• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<HTML>
3<HEAD>
4<TITLE>Lua 5.3 Reference Manual</TITLE>
5<LINK REL="stylesheet" TYPE="text/css" HREF="lua.css">
6<LINK REL="stylesheet" TYPE="text/css" HREF="manual.css">
7<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
8</HEAD>
9
10<BODY>
11
12<H1>
13<A HREF="http://www.lua.org/"><IMG SRC="logo.gif" ALT="Lua"></A>
14Lua 5.3 Reference Manual
15</H1>
16
17<P>
18by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
19
20<P>
21<SMALL>
22Copyright &copy; 2015&ndash;2018 Lua.org, PUC-Rio.
23Freely available under the terms of the
24<a href="http://www.lua.org/license.html">Lua license</a>.
25</SMALL>
26
27<DIV CLASS="menubar">
28<A HREF="contents.html#contents">contents</A>
29&middot;
30<A HREF="contents.html#index">index</A>
31&middot;
32<A HREF="http://www.lua.org/manual/">other versions</A>
33</DIV>
34
35<!-- ====================================================================== -->
36<p>
37
38<!-- $Id: manual.of,v 1.167.1.2 2018/06/26 15:49:07 roberto Exp $ -->
39
40
41
42
43<h1>1 &ndash; <a name="1">Introduction</a></h1>
44
45<p>
46Lua is a powerful, efficient, lightweight, embeddable scripting language.
47It supports procedural programming,
48object-oriented programming, functional programming,
49data-driven programming, and data description.
50
51
52<p>
53Lua combines simple procedural syntax with powerful data description
54constructs based on associative arrays and extensible semantics.
55Lua is dynamically typed,
56runs by interpreting bytecode with a register-based
57virtual machine,
58and has automatic memory management with
59incremental garbage collection,
60making it ideal for configuration, scripting,
61and rapid prototyping.
62
63
64<p>
65Lua is implemented as a library, written in <em>clean C</em>,
66the common subset of Standard&nbsp;C and C++.
67The Lua distribution includes a host program called <code>lua</code>,
68which uses the Lua library to offer a complete,
69standalone Lua interpreter,
70for interactive or batch use.
71Lua is intended to be used both as a powerful, lightweight,
72embeddable scripting language for any program that needs one,
73and as a powerful but lightweight and efficient stand-alone language.
74
75
76<p>
77As an extension language, Lua has no notion of a "main" program:
78it works <em>embedded</em> in a host client,
79called the <em>embedding program</em> or simply the <em>host</em>.
80(Frequently, this host is the stand-alone <code>lua</code> program.)
81The host program can invoke functions to execute a piece of Lua code,
82can write and read Lua variables,
83and can register C&nbsp;functions to be called by Lua code.
84Through the use of C&nbsp;functions, Lua can be augmented to cope with
85a wide range of different domains,
86thus creating customized programming languages sharing a syntactical framework.
87
88
89<p>
90Lua is free software,
91and is provided as usual with no guarantees,
92as stated in its license.
93The implementation described in this manual is available
94at Lua's official web site, <code>www.lua.org</code>.
95
96
97<p>
98Like any other reference manual,
99this document is dry in places.
100For a discussion of the decisions behind the design of Lua,
101see the technical papers available at Lua's web site.
102For a detailed introduction to programming in Lua,
103see Roberto's book, <em>Programming in Lua</em>.
104
105
106
107<h1>2 &ndash; <a name="2">Basic Concepts</a></h1>
108
109<p>
110This section describes the basic concepts of the language.
111
112
113
114<h2>2.1 &ndash; <a name="2.1">Values and Types</a></h2>
115
116<p>
117Lua is a <em>dynamically typed language</em>.
118This means that
119variables do not have types; only values do.
120There are no type definitions in the language.
121All values carry their own type.
122
123
124<p>
125All values in Lua are <em>first-class values</em>.
126This means that all values can be stored in variables,
127passed as arguments to other functions, and returned as results.
128
129
130<p>
131There are eight basic types in Lua:
132<em>nil</em>, <em>boolean</em>, <em>number</em>,
133<em>string</em>, <em>function</em>, <em>userdata</em>,
134<em>thread</em>, and <em>table</em>.
135The type <em>nil</em> has one single value, <b>nil</b>,
136whose main property is to be different from any other value;
137it usually represents the absence of a useful value.
138The type <em>boolean</em> has two values, <b>false</b> and <b>true</b>.
139Both <b>nil</b> and <b>false</b> make a condition false;
140any other value makes it true.
141The type <em>number</em> represents both
142integer numbers and real (floating-point) numbers.
143The type <em>string</em> represents immutable sequences of bytes.
144
145Lua is 8-bit clean:
146strings can contain any 8-bit value,
147including embedded zeros ('<code>\0</code>').
148Lua is also encoding-agnostic;
149it makes no assumptions about the contents of a string.
