propagate that liveness until stable
2494 while (!Worklist.empty()) {
2495 BasicBlock *BB = Worklist.pop_back_val();
2496
2497 // Compute our new liveout set, then exit early if it hasn't changed despite
2498 // the contribution of our successor.
2499 SetVector<Value *> LiveOut = Data.LiveOut[BB];
2500 const auto OldLiveOutSize = LiveOut.size();
2501 for (BasicBlock *Succ : successors(BB)) {
2502 assert(Data.LiveIn.count(Succ));
2503 LiveOut.set_union(Data.LiveIn[Succ]);
2504 }
2505 // assert OutLiveOut is a subset of LiveOut
2506 if (OldLiveOutSize == LiveOut.size()) {
2507 // If the sets are the same size, then we didn't actually add anything
2508 // when unioning our successors LiveIn. Thus, the LiveIn of this block
2509 // hasn't changed.
2510 continue;
2511 }
2512 Data.LiveOut[BB] = LiveOut;
2513
2514 // Apply the effects of this basic block
2515 SetVector<Value *> LiveTmp = LiveOut;
2516 LiveTmp.set_union(Data.LiveSet[BB]);
2517 LiveTmp.set_subtract(Data.KillSet[BB]);
2518
2519 assert(Data.LiveIn.count(BB));
2520 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2521 // assert: OldLiveIn is a subset of LiveTmp
2522 if (OldLiveIn.size() != LiveTmp.size()) {
2523 Data.LiveIn[BB] = LiveTmp;
2524 Worklist.insert(pred_begin(BB), pred_end(BB));
2525 }
2526 } // while (!Worklist.empty())
2527
2528 #ifndef NDEBUG
2529 // Sanity check our output against SSA properties. This helps catch any
2530 // missing kills during the above iteration.
2531 for (BasicBlock &BB : F)
2532 checkBasicSSA(DT, Data, BB);
2533 #endif
2534 }
2535
findLiveSetAtInst(Instruction * Inst,GCPtrLivenessData & Data,StatepointLiveSetTy & Out)2536 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2537 StatepointLiveSetTy &Out) {
2538
2539 BasicBlock *BB = Inst->getParent();
2540
2541 // Note: The copy is intentional and required
2542 assert(Data.LiveOut.count(BB));
2543 SetVector<Value *> LiveOut = Data.LiveOut[BB];
2544
2545 // We want to handle the statepoint itself oddly. It's
2546 // call result is not live (normal), nor are it's arguments
2547 // (unless they're used again later). This adjustment is
2548 // specifically what we need to relocate
2549 BasicBlock::reverse_iterator rend(Inst->getIterator());
2550 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2551 LiveOut.remove(Inst);
2552 Out.insert(LiveOut.begin(), LiveOut.end());
2553 }
2554
recomputeLiveInValues(GCPtrLivenessData & RevisedLivenessData,CallSite CS,PartiallyConstructedSafepointRecord & Info)2555 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2556 CallSite CS,
2557 PartiallyConstructedSafepointRecord &Info) {
2558 Instruction *Inst = CS.getInstruction();
2559 StatepointLiveSetTy Updated;
2560 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2561
2562 #ifndef NDEBUG
2563 DenseSet<Value *> Bases;
2564 for (auto KVPair : Info.PointerToBase)
2565 Bases.insert(KVPair.second);
2566 #endif
2567
2568 // We may have base pointers which are now live that weren't before. We need
2569 // to update the PointerToBase structure to reflect this.
2570 for (auto V : Updated)
2571 if (Info.PointerToBase.insert({V, V}).second) {
2572 assert(Bases.count(V) && "Can't find base for unexpected live value!");
2573 continue;
2574 }
2575
2576 #ifndef NDEBUG
2577 for (auto V : Updated)
2578 assert(Info.PointerToBase.count(V) &&
2579 "Must be able to find base for live value!");
2580 #endif
2581
2582 // Remove any stale base mappings - this can happen since our liveness is
2583 // more precise then the one inherent in the base pointer analysis.
2584 DenseSet<Value *> ToErase;
2585 for (auto KVPair : Info.PointerToBase)
2586 if (!Updated.count(KVPair.first))
2587 ToErase.insert(KVPair.first);
2588
2589 for (auto *V : ToErase)
2590 Info.PointerToBase.erase(V);
2591
2592 #ifndef NDEBUG
2593 for (auto KVPair : Info.PointerToBase)
2594 assert(Updated.count(KVPair.first) && "record for non-live value");
2595 #endif
2596
2597 Info.LiveSet = Updated;
2598 }
2599