1; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s 2; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s 3 4; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s 5; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s 6 7; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s 8; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s 9 10; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s 11; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s 12 13; Test the floating point arguments for all ABI's and byte orders as specified 14; by section 5 of MD00305 (MIPS ABIs Described). 15; 16; N32/N64 are identical in this area so their checks have been combined into 17; the 'NEW' prefix (the N stands for New). 18 19@bytes = global [11 x i8] zeroinitializer 20@dwords = global [11 x i64] zeroinitializer 21@floats = global [11 x float] zeroinitializer 22@doubles = global [11 x double] zeroinitializer 23 24define void @double_args(double %a, double %b, double %c, double %d, double %e, 25 double %f, double %g, double %h, double %i) nounwind { 26entry: 27 %0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1 28 store volatile double %a, double* %0 29 %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2 30 store volatile double %b, double* %1 31 %2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3 32 store volatile double %c, double* %2 33 %3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4 34 store volatile double %d, double* %3 35 %4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5 36 store volatile double %e, double* %4 37 %5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6 38 store volatile double %f, double* %5 39 %6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7 40 store volatile double %g, double* %6 41 %7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8 42 store volatile double %h, double* %7 43 %8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9 44 store volatile double %i, double* %8 45 ret void 46} 47 48; ALL-LABEL: double_args: 49; We won't test the way the global address is calculated in this test. This is 50; just to get the register number for the other checks. 51; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles) 52; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)( 53 54; The first argument is floating point so floating point registers are used. 55; The first argument is the same for O32/N32/N64 but the second argument differs 56; by register 57; ALL-DAG: sdc1 $f12, 8([[R2]]) 58; O32-DAG: sdc1 $f14, 16([[R2]]) 59; NEW-DAG: sdc1 $f13, 16([[R2]]) 60 61; O32 has run out of argument registers and starts using the stack 62; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 16($sp) 63; O32-DAG: sdc1 [[F1]], 24([[R2]]) 64; NEW-DAG: sdc1 $f14, 24([[R2]]) 65; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 24($sp) 66; O32-DAG: sdc1 [[F1]], 32([[R2]]) 67; NEW-DAG: sdc1 $f15, 32([[R2]]) 68; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 32($sp) 69; O32-DAG: sdc1 [[F1]], 40([[R2]]) 70; NEW-DAG: sdc1 $f16, 40([[R2]]) 71; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 40($sp) 72; O32-DAG: sdc1 [[F1]], 48([[R2]]) 73; NEW-DAG: sdc1 $f17, 48([[R2]]) 74; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 48($sp) 75; O32-DAG: sdc1 [[F1]], 56([[R2]]) 76; NEW-DAG: sdc1 $f18, 56([[R2]]) 77; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 56($sp) 78; O32-DAG: sdc1 [[F1]], 64([[R2]]) 79; NEW-DAG: sdc1 $f19, 64([[R2]]) 80 81; N32/N64 have run out of registers and start using the stack too 82; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 64($sp) 83; O32-DAG: sdc1 [[F1]], 72([[R2]]) 84; NEW-DAG: ldc1 [[F1:\$f[0-9]+]], 0($sp) 85; NEW-DAG: sdc1 [[F1]], 72([[R2]]) 86 87define void @float_args(float %a, float %b, float %c, float %d, float %e, 88 float %f, float %g, float %h, float %i) nounwind { 89entry: 90 %0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1 91 store volatile float %a, float* %0 92 %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2 93 store volatile float %b, float* %1 94 %2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3 95 store volatile float %c, float* %2 96 %3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4 97 store volatile float %d, float* %3 98 %4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5 99 store volatile float %e, float* %4 100 %5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6 101 store volatile float %f, float* %5 102 %6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7 103 store volatile float %g, float* %6 104 %7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8 105 store volatile float %h, float* %7 106 %8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9 107 store volatile float %i, float* %8 108 ret void 109} 110 111; ALL-LABEL: float_args: 112; We won't test the way the global address is calculated in this test. This is 113; just to get the register number for the other checks. 114; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats) 115; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(floats)( 116 117; The first argument is floating point so floating point registers are used. 118; The first argument is the same for O32/N32/N64 but the second argument differs 119; by register 120; ALL-DAG: swc1 $f12, 4([[R1]]) 121; O32-DAG: swc1 $f14, 8([[R1]]) 122; NEW-DAG: swc1 $f13, 8([[R1]]) 123 124; O32 has run out of argument registers and (in theory) starts using the stack 125; I've yet to find a reference in the documentation about this but GCC uses up 126; the remaining two argument slots in the GPR's first. We'll do the same for 127; compatibility. 128; O32-DAG: sw $6, 12([[R1]]) 129; NEW-DAG: swc1 $f14, 12([[R1]]) 130; O32-DAG: sw $7, 16([[R1]]) 131; NEW-DAG: swc1 $f15, 16([[R1]]) 132 133; O32 is definitely out of registers now and switches to the stack. 134; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 16($sp) 135; O32-DAG: swc1 [[F1]], 20([[R1]]) 136; NEW-DAG: swc1 $f16, 20([[R1]]) 137; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 20($sp) 138; O32-DAG: swc1 [[F1]], 24([[R1]]) 139; NEW-DAG: swc1 $f17, 24([[R1]]) 140; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 24($sp) 141; O32-DAG: swc1 [[F1]], 28([[R1]]) 142; NEW-DAG: swc1 $f18, 28([[R1]]) 143; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 28($sp) 144; O32-DAG: swc1 [[F1]], 32([[R1]]) 145; NEW-DAG: swc1 $f19, 32([[R1]]) 146 147; N32/N64 have run out of registers and start using the stack too 148; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 32($sp) 149; O32-DAG: swc1 [[F1]], 36([[R1]]) 150; NEW-DAG: lwc1 [[F1:\$f[0-9]+]], 0($sp) 151; NEW-DAG: swc1 [[F1]], 36([[R1]]) 152 153 154define void @double_arg2(i8 %a, double %b) nounwind { 155entry: 156 %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1 157 store volatile i8 %a, i8* %0 158 %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1 159 store volatile double %b, double* %1 160 ret void 161} 162 163; ALL-LABEL: double_arg2: 164; We won't test the way the global address is calculated in this test. This is 165; just to get the register number for the other checks. 166; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes) 167; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)( 168; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles) 169; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)( 170 171; The first argument is the same in O32/N32/N64. 172; ALL-DAG: sb $4, 1([[R1]]) 173 174; The first argument isn't floating point so floating point registers are not 175; used in O32, but N32/N64 will still use them. 176; The second slot is insufficiently aligned for double on O32 so it is skipped. 177; Also, double occupies two slots on O32 and only one for N32/N64. 178; O32LE-DAG: mtc1 $6, [[F1:\$f[0-9]*[02468]+]] 179; O32LE-DAG: mtc1 $7, [[F2:\$f[0-9]*[13579]+]] 180; O32BE-DAG: mtc1 $6, [[F2:\$f[0-9]*[13579]+]] 181; O32BE-DAG: mtc1 $7, [[F1:\$f[0-9]*[02468]+]] 182; O32-DAG: sdc1 [[F1]], 8([[R2]]) 183; NEW-DAG: sdc1 $f13, 8([[R2]]) 184 185define void @float_arg2(i8 %a, float %b) nounwind { 186entry: 187 %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1 188 store volatile i8 %a, i8* %0 189 %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1 190 store volatile float %b, float* %1 191 ret void 192} 193 194; ALL-LABEL: float_arg2: 195; We won't test the way the global address is calculated in this test. This is 196; just to get the register number for the other checks. 197; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes) 198; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)( 199; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats) 200; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(floats)( 201 202; The first argument is the same in O32/N32/N64. 203; ALL-DAG: sb $4, 1([[R1]]) 204 205; The first argument isn't floating point so floating point registers are not 206; used in O32, but N32/N64 will still use them. 207; MD00305 and GCC disagree on this one. MD00305 says that floats are treated 208; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte 209; aligned and occupying one slot. We'll use GCC's definition. 210; O32-DAG: sw $5, 4([[R2]]) 211; NEW-DAG: swc1 $f13, 4([[R2]]) 212