150
151
152<p>
153The type <em>number</em> uses two internal representations,
154or two subtypes,
155one called <em>integer</em> and the other called <em>float</em>.
156Lua has explicit rules about when each representation is used,
157but it also converts between them automatically as needed (see <a href="#3.4.3">&sect;3.4.3</a>).
158Therefore,
159the programmer may choose to mostly ignore the difference
160between integers and floats
161or to assume complete control over the representation of each number.
162Standard Lua uses 64-bit integers and double-precision (64-bit) floats,
163but you can also compile Lua so that it
164uses 32-bit integers and/or single-precision (32-bit) floats.
165The option with 32 bits for both integers and floats
166is particularly attractive
167for small machines and embedded systems.
168(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.)
169
170
171<p>
172Lua can call (and manipulate) functions written in Lua and
173functions written in C (see <a href="#3.4.10">&sect;3.4.10</a>).
174Both are represented by the type <em>function</em>.
175
176
177<p>
178The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
179be stored in Lua variables.
180A userdata value represents a block of raw memory.
181There are two kinds of userdata:
182<em>full userdata</em>,
183which is an object with a block of memory managed by Lua,
184and <em>light userdata</em>,
185which is simply a C&nbsp;pointer value.
186Userdata has no predefined operations in Lua,
187except assignment and identity test.
188By using <em>metatables</em>,
189the programmer can define operations for full userdata values
190(see <a href="#2.4">&sect;2.4</a>).
191Userdata values cannot be created or modified in Lua,
192only through the C&nbsp;API.
193This guarantees the integrity of data owned by the host program.
194
195
196<p>
197The type <em>thread</em> represents independent threads of execution
198and it is used to implement coroutines (see <a href="#2.6">&sect;2.6</a>).
199Lua threads are not related to operating-system threads.
200Lua supports coroutines on all systems,
201even those that do not support threads natively.
202
203
204<p>
205The type <em>table</em> implements associative arrays,
206that is, arrays that can have as indices not only numbers,
207but any Lua value except <b>nil</b> and NaN.
208(<em>Not a Number</em> is a special value used to represent
209undefined or unrepresentable numerical results, such as <code>0/0</code>.)
210Tables can be <em>heterogeneous</em>;
211that is, they can contain values of all types (except <b>nil</b>).
212Any key with value <b>nil</b> is not considered part of the table.
213Conversely, any key that is not part of a table has
214an associated value <b>nil</b>.
215
216
217<p>
218Tables are the sole data-structuring mechanism in Lua;
219they can be used to represent ordinary arrays, lists,
220symbol tables, sets, records, graphs, trees, etc.
221To represent records, Lua uses the field name as an index.
222The language supports this representation by
223providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
224There are several convenient ways to create tables in Lua
225(see <a href="#3.4.9">&sect;3.4.9</a>).
226
227
228<p>
229Like indices,
230the values of table fields can be of any type.
231In particular,
232because functions are first-class values,
233table fields can contain functions.
234Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">&sect;3.4.11</a>).
235
236
237<p>
238The indexing of tables follows
239the definition of raw equality in the language.
240The expressions <code>a[i]</code> and <code>a[j]</code>
241denote the same table element
242if and only if <code>i</code> and <code>j</code> are raw equal
243(that is, equal without metamethods).
244In particular, floats with integral values
245are equal to their respective integers
246(e.g., <code>1.0 == 1</code>).
247To avoid ambiguities,
248any float with integral value used as a key
249is converted to its respective integer.
250For instance, if you write <code>a[2.0] = true</code>,
251the actual key inserted into the table will be the
252integer <code>2</code>.
253(On the other hand,
2542 and "<code>2</code>" are different Lua values and therefore
255denote different table entries.)
256
257
258<p>
259Tables, functions, threads, and (full) userdata values are <em>objects</em>:
260variables do not actually <em>contain</em> these values,
261only <em>references</em> to them.
262Assignment, parameter passing, and function returns
263always manipulate references to such values;
264these operations do not imply any kind of copy.
265
266
267<p>
268The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
269of a given value (see <a href="#6.1">&sect;6.1</a>).
270
271
272
273
274
275<h2>2.2 &ndash; <a name="2.2">Environments and the Global Environment</a></h2>
276
277<p>
278As will be discussed in <a href="#3.2">&sect;3.2</a> and <a href="#3.3.3">&sect;3.3.3</a>,
279any reference to a free name
280(that is, a name not bound to any declaration) <code>var</code>
281is syntactically translated to <code>_ENV.var</code>.
282Moreover, every chunk is compiled in the scope of
283an external local variable named <code>_ENV</code> (see <a href="#3.3.2">&sect;3.3.2</a>),
284so <code>_ENV</code> itself is never a free name in a chunk.
285
286
287<p>
288Despite the existence of this external <code>_ENV</code> variable and
289the translation of free names,
290<code>_ENV</code> is a completely regular name.
291In particular,
292you can define new variables and parameters with that name.
