• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright (c) 2017-2018 Richard Palethorpe <rpalethorpe@suse.com>
4  */
5 /**
6  * @file tst_fuzzy_sync.h
7  * Fuzzy Synchronisation - abbreviated to fzsync
8  *
9  * This library is intended to help reproduce race conditions by synchronising
10  * two threads at a given place by marking the range a race may occur
11  * in. Because the exact place where any race occurs is within the kernel,
12  * and therefore impossible to mark accurately, the library may add randomised
13  * delays to either thread in order to help find the exact race timing.
14  *
15  * Currently only two way races are explicitly supported, that is races
16  * involving two threads or processes. We refer to the main test thread as
17  * thread A and the child thread as thread B.
18  *
19  * In each thread you need a simple while- or for-loop which the tst_fzsync_*
20  * functions are called in. In the simplest case thread A will look something
21  * like:
22  *
23  * tst_fzsync_pair_reset(&pair, run_thread_b);
24  * while (tst_fzsync_run_a(&pair)) {
25  *	// Perform some setup which must happen before the race
26  *	tst_fzsync_start_race_a(&pair);
27  *	// Do some dodgy syscall
28  *	tst_fzsync_end_race_a(&pair);
29  * }
30  *
31  * Then in thread B (run_thread_b):
32  *
33  * while (tst_fzsync_run_b(&pair)) {
34  *	tst_fzsync_start_race_b(&pair);
35  *	// Do something which can race with the dodgy syscall in A
36  *	tst_fzsync_end_race_b(&pair)
37  * }
38  *
39  * The calls to tst_fzsync_start/end_race and tst_fzsync_run_a/b block (at
40  * least) until both threads have enter them. These functions can only be
41  * called once for each iteration, but further synchronisation points can be
42  * added by calling tst_fzsync_wait_a() and tst_fzsync_wait_b() in each
43  * thread.
44  *
45  * The execution of the loops in threads A and B are bounded by both iteration
46  * count and time. A slow machine is likely to be limited by time and a fast
47  * one by iteration count. The user can use the -i parameter to run the test
48  * multiple times or LTP_TIMEOUT_MUL to give the test more time.
49  *
50  * It is possible to use the library just for tst_fzsync_pair_wait() to get a
51  * basic spin wait. However if you are actually testing a race condition then
52  * it is recommended to use tst_fzsync_start_race_a/b even if the
53  * randomisation is not needed. It provides some semantic information which
54  * may be useful in the future.
55  *
56  * For a usage example see testcases/cve/cve-2016-7117.c or just run
57  * 'git grep tst_fuzzy_sync.h'
58  *
59  * @sa tst_fzsync_pair
60  */
61 
62 #include <sys/time.h>
63 #include <time.h>
64 #include <math.h>
65 #include <stdlib.h>
66 #include "tst_atomic.h"
67 #include "tst_timer.h"
68 #include "tst_safe_pthread.h"
69 
70 #ifndef TST_FUZZY_SYNC_H__
71 #define TST_FUZZY_SYNC_H__
72 
73 /* how much of exec time is sampling allowed to take */
74 #define SAMPLING_SLICE 0.5f
75 
76 /** Some statistics for a variable */
77 struct tst_fzsync_stat {
78 	float avg;
79 	float avg_dev;
80 	float dev_ratio;
81 };
82 
83 /**
84  * The state of a two way synchronisation or race.
85  *
86  * This contains all the necessary state for approximately synchronising two
87  * sections of code in different threads.
88  *
89  * Some of the fields can be configured before calling
90  * tst_fzsync_pair_reset(), however this is mainly for debugging purposes. If
91  * a test requires one of the parameters to be modified, we should consider
92  * finding a way of automatically selecting an appropriate value at runtime.
93  *
94  * Internal fields should only be accessed by library functions.
95  */
96 struct tst_fzsync_pair {
97 	/**
98 	 * The rate at which old diff samples are forgotten
99 	 *
100 	 * Defaults to 0.25.