293Each reference to a free name uses the <code>_ENV</code> that is
294visible at that point in the program,
295following the usual visibility rules of Lua (see <a href="#3.5">&sect;3.5</a>).
296
297
298<p>
299Any table used as the value of <code>_ENV</code> is called an <em>environment</em>.
300
301
302<p>
303Lua keeps a distinguished environment called the <em>global environment</em>.
304This value is kept at a special index in the C registry (see <a href="#4.5">&sect;4.5</a>).
305In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value.
306(<a href="#pdf-_G"><code>_G</code></a> is never used internally.)
307
308
309<p>
310When Lua loads a chunk,
311the default value for its <code>_ENV</code> upvalue
312is the global environment (see <a href="#pdf-load"><code>load</code></a>).
313Therefore, by default,
314free names in Lua code refer to entries in the global environment
315(and, therefore, they are also called <em>global variables</em>).
316Moreover, all standard libraries are loaded in the global environment
317and some functions there operate on that environment.
318You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>)
319to load a chunk with a different environment.
320(In C, you have to load the chunk and then change the value
321of its first upvalue.)
322
323
324
325
326
327<h2>2.3 &ndash; <a name="2.3">Error Handling</a></h2>
328
329<p>
330Because Lua is an embedded extension language,
331all Lua actions start from C&nbsp;code in the host program
332calling a function from the Lua library.
333(When you use Lua standalone,
334the <code>lua</code> application is the host program.)
335Whenever an error occurs during
336the compilation or execution of a Lua chunk,
337control returns to the host,
338which can take appropriate measures
339(such as printing an error message).
340
341
342<p>
343Lua code can explicitly generate an error by calling the
344<a href="#pdf-error"><code>error</code></a> function.
345If you need to catch errors in Lua,
346you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a>
347to call a given function in <em>protected mode</em>.
348
349
350<p>
351Whenever there is an error,
352an <em>error object</em> (also called an <em>error message</em>)
353is propagated with information about the error.
354Lua itself only generates errors whose error object is a string,
355but programs may generate errors with
356any value as the error object.
357It is up to the Lua program or its host to handle such error objects.
358
359
360<p>
361When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>,
362you may give a <em>message handler</em>
363to be called in case of errors.
364This function is called with the original error object
365and returns a new error object.
366It is called before the error unwinds the stack,
367so that it can gather more information about the error,
368for instance by inspecting the stack and creating a stack traceback.
369This message handler is still protected by the protected call;
370so, an error inside the message handler
371will call the message handler again.
372If this loop goes on for too long,
373Lua breaks it and returns an appropriate message.
374(The message handler is called only for regular runtime errors.
375It is not called for memory-allocation errors
376nor for errors while running finalizers.)
377
378
379
380
381
382<h2>2.4 &ndash; <a name="2.4">Metatables and Metamethods</a></h2>
383
384<p>
385Every value in Lua can have a <em>metatable</em>.
386This <em>metatable</em> is an ordinary Lua table
387that defines the behavior of the original value
388under certain special operations.
389You can change several aspects of the behavior
390of operations over a value by setting specific fields in its metatable.
391For instance, when a non-numeric value is the operand of an addition,
392Lua checks for a function in the field "<code>__add</code>" of the value's metatable.
393If it finds one,
394Lua calls this function to perform the addition.
395
396
397<p>
398The key for each event in a metatable is a string
399with the event name prefixed by two underscores;
400the corresponding values are called <em>metamethods</em>.
401In the previous example, the key is "<code>__add</code>"
402and the metamethod is the function that performs the addition.
403Unless stated otherwise,
404metamethods should be function values.
405
406
407<p>
408You can query the metatable of any value
409using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
410Lua queries metamethods in metatables using a raw access (see <a href="#pdf-rawget"><code>rawget</code></a>).
411So, to retrieve the metamethod for event <code>ev</code> in object <code>o</code>,
412Lua does the equivalent to the following code:
413
414<pre>
415     rawget(getmetatable(<em>o</em>) or {}, "__<em>ev</em>")
416</pre>
417
418<p>
419You can replace the metatable of tables
420using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function.
421You cannot change the metatable of other types from Lua code
422(except by using the debug library (<a href="#6.10">&sect;6.10</a>));
423you should use the C&nbsp;API for that.
424
425
426<p>
427Tables and full userdata have individual metatables
428(although multiple tables and userdata can share their metatables).
429Values of all other types share one single metatable per type;
430that is, there is one single metatable for all numbers,
431one for all strings, etc.
432By default, a value has no metatable,
433but the string library sets a metatable for the string type (see <a href="#6.4">&sect;6.4</a>).
434
435
436<p>
437A metatable controls how an object behaves in
438arithmetic operations, bitwise operations,
439order comparisons, concatenation, length operation, calls, and indexing.
440A metatable also can define a function to be called
441when a userdata or a table is garbage collected (<a href="#2.5">&sect;2.5</a>).