101 	 */
102 	float avg_alpha;
103 	/** Internal; Thread A start time */
104 	struct timespec a_start;
105 	/** Internal; Thread B start time */
106 	struct timespec b_start;
107 	/** Internal; Thread A end time */
108 	struct timespec a_end;
109 	/** Internal; Thread B end time */
110 	struct timespec b_end;
111 	/** Internal; Avg. difference between a_start and b_start */
112 	struct tst_fzsync_stat diff_ss;
113 	/** Internal; Avg. difference between a_start and a_end */
114 	struct tst_fzsync_stat diff_sa;
115 	/** Internal; Avg. difference between b_start and b_end */
116 	struct tst_fzsync_stat diff_sb;
117 	/** Internal; Avg. difference between a_end and b_end */
118 	struct tst_fzsync_stat diff_ab;
119 	/** Internal; Number of spins while waiting for the slower thread */
120 	int spins;
121 	struct tst_fzsync_stat spins_avg;
122 	/**
123 	 * Internal; Number of spins to use in the delay.
124 	 *
125 	 * A negative value delays thread A and a positive delays thread B.
126 	 */
127 	int delay;
128 	int delay_bias;
129 	/**
130 	 *  Internal; The number of samples left or the sampling state.
131 	 *
132 	 *  A positive value is the number of remaining mandatory
133 	 *  samples. Zero or a negative indicate some other state.
134 	 */
135 	int sampling;
136 	/**
137 	 * The Minimum number of statistical samples which must be collected.
138 	 *
139 	 * The minimum number of iterations which must be performed before a
140 	 * random delay can be calculated. Defaults to 1024.
141 	 */
142 	int min_samples;
143 	/**
144 	 * The maximum allowed proportional average deviation.
145 	 *
146 	 * A value in the range (0, 1) which gives the maximum average
147 	 * deviation which must be attained before random delays can be
148 	 * calculated.
149 	 *
150 	 * It is a ratio of (average_deviation / total_time). The default is
151 	 * 0.1, so this allows an average deviation of at most 10%.
152 	 */
153 	float max_dev_ratio;
154 
155 	/** Internal; Atomic counter used by fzsync_pair_wait() */
156 	int a_cntr;
157 	/** Internal; Atomic counter used by fzsync_pair_wait() */
158 	int b_cntr;
159 	/** Internal; Used by tst_fzsync_pair_exit() and fzsync_pair_wait() */
160 	int exit;
161 	/**
162 	 * The maximum desired execution time as a proportion of the timeout
163 	 *
164 	 * A value x so that 0 < x < 1 which decides how long the test should
165 	 * be run for (assuming the loop limit is not exceeded first).
166 	 *
167 	 * Defaults to 0.5 (~150 seconds with default timeout).
168 	 */
169 	float exec_time_p;
170 	/** Internal; The test time remaining on tst_fzsync_pair_reset() */
171 	float exec_time_start;
172 	/**
173 	 * The maximum number of iterations to execute during the test
174 	 *
175 	 * Defaults to a large number, but not too large.
176 	 */
177 	int exec_loops;
178 	/** Internal; The current loop index  */
179 	int exec_loop;
180 	/** Internal; The second thread or 0 */
181 	pthread_t thread_b;
182 };
183 
184 #define CHK(param, low, hi, def) do {					      \
185 	pair->param = (pair->param ? pair->param : def);		      \
186 	if (pair->param < low)						      \
187 		tst_brk(TBROK, #param " is less than the lower bound " #low); \
188 	if (pair->param > hi)						      \
189 		tst_brk(TBROK, #param " is more than the upper bound " #hi);  \
190 	} while (0)
191 /**
192  * Ensures that any Fuzzy Sync parameters are properly set
193  *
194  * @relates tst_fzsync_pair
195  *
196  * Usually called from the setup function, it sets default parameter values or
197  * validates any existing non-defaults.
198  *
199  * @sa tst_fzsync_pair_reset()
200  */
tst_fzsync_pair_init(struct tst_fzsync_pair * pair)201 static void tst_fzsync_pair_init(struct tst_fzsync_pair *pair)
202 {
203 	CHK(avg_alpha, 0, 1, 0.25);
204 	CHK(min_samples, 20, INT_MAX, 1024);
205 	CHK(max_dev_ratio, 0, 1, 0.1);
206 	CHK(exec_time_p, 0, 1, 0.5);
207 	CHK(exec_loops, 20, INT_MAX, 3000000);
208 }
209 #undef CHK
210 
211 /**
212  * Exit and join thread B if necessary.
213  *
214  * @relates tst_fzsync_pair
215  *
216  * Call this from your cleanup function.