442
443
444<p>
445For the unary operators (negation, length, and bitwise NOT),
446the metamethod is computed and called with a dummy second operand,
447equal to the first one.
448This extra operand is only to simplify Lua's internals
449(by making these operators behave like a binary operation)
450and may be removed in future versions.
451(For most uses this extra operand is irrelevant.)
452
453
454<p>
455A detailed list of events controlled by metatables is given next.
456Each operation is identified by its corresponding key.
457
458
459
460<ul>
461
462<li><b><code>__add</code>: </b>
463the addition (<code>+</code>) operation.
464If any operand for an addition is not a number
465(nor a string coercible to a number),
466Lua will try to call a metamethod.
467First, Lua will check the first operand (even if it is valid).
468If that operand does not define a metamethod for <code>__add</code>,
469then Lua will check the second operand.
470If Lua can find a metamethod,
471it calls the metamethod with the two operands as arguments,
472and the result of the call
473(adjusted to one value)
474is the result of the operation.
475Otherwise,
476it raises an error.
477</li>
478
479<li><b><code>__sub</code>: </b>
480the subtraction (<code>-</code>) operation.
481Behavior similar to the addition operation.
482</li>
483
484<li><b><code>__mul</code>: </b>
485the multiplication (<code>*</code>) operation.
486Behavior similar to the addition operation.
487</li>
488
489<li><b><code>__div</code>: </b>
490the division (<code>/</code>) operation.
491Behavior similar to the addition operation.
492</li>
493
494<li><b><code>__mod</code>: </b>
495the modulo (<code>%</code>) operation.
496Behavior similar to the addition operation.
497</li>
498
499<li><b><code>__pow</code>: </b>
500the exponentiation (<code>^</code>) operation.
501Behavior similar to the addition operation.
502</li>
503
504<li><b><code>__unm</code>: </b>
505the negation (unary <code>-</code>) operation.
506Behavior similar to the addition operation.
507</li>
508
509<li><b><code>__idiv</code>: </b>
510the floor division (<code>//</code>) operation.
511Behavior similar to the addition operation.
512</li>
513
514<li><b><code>__band</code>: </b>
515the bitwise AND (<code>&amp;</code>) operation.
516Behavior similar to the addition operation,
517except that Lua will try a metamethod
518if any operand is neither an integer
519nor a value coercible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>).
520</li>
521
522<li><b><code>__bor</code>: </b>
523the bitwise OR (<code>|</code>) operation.
524Behavior similar to the bitwise AND operation.
525</li>
526
527<li><b><code>__bxor</code>: </b>
528the bitwise exclusive OR (binary <code>~</code>) operation.
529Behavior similar to the bitwise AND operation.
530</li>
531
532<li><b><code>__bnot</code>: </b>
533the bitwise NOT (unary <code>~</code>) operation.
534Behavior similar to the bitwise AND operation.
535</li>
536
537<li><b><code>__shl</code>: </b>
538the bitwise left shift (<code>&lt;&lt;</code>) operation.
539Behavior similar to the bitwise AND operation.
540</li>
541
542<li><b><code>__shr</code>: </b>
543the bitwise right shift (<code>&gt;&gt;</code>) operation.
544Behavior similar to the bitwise AND operation.
545</li>
546
547<li><b><code>__concat</code>: </b>
548the concatenation (<code>..</code>) operation.
549Behavior similar to the addition operation,
550except that Lua will try a metamethod
551if any operand is neither a string nor a number
552(which is always coercible to a string).
553</li>
554
555<li><b><code>__len</code>: </b>
556the length (<code>#</code>) operation.
557If the object is not a string,
558Lua will try its metamethod.
559If there is a metamethod,
560Lua calls it with the object as argument,
561and the result of the call
562(always adjusted to one value)
563is the result of the operation.
564If there is no metamethod but the object is a table,
565then Lua uses the table length operation (see <a href="#3.4.7">&sect;3.4.7</a>).
566Otherwise, Lua raises an error.
567</li>
568
569<li><b><code>__eq</code>: </b>
570the equal (<code>==</code>) operation.
571Behavior similar to the addition operation,
572except that Lua will try a metamethod only when the values
573being compared are either both tables or both full userdata
574and they are not primitively equal.
575The result of the call is always converted to a boolean.
576</li>
577
578<li><b><code>__lt</code>: </b>
579the less than (<code>&lt;</code>) operation.
580Behavior similar to the addition operation,
581except that Lua will try a metamethod only when the values
582being compared are neither both numbers nor both strings.
583The result of the call is always converted to a boolean.
584</li>
585
586<li><b><code>__le</code>: </b>
587the less equal (<code>&lt;=</code>) operation.
588Unlike other operations,
589the less-equal operation can use two different events.
590First, Lua looks for the <code>__le</code> metamethod in both operands,
591like in the less than operation.