217  */
tst_fzsync_pair_cleanup(struct tst_fzsync_pair * pair)218 static void tst_fzsync_pair_cleanup(struct tst_fzsync_pair *pair)
219 {
220 	if (pair->thread_b) {
221 		tst_atomic_store(1, &pair->exit);
222 		SAFE_PTHREAD_JOIN(pair->thread_b, NULL);
223 		pair->thread_b = 0;
224 	}
225 }
226 
227 /**
228  * Zero some stat fields
229  *
230  * @relates tst_fzsync_stat
231  */
tst_init_stat(struct tst_fzsync_stat * s)232 static void tst_init_stat(struct tst_fzsync_stat *s)
233 {
234 	s->avg = 0;
235 	s->avg_dev = 0;
236 }
237 
238 /**
239  * Reset or initialise fzsync.
240  *
241  * @relates tst_fzsync_pair
242  * @param pair The state structure initialised with TST_FZSYNC_PAIR_INIT.
243  * @param run_b The function defining thread B or NULL.
244  *
245  * Call this from your main test function (thread A), just before entering the
246  * main loop. It will (re)set any variables needed by fzsync and (re)start
247  * thread B using the function provided.
248  *
249  * If you need to use fork or clone to start the second thread/process then
250  * you can pass NULL to run_b and handle starting and stopping thread B
251  * yourself. You may need to place tst_fzsync_pair in some shared memory as
252  * well.
253  *
254  * @sa tst_fzsync_pair_init()
255  */
tst_fzsync_pair_reset(struct tst_fzsync_pair * pair,void * (* run_b)(void *))256 static void tst_fzsync_pair_reset(struct tst_fzsync_pair *pair,
257 				  void *(*run_b)(void *))
258 {
259 	tst_fzsync_pair_cleanup(pair);
260 
261 	tst_init_stat(&pair->diff_ss);
262 	tst_init_stat(&pair->diff_sa);
263 	tst_init_stat(&pair->diff_sb);
264 	tst_init_stat(&pair->diff_ab);
265 	tst_init_stat(&pair->spins_avg);
266 	pair->delay = 0;
267 	pair->sampling = pair->min_samples;
268 
269 	pair->exec_loop = 0;
270 
271 	pair->a_cntr = 0;
272 	pair->b_cntr = 0;
273 	pair->exit = 0;
274 	if (run_b)
275 		SAFE_PTHREAD_CREATE(&pair->thread_b, 0, run_b, 0);
276 
277 	pair->exec_time_start = (float)tst_timeout_remaining();
278 }
279 
280 /**
281  * Print stat
282  *
283  * @relates tst_fzsync_stat
284  */
tst_fzsync_stat_info(struct tst_fzsync_stat stat,char * unit,char * name)285 static inline void tst_fzsync_stat_info(struct tst_fzsync_stat stat,
286 					char *unit, char *name)
287 {
288 	tst_res(TINFO,
289 		"%1$-17s: { avg = %3$5.0f%2$s, avg_dev = %4$5.0f%2$s, dev_ratio = %5$.2f }",
290 		name, unit, stat.avg, stat.avg_dev, stat.dev_ratio);
291 }
292 
293 /**
294  * Print some synchronisation statistics
295  *
296  * @relates tst_fzsync_pair
297  */
tst_fzsync_pair_info(struct tst_fzsync_pair * pair)298 static void tst_fzsync_pair_info(struct tst_fzsync_pair *pair)
299 {
300 	tst_res(TINFO, "loop = %d, delay_bias = %d",
301 		pair->exec_loop, pair->delay_bias);
302 	tst_fzsync_stat_info(pair->diff_ss, "ns", "start_a - start_b");
303 	tst_fzsync_stat_info(pair->diff_sa, "ns", "end_a - start_a");
304 	tst_fzsync_stat_info(pair->diff_sb, "ns", "end_b - start_b");
305 	tst_fzsync_stat_info(pair->diff_ab, "ns", "end_a - end_b");
306 	tst_fzsync_stat_info(pair->spins_avg, "  ", "spins");
307 }
308 
309 /** Wraps clock_gettime */
tst_fzsync_time(struct timespec * t)310 static inline void tst_fzsync_time(struct timespec *t)
311 {
312 #ifdef CLOCK_MONOTONIC_RAW
313 	clock_gettime(CLOCK_MONOTONIC_RAW, t);
314 #else
315 	clock_gettime(CLOCK_MONOTONIC, t);
316 #endif
317 }
318 
319 /**
320  * Exponential moving average
321  *
322  * @param alpha The preference for recent samples over old ones.