592If it cannot find such a metamethod,
593then it will try the <code>__lt</code> metamethod,
594assuming that <code>a &lt;= b</code> is equivalent to <code>not (b &lt; a)</code>.
595As with the other comparison operators,
596the result is always a boolean.
597(This use of the <code>__lt</code> event can be removed in future versions;
598it is also slower than a real <code>__le</code> metamethod.)
599</li>
600
601<li><b><code>__index</code>: </b>
602The indexing access operation <code>table[key]</code>.
603This event happens when <code>table</code> is not a table or
604when <code>key</code> is not present in <code>table</code>.
605The metamethod is looked up in <code>table</code>.
606
607
608<p>
609Despite the name,
610the metamethod for this event can be either a function or a table.
611If it is a function,
612it is called with <code>table</code> and <code>key</code> as arguments,
613and the result of the call
614(adjusted to one value)
615is the result of the operation.
616If it is a table,
617the final result is the result of indexing this table with <code>key</code>.
618(This indexing is regular, not raw,
619and therefore can trigger another metamethod.)
620</li>
621
622<li><b><code>__newindex</code>: </b>
623The indexing assignment <code>table[key] = value</code>.
624Like the index event,
625this event happens when <code>table</code> is not a table or
626when <code>key</code> is not present in <code>table</code>.
627The metamethod is looked up in <code>table</code>.
628
629
630<p>
631Like with indexing,
632the metamethod for this event can be either a function or a table.
633If it is a function,
634it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments.
635If it is a table,
636Lua does an indexing assignment to this table with the same key and value.
637(This assignment is regular, not raw,
638and therefore can trigger another metamethod.)
639
640
641<p>
642Whenever there is a <code>__newindex</code> metamethod,
643Lua does not perform the primitive assignment.
644(If necessary,
645the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a>
646to do the assignment.)
647</li>
648
649<li><b><code>__call</code>: </b>
650The call operation <code>func(args)</code>.
651This event happens when Lua tries to call a non-function value
652(that is, <code>func</code> is not a function).
653The metamethod is looked up in <code>func</code>.
654If present,
655the metamethod is called with <code>func</code> as its first argument,
656followed by the arguments of the original call (<code>args</code>).
657All results of the call
658are the result of the operation.
659(This is the only metamethod that allows multiple results.)
660</li>
661
662</ul>
663
664<p>
665It is a good practice to add all needed metamethods to a table
666before setting it as a metatable of some object.
667In particular, the <code>__gc</code> metamethod works only when this order
668is followed (see <a href="#2.5.1">&sect;2.5.1</a>).
669
670
671<p>
672Because metatables are regular tables,
673they can contain arbitrary fields,
674not only the event names defined above.
675Some functions in the standard library
676(e.g., <a href="#pdf-tostring"><code>tostring</code></a>)
677use other fields in metatables for their own purposes.
678
679
680
681
682
683<h2>2.5 &ndash; <a name="2.5">Garbage Collection</a></h2>
684
685<p>
686Lua performs automatic memory management.
687This means that
688you do not have to worry about allocating memory for new objects
689or freeing it when the objects are no longer needed.
690Lua manages memory automatically by running
691a <em>garbage collector</em> to collect all <em>dead objects</em>
692(that is, objects that are no longer accessible from Lua).
693All memory used by Lua is subject to automatic management:
694strings, tables, userdata, functions, threads, internal structures, etc.
695
696
697<p>
698Lua implements an incremental mark-and-sweep collector.
699It uses two numbers to control its garbage-collection cycles:
700the <em>garbage-collector pause</em> and
701the <em>garbage-collector step multiplier</em>.
702Both use percentage points as units
703(e.g., a value of 100 means an internal value of 1).
704
705
706<p>
707The garbage-collector pause
708controls how long the collector waits before starting a new cycle.
709Larger values make the collector less aggressive.
710Values smaller than 100 mean the collector will not wait to
711start a new cycle.
712A value of 200 means that the collector waits for the total memory in use
713to double before starting a new cycle.
714
715
716<p>
717The garbage-collector step multiplier
718controls the relative speed of the collector relative to
719memory allocation.
720Larger values make the collector more aggressive but also increase
721the size of each incremental step.
722You should not use values smaller than 100,
723because they make the collector too slow and
724can result in the collector never finishing a cycle.
725The default is 200,
726which means that the collector runs at "twice"
727the speed of memory allocation.
728
729
730<p>
731If you set the step multiplier to a very large number
732(larger than 10% of the maximum number of
733bytes that the program may use),
734the collector behaves like a stop-the-world collector.
735If you then set the pause to 200,
736the collector behaves as in old Lua versions,
737doing a complete collection every time Lua doubles its
738memory usage.
739
740
741<p>
742You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
743or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
744You can also use these functions to control
745the collector directly (e.g., stop and restart it).