323  * @param sample The current sample
324  * @param prev_avg The average of the all the previous samples
325  *
326  * @return The average including the current sample.
327  */
tst_exp_moving_avg(float alpha,float sample,float prev_avg)328 static inline float tst_exp_moving_avg(float alpha,
329 					float sample,
330 					float prev_avg)
331 {
332 	return alpha * sample + (1.0 - alpha) * prev_avg;
333 }
334 
335 /**
336  * Update a stat with a new sample
337  *
338  * @relates tst_fzsync_stat
339  */
tst_upd_stat(struct tst_fzsync_stat * s,float alpha,float sample)340 static inline void tst_upd_stat(struct tst_fzsync_stat *s,
341 				 float alpha,
342 				 float sample)
343 {
344 	s->avg = tst_exp_moving_avg(alpha, sample, s->avg);
345 	s->avg_dev = tst_exp_moving_avg(alpha,
346 					fabs(s->avg - sample), s->avg_dev);
347 	s->dev_ratio = fabs(s->avg ? s->avg_dev / s->avg : 0);
348 }
349 
350 /**
351  * Update a stat with a new diff sample
352  *
353  * @relates tst_fzsync_stat
354  */
tst_upd_diff_stat(struct tst_fzsync_stat * s,float alpha,struct timespec t1,struct timespec t2)355 static inline void tst_upd_diff_stat(struct tst_fzsync_stat *s,
356 				     float alpha,
357 				     struct timespec t1,
358 				     struct timespec t2)
359 {
360 	tst_upd_stat(s, alpha, tst_timespec_diff_ns(t1, t2));
361 }
362 
363 /**
364  * Calculate various statistics and the delay
365  *
366  * This function helps create the fuzz in fuzzy sync. Imagine we have the
367  * following timelines in threads A and B:
368  *
369  *  start_race_a
370  *      ^                    end_race_a (a)
371  *      |                        ^
372  *      |                        |
373  *  - --+------------------------+-- - -
374  *      |        Syscall A       |                 Thread A
375  *  - --+------------------------+-- - -
376  *  - --+----------------+-------+-- - -
377  *      |   Syscall B    | spin  |                 Thread B
378  *  - --+----------------+-------+-- - -
379  *      |                |
380  *      ^                ^
381  *  start_race_b     end_race_b
382  *
383  * Here we have synchronised the calls to syscall A and B with start_race_{a,
384  * b} so that they happen at approximately the same time in threads A and
385  * B. If the race condition occurs during the entry code for these two
386  * functions then we will quickly hit it. If it occurs during the exit code of
387  * B and mid way through A, then we will quickly hit it.
388  *
389  * However if the exit paths of A and B need to be aligned and (end_race_a -
390  * end_race_b) is large relative to the variation in call times, the
391  * probability of hitting the race condition is close to zero. To solve this
392  * scenario (and others) a randomised delay is introduced before the syscalls
393  * in A and B. Given enough time the following should happen where the exit
394  * paths are now synchronised:
395  *
396  *  start_race_a
397  *      ^                    end_race_a (a)
398  *      |                        ^
399  *      |                        |
400  *  - --+------------------------+-- - -
401  *      |        Syscall A       |                 Thread A
402  *  - --+------------------------+-- - -
403  *  - --+-------+----------------+-- - -
404  *      | delay |   Syscall B    |                 Thread B
405  *  - --+-------+----------------+-- - -
406  *      |                        |
407  *      ^                        ^
408  *  start_race_b             end_race_b
409  *
410  * The delay is not introduced immediately and the delay range is only
411  * calculated once the average relative deviation has dropped below some
412  * percentage of the total time.
413  *
414  * The delay range is chosen so that any point in Syscall A could be
415  * synchronised with any point in Syscall B using a value from the
416  * range. Because the delay range may be too large for a linear search, we use
417  * an evenly distributed random function to pick a value from it.
418  *
419  * The delay range goes from positive to negative. A negative delay will delay
420  * thread A and a positive one will delay thread B. The range is bounded by
421  * the point where the entry code to Syscall A is synchronised with the exit
422  * to Syscall B and the entry code to Syscall B is synchronised with the exit
423  * of A.