746
747
748
749<h3>2.5.1 &ndash; <a name="2.5.1">Garbage-Collection Metamethods</a></h3>
750
751<p>
752You can set garbage-collector metamethods for tables
753and, using the C&nbsp;API,
754for full userdata (see <a href="#2.4">&sect;2.4</a>).
755These metamethods are also called <em>finalizers</em>.
756Finalizers allow you to coordinate Lua's garbage collection
757with external resource management
758(such as closing files, network or database connections,
759or freeing your own memory).
760
761
762<p>
763For an object (table or userdata) to be finalized when collected,
764you must <em>mark</em> it for finalization.
765
766You mark an object for finalization when you set its metatable
767and the metatable has a field indexed by the string "<code>__gc</code>".
768Note that if you set a metatable without a <code>__gc</code> field
769and later create that field in the metatable,
770the object will not be marked for finalization.
771
772
773<p>
774When a marked object becomes garbage,
775it is not collected immediately by the garbage collector.
776Instead, Lua puts it in a list.
777After the collection,
778Lua goes through that list.
779For each object in the list,
780it checks the object's <code>__gc</code> metamethod:
781If it is a function,
782Lua calls it with the object as its single argument;
783if the metamethod is not a function,
784Lua simply ignores it.
785
786
787<p>
788At the end of each garbage-collection cycle,
789the finalizers for objects are called in
790the reverse order that the objects were marked for finalization,
791among those collected in that cycle;
792that is, the first finalizer to be called is the one associated
793with the object marked last in the program.
794The execution of each finalizer may occur at any point during
795the execution of the regular code.
796
797
798<p>
799Because the object being collected must still be used by the finalizer,
800that object (and other objects accessible only through it)
801must be <em>resurrected</em> by Lua.
802Usually, this resurrection is transient,
803and the object memory is freed in the next garbage-collection cycle.
804However, if the finalizer stores the object in some global place
805(e.g., a global variable),
806then the resurrection is permanent.
807Moreover, if the finalizer marks a finalizing object for finalization again,
808its finalizer will be called again in the next cycle where the
809object is unreachable.
810In any case,
811the object memory is freed only in a GC cycle where
812the object is unreachable and not marked for finalization.
813
814
815<p>
816When you close a state (see <a href="#lua_close"><code>lua_close</code></a>),
817Lua calls the finalizers of all objects marked for finalization,
818following the reverse order that they were marked.
819If any finalizer marks objects for collection during that phase,
820these marks have no effect.
821
822
823
824
825
826<h3>2.5.2 &ndash; <a name="2.5.2">Weak Tables</a></h3>
827
828<p>
829A <em>weak table</em> is a table whose elements are
830<em>weak references</em>.
831A weak reference is ignored by the garbage collector.
832In other words,
833if the only references to an object are weak references,
834then the garbage collector will collect that object.
835
836
837<p>
838A weak table can have weak keys, weak values, or both.
839A table with weak values allows the collection of its values,
840but prevents the collection of its keys.
841A table with both weak keys and weak values allows the collection of
842both keys and values.
843In any case, if either the key or the value is collected,
844the whole pair is removed from the table.
845The weakness of a table is controlled by the
846<code>__mode</code> field of its metatable.
847If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
848the keys in the table are weak.
849If <code>__mode</code> contains '<code>v</code>',
850the values in the table are weak.
851
852
853<p>
854A table with weak keys and strong values
855is also called an <em>ephemeron table</em>.
856In an ephemeron table,
857a value is considered reachable only if its key is reachable.
858In particular,
859if the only reference to a key comes through its value,
860the pair is removed.
861
862
863<p>
864Any change in the weakness of a table may take effect only
865at the next collect cycle.
866In particular, if you change the weakness to a stronger mode,
867Lua may still collect some items from that table
868before the change takes effect.
869
870
871<p>
872Only objects that have an explicit construction
873are removed from weak tables.
874Values, such as numbers and light C&nbsp;functions,
875are not subject to garbage collection,
876and therefore are not removed from weak tables
877(unless their associated values are collected).
878Although strings are subject to garbage collection,
879they do not have an explicit construction,
880and therefore are not removed from weak tables.
881
882
883<p>
884Resurrected objects
885(that is, objects being finalized
886and objects accessible only through objects being finalized)
887have a special behavior in weak tables.
888They are removed from weak values before running their finalizers,
889but are removed from weak keys only in the next collection
890after running their finalizers, when such objects are actually freed.
891This behavior allows the finalizer to access properties
892associated with the object through weak tables.
893
894
895<p>
896If a weak table is among the resurrected objects in a collection cycle,
897it may not be properly cleared until the next cycle.
898
899
900
901
902
903
904
905<h2>2.6 &ndash; <a name="2.6">Coroutines</a></h2>
906
907<p>
908Lua supports coroutines,
909also called <em>collaborative multithreading</em>.
910A coroutine in Lua represents an independent thread of execution.
911Unlike threads in multithread systems, however,
912a coroutine only suspends its execution by explicitly calling
913a yield function.