424  *
425  * In order to calculate the lower bound (the max delay of A) we can simply
426  * negate the execution time of Syscall B and convert it to a spin count. For
427  * the upper bound (the max delay of B), we just take the execution time of A
428  * and convert it to a spin count.
429  *
430  * In order to calculate spin count we need to know approximately how long a
431  * spin takes and divide the delay time with it. We find this by first
432  * counting how many spins one thread spends waiting for the other during
433  * end_race[1]. We also know when each syscall exits so we can take the
434  * difference between the exit times and divide it with the number of spins
435  * spent waiting.
436  *
437  * All the times and counts we use in the calculation are averaged over a
438  * variable number of iterations. There is an initial sampling period where we
439  * simply collect time and count samples then calculate their averages. When a
440  * minimum number of samples have been collected, and if the average deviation
441  * is below some proportion of the average sample magnitude, then the sampling
442  * period is ended. On all further iterations a random delay is calculated and
443  * applied, but the averages are not updated.
444  *
445  * [1] This assumes there is always a significant difference. The algorithm
446  * may fail to introduce a delay (when one is needed) in situations where
447  * Syscall A and B finish at approximately the same time.
448  *
449  * @relates tst_fzsync_pair
450  */
tst_fzsync_pair_update(struct tst_fzsync_pair * pair)451 static void tst_fzsync_pair_update(struct tst_fzsync_pair *pair)
452 {
453 	float alpha = pair->avg_alpha;
454 	float per_spin_time, time_delay;
455 	float max_dev = pair->max_dev_ratio;
456 	int over_max_dev;
457 
458 	pair->delay = pair->delay_bias;
459 
460 	over_max_dev = pair->diff_ss.dev_ratio > max_dev
461 		|| pair->diff_sa.dev_ratio > max_dev
462 		|| pair->diff_sb.dev_ratio > max_dev
463 		|| pair->diff_ab.dev_ratio > max_dev
464 		|| pair->spins_avg.dev_ratio > max_dev;
465 
466 	if (pair->sampling > 0 || over_max_dev) {
467 		tst_upd_diff_stat(&pair->diff_ss, alpha,
468 				  pair->a_start, pair->b_start);
469 		tst_upd_diff_stat(&pair->diff_sa, alpha,
470 				  pair->a_end, pair->a_start);
471 		tst_upd_diff_stat(&pair->diff_sb, alpha,
472 				  pair->b_end, pair->b_start);
473 		tst_upd_diff_stat(&pair->diff_ab, alpha,
474 				  pair->a_end, pair->b_end);
475 		tst_upd_stat(&pair->spins_avg, alpha, pair->spins);
476 		if (pair->sampling > 0 && --pair->sampling == 0) {
477 			tst_res(TINFO, "Minimum sampling period ended");
478 			tst_fzsync_pair_info(pair);
479 		}
480 	} else if (fabsf(pair->diff_ab.avg) >= 1 && pair->spins_avg.avg >= 1) {
481 		per_spin_time = fabsf(pair->diff_ab.avg) / pair->spins_avg.avg;
482 		time_delay = drand48() * (pair->diff_sa.avg + pair->diff_sb.avg)
483 			- pair->diff_sb.avg;
484 		pair->delay += (int)(time_delay / per_spin_time);
485 
486 		if (!pair->sampling) {
487 			tst_res(TINFO,
488 				"Reached deviation ratios < %.2f, introducing randomness",
489 				pair->max_dev_ratio);
490 			tst_res(TINFO, "Delay range is [-%d, %d]",
491 				(int)(pair->diff_sb.avg / per_spin_time) + pair->delay_bias,
492 				(int)(pair->diff_sa.avg / per_spin_time) - pair->delay_bias);
493 			tst_fzsync_pair_info(pair);
494 			pair->sampling = -1;
495 		}
496 	} else if (!pair->sampling) {
497 		tst_res(TWARN, "Can't calculate random delay");
498 		pair->sampling = -1;
499 	}
500 
501 	pair->spins = 0;
502 }
503 
504 /**
505  * Wait for the other thread
506  *
507  * @relates tst_fzsync_pair
508  * @param our_cntr The counter for the thread we are on
509  * @param other_cntr The counter for the thread we are synchronising with
510  * @param spins A pointer to the spin counter or NULL
511  *
512  * Used by tst_fzsync_pair_wait_a(), tst_fzsync_pair_wait_b(),
513  * tst_fzsync_start_race_a(), etc. If the calling thread is ahead of the other
514  * thread, then it will spin wait. Unlike pthread_barrier_wait it will never
515  * use futex and can count the number of spins spent waiting.
516  *
517  * @return A non-zero value if the thread should continue otherwise the
518  * calling thread should exit.
519  */
tst_fzsync_pair_wait(int * our_cntr,int * other_cntr,int * spins)520 static inline void tst_fzsync_pair_wait(int *our_cntr,
521 					int *other_cntr,
522 					int *spins)
523 {
524 	if (tst_atomic_inc(other_cntr) == INT_MAX) {
525 		/*
526 		 * We are about to break the invariant that the thread with
527 		 * the lowest count is in front of the other. So we must wait
528 		 * here to ensure the other thread has at least reached the
529 		 * line above before doing that. If we are in rear position
530 		 * then our counter may already have been set to zero.
531 		 */
532 		while (tst_atomic_load(our_cntr) > 0
533 		       && tst_atomic_load(our_cntr) < INT_MAX) {
534 			if (spins)
535 				(*spins)++;
536 		}
537 
538 		tst_atomic_store(0, other_cntr);
539 		/*
540 		 * Once both counters have been set to zero the invariant
541 		 * is restored and we can continue.
542 		 */
543 		while (tst_atomic_load(our_cntr) > 1)
544 			;
545 	} else {
546 		/*
547 		 * If our counter is less than the other thread's we are ahead
548 		 * of it and need to wait.
549 		 */
550 		while (tst_atomic_load(our_cntr) < tst_atomic_load(other_cntr)) {
551 			if (spins)
552 				(*spins)++;
553 		}
554 	}
555 }
556 
557 /**
558  * Wait in thread A
559  *
560  * @relates tst_fzsync_pair
561  * @sa tst_fzsync_pair_wait
562  */
tst_fzsync_wait_a(struct tst_fzsync_pair * pair)563 static inline void tst_fzsync_wait_a(struct tst_fzsync_pair *pair)
564 {
565 	tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, NULL);
566 }
567 
568 /**
569  * Wait in thread B
570  *
571  * @relates tst_fzsync_pair
572  * @sa tst_fzsync_pair_wait
573  */
tst_fzsync_wait_b(struct tst_fzsync_pair * pair)574 static inline void tst_fzsync_wait_b(struct tst_fzsync_pair *pair)
575 {
576 	tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, NULL);
577 }
578 
579 /**
580  * Decide whether to continue running thread A
581  *
582  * @relates tst_fzsync_pair
583  *
584  * Checks some values and decides whether it is time to break the loop of
585  * thread A.
586  *
587  * @return True to continue and false to break.
588  * @sa tst_fzsync_run_a
589  */
tst_fzsync_run_a(struct tst_fzsync_pair * pair)590 static inline int tst_fzsync_run_a(struct tst_fzsync_pair *pair)
591 {
592 	int exit = 0;
593 	float rem_p = 1 - tst_timeout_remaining() / pair->exec_time_start;
594 
595 	if ((pair->exec_time_p * SAMPLING_SLICE < rem_p)
596 		&& (pair->sampling > 0)) {
597 		tst_res(TINFO, "Stopped sampling at %d (out of %d) samples, "
598 			"sampling time reached 50%% of the total time limit",
599 			pair->exec_loop, pair->min_samples);
600 		pair->sampling = 0;
601 		tst_fzsync_pair_info(pair);
602 	}
603 
604 	if (pair->exec_time_p < rem_p) {
605 		tst_res(TINFO,
606 			"Exceeded execution time, requesting exit");
607 		exit = 1;
608 	}
609 
610 	if (++pair->exec_loop > pair->exec_loops) {
611 		tst_res(TINFO,
612 			"Exceeded execution loops, requesting exit");
613 		exit = 1;
614 	}
615 
616 	tst_atomic_store(exit, &pair->exit);
617 	tst_fzsync_wait_a(pair);
618 
619 	if (exit) {
620 		tst_fzsync_pair_cleanup(pair);
621 		return 0;
622 	}
623 
624 	return 1;
625 }
626 
627 /**
628  * Decide whether to continue running thread B
629  *
630  * @relates tst_fzsync_pair
631  * @sa tst_fzsync_run_a
632  */
tst_fzsync_run_b(struct tst_fzsync_pair * pair)633 static inline int tst_fzsync_run_b(struct tst_fzsync_pair *pair)
634 {
635 	tst_fzsync_wait_b(pair);
636 	return !tst_atomic_load(&pair->exit);
637 }
638 
639 /**
640  * Marks the start of a race region in thread A
641  *
642  * @relates tst_fzsync_pair
643  *
644  * This should be placed just before performing whatever action can cause a
645  * race condition. Usually it is placed just before a syscall and
646  * tst_fzsync_end_race_a() is placed just afterwards.