914
915
916<p>
917You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
918Its sole argument is a function
919that is the main function of the coroutine.
920The <code>create</code> function only creates a new coroutine and
921returns a handle to it (an object of type <em>thread</em>);
922it does not start the coroutine.
923
924
925<p>
926You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
927When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
928passing as its first argument
929a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
930the coroutine starts its execution by
931calling its main function.
932Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed
933as arguments to that function.
934After the coroutine starts running,
935it runs until it terminates or <em>yields</em>.
936
937
938<p>
939A coroutine can terminate its execution in two ways:
940normally, when its main function returns
941(explicitly or implicitly, after the last instruction);
942and abnormally, if there is an unprotected error.
943In case of normal termination,
944<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
945plus any values returned by the coroutine main function.
946In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
947plus an error object.
948
949
950<p>
951A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
952When a coroutine yields,
953the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
954even if the yield happens inside nested function calls
955(that is, not in the main function,
956but in a function directly or indirectly called by the main function).
957In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
958plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
959The next time you resume the same coroutine,
960it continues its execution from the point where it yielded,
961with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
962arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
963
964
965<p>
966Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
967the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
968but instead of returning the coroutine itself,
969it returns a function that, when called, resumes the coroutine.
970Any arguments passed to this function
971go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
972<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
973except the first one (the boolean error code).
974Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
975<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
976any error is propagated to the caller.
977
978
979<p>
980As an example of how coroutines work,
981consider the following code:
982
983<pre>
984     function foo (a)
985       print("foo", a)
986       return coroutine.yield(2*a)
987     end
988
989     co = coroutine.create(function (a,b)
990           print("co-body", a, b)
991           local r = foo(a+1)
992           print("co-body", r)
993           local r, s = coroutine.yield(a+b, a-b)
994           print("co-body", r, s)
995           return b, "end"
996     end)
997
998     print("main", coroutine.resume(co, 1, 10))
999     print("main", coroutine.resume(co, "r"))
1000     print("main", coroutine.resume(co, "x", "y"))
1001     print("main", coroutine.resume(co, "x", "y"))
1002</pre><p>
1003When you run it, it produces the following output:
1004
1005<pre>
1006     co-body 1       10
1007     foo     2
1008     main    true    4
1009     co-body r
1010     main    true    11      -9
1011     co-body x       y
1012     main    true    10      end
1013     main    false   cannot resume dead coroutine
1014</pre>
1015
1016<p>
1017You can also create and manipulate coroutines through the C API:
1018see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>,
1019and <a href="#lua_yield"><code>lua_yield</code></a>.
1020
1021
1022
1023
1024
1025<h1>3 &ndash; <a name="3">The Language</a></h1>
1026
1027<p>
1028This section describes the lexis, the syntax, and the semantics of Lua.
1029In other words,
1030this section describes
1031which tokens are valid,
1032how they can be combined,
1033and what their combinations mean.
1034
1035
1036<p>
1037Language constructs will be explained using the usual extended BNF notation,
1038in which
1039{<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
1040[<em>a</em>]&nbsp;means an optional <em>a</em>.
1041Non-terminals are shown like non-terminal,
1042keywords are shown like <b>kword</b>,
1043and other terminal symbols are shown like &lsquo;<b>=</b>&rsquo;.
1044The complete syntax of Lua can be found in <a href="#9">&sect;9</a>
1045at the end of this manual.
1046
1047
1048
1049<h2>3.1 &ndash; <a name="3.1">Lexical Conventions</a></h2>
1050
1051<p>
1052Lua is a free-form language.
1053It ignores spaces (including new lines) and comments
1054between lexical elements (tokens),
1055except as delimiters between names and keywords.
1056
1057
1058<p>
1059<em>Names</em>
1060(also called <em>identifiers</em>)
1061in Lua can be any string of letters,
1062digits, and underscores,
1063not beginning with a digit and
1064not being a reserved word.
1065Identifiers are used to name variables, table fields, and labels.
1066
1067
1068<p>
1069The following <em>keywords</em> are reserved
1070and cannot be used as names:
1071
1072
1073<pre>
1074     and       break     do        else      elseif    end
1075     false     for       function  goto      if        in
1076     local     nil       not       or        repeat    return
1077     then      true      until     while
1078</pre>
1079
1080<p>
1081Lua is a case-sensitive language:
1082<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
1083are two different, valid names.
1084As a convention,
1085programs should avoid creating
1086names that start with an underscore followed by
1087one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>).
1088
1089
1090<p>
1091The following strings denote other tokens:
1092
1093<pre>
1094     +     -     *     /     %     ^     #
1095     &amp;     ~     |     &lt;&lt;    &gt;&gt;    //
1096     ==    ~=    &lt;=    &gt;=    &lt;     &gt;     =
1097     (     )     {     }     [     ]     ::
1098     ;     :     ,     .     ..    ...