647  *
648  * A corresponding call to tst_fzsync_start_race_b() should be made in thread
649  * B.
650  *
651  * @return A non-zero value if the calling thread should continue to loop. If
652  * it returns zero then tst_fzsync_exit() has been called and you must exit
653  * the thread.
654  *
655  * @sa tst_fzsync_pair_update
656  */
tst_fzsync_start_race_a(struct tst_fzsync_pair * pair)657 static inline void tst_fzsync_start_race_a(struct tst_fzsync_pair *pair)
658 {
659 	volatile int delay;
660 
661 	tst_fzsync_pair_update(pair);
662 
663 	tst_fzsync_wait_a(pair);
664 
665 	delay = pair->delay;
666 	while (delay < 0)
667 		delay++;
668 
669 	tst_fzsync_time(&pair->a_start);
670 }
671 
672 /**
673  * Marks the end of a race region in thread A
674  *
675  * @relates tst_fzsync_pair
676  * @sa tst_fzsync_start_race_a
677  */
tst_fzsync_end_race_a(struct tst_fzsync_pair * pair)678 static inline void tst_fzsync_end_race_a(struct tst_fzsync_pair *pair)
679 {
680 	tst_fzsync_time(&pair->a_end);
681 	tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, &pair->spins);
682 }
683 
684 /**
685  * Marks the start of a race region in thread B
686  *
687  * @relates tst_fzsync_pair
688  * @sa tst_fzsync_start_race_a
689  */
tst_fzsync_start_race_b(struct tst_fzsync_pair * pair)690 static inline void tst_fzsync_start_race_b(struct tst_fzsync_pair *pair)
691 {
692 	volatile int delay;
693 
694 	tst_fzsync_wait_b(pair);
695 
696 	delay = pair->delay;
697 	while (delay > 0)
698 		delay--;
699 
700 	tst_fzsync_time(&pair->b_start);
701 }
702 
703 /**
704  * Marks the end of a race region in thread B
705  *
706  * @relates tst_fzsync_pair
707  * @sa tst_fzsync_start_race_a
708  */
tst_fzsync_end_race_b(struct tst_fzsync_pair * pair)709 static inline void tst_fzsync_end_race_b(struct tst_fzsync_pair *pair)
710 {
711 	tst_fzsync_time(&pair->b_end);
712 	tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, &pair->spins);
713 }
714 
715 /**
716  * Add some amount to the delay bias
717  *
718  * @relates tst_fzsync_pair
719  * @param change The amount to add, can be negative
720  *
721  * A positive change delays thread B and a negative one delays thread
722  * A.
723  *
724  * It is intended to be used in tests where the time taken by syscall A and/or
725  * B are significantly affected by their chronological order. To the extent
726  * that the delay range will not include the correct values if too many of the
727  * initial samples are taken when the syscalls (or operations within the
728  * syscalls) happen in the wrong order.
729  *
730  * An example of this is cve/cve-2016-7117.c where a call to close() is racing
731  * with a call to recvmmsg(). If close() happens before recvmmsg() has chance
732  * to check if the file descriptor is open then recvmmsg() completes very
733  * quickly. If the call to close() happens once recvmmsg() has already checked
734  * the descriptor it takes much longer. The sample where recvmmsg() completes
735  * quickly is essentially invalid for our purposes. The test uses the simple
736  * heuristic of whether recvmmsg() returns EBADF, to decide if it should call
737  * tst_fzsync_pair_add_bias() to further delay syscall B.
738  */
tst_fzsync_pair_add_bias(struct tst_fzsync_pair * pair,int change)739 static inline void tst_fzsync_pair_add_bias(struct tst_fzsync_pair *pair, int change)
740 {
741 	if (pair->sampling > 0)
742 		pair->delay_bias += change;
743 }
744 
745 #endif /* TST_FUZZY_SYNC_H__ */
746