1099</pre>
1100
1101<p>
1102A <em>short literal string</em>
1103can be delimited by matching single or double quotes,
1104and can contain the following C-like escape sequences:
1105'<code>\a</code>' (bell),
1106'<code>\b</code>' (backspace),
1107'<code>\f</code>' (form feed),
1108'<code>\n</code>' (newline),
1109'<code>\r</code>' (carriage return),
1110'<code>\t</code>' (horizontal tab),
1111'<code>\v</code>' (vertical tab),
1112'<code>\\</code>' (backslash),
1113'<code>\"</code>' (quotation mark [double quote]),
1114and '<code>\'</code>' (apostrophe [single quote]).
1115A backslash followed by a line break
1116results in a newline in the string.
1117The escape sequence '<code>\z</code>' skips the following span
1118of white-space characters,
1119including line breaks;
1120it is particularly useful to break and indent a long literal string
1121into multiple lines without adding the newlines and spaces
1122into the string contents.
1123A short literal string cannot contain unescaped line breaks
1124nor escapes not forming a valid escape sequence.
1125
1126
1127<p>
1128We can specify any byte in a short literal string by its numeric value
1129(including embedded zeros).
1130This can be done
1131with the escape sequence <code>\x<em>XX</em></code>,
1132where <em>XX</em> is a sequence of exactly two hexadecimal digits,
1133or with the escape sequence <code>\<em>ddd</em></code>,
1134where <em>ddd</em> is a sequence of up to three decimal digits.
1135(Note that if a decimal escape sequence is to be followed by a digit,
1136it must be expressed using exactly three digits.)
1137
1138
1139<p>
1140The UTF-8 encoding of a Unicode character
1141can be inserted in a literal string with
1142the escape sequence <code>\u{<em>XXX</em>}</code>
1143(note the mandatory enclosing brackets),
1144where <em>XXX</em> is a sequence of one or more hexadecimal digits
1145representing the character code point.
1146
1147
1148<p>
1149Literal strings can also be defined using a long format
1150enclosed by <em>long brackets</em>.
1151We define an <em>opening long bracket of level <em>n</em></em> as an opening
1152square bracket followed by <em>n</em> equal signs followed by another
1153opening square bracket.
1154So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>,
1155an opening long bracket of level&nbsp;1 is written as <code>[=[</code>,
1156and so on.
1157A <em>closing long bracket</em> is defined similarly;
1158for instance,
1159a closing long bracket of level&nbsp;4 is written as  <code>]====]</code>.
1160A <em>long literal</em> starts with an opening long bracket of any level and
1161ends at the first closing long bracket of the same level.
1162It can contain any text except a closing bracket of the same level.
1163Literals in this bracketed form can run for several lines,
1164do not interpret any escape sequences,
1165and ignore long brackets of any other level.
1166Any kind of end-of-line sequence
1167(carriage return, newline, carriage return followed by newline,
1168or newline followed by carriage return)
1169is converted to a simple newline.
1170
1171
1172<p>
1173For convenience,
1174when the opening long bracket is immediately followed by a newline,
1175the newline is not included in the string.
1176As an example, in a system using ASCII
1177(in which '<code>a</code>' is coded as&nbsp;97,
1178newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
1179the five literal strings below denote the same string:
1180
1181<pre>
1182     a = 'alo\n123"'
1183     a = "alo\n123\""
1184     a = '\97lo\10\04923"'
1185     a = [[alo
1186     123"]]
1187     a = [==[
1188     alo
1189     123"]==]
1190</pre>
1191
1192<p>
1193Any byte in a literal string not
1194explicitly affected by the previous rules represents itself.
1195However, Lua opens files for parsing in text mode,
1196and the system file functions may have problems with
1197some control characters.
1198So, it is safer to represent
1199non-text data as a quoted literal with
1200explicit escape sequences for the non-text characters.
1201
1202
1203<p>
1204A <em>numeric constant</em> (or <em>numeral</em>)
1205can be written with an optional fractional part
1206and an optional decimal exponent,
1207marked by a letter '<code>e</code>' or '<code>E</code>'.
1208Lua also accepts hexadecimal constants,
1209which start with <code>0x</code> or <code>0X</code>.
1210Hexadecimal constants also accept an optional fractional part
1211plus an optional binary exponent,
1212marked by a letter '<code>p</code>' or '<code>P</code>'.
1213A numeric constant with a radix point or an exponent
1214denotes a float;
1215otherwise,
1216if its value fits in an integer,
1217it denotes an integer.
1218Examples of valid integer constants are
1219
1220<pre>
1221     3   345   0xff   0xBEBADA
1222</pre><p>
1223Examples of valid float constants are
1224
1225<pre>
1226     3.0     3.1416     314.16e-2     0.31416E1     34e1
1227     0x0.1E  0xA23p-4   0X1.921FB54442D18P+1
1228</pre>
1229
1230<p>
1231A <em>comment</em> starts with a double hyphen (<code>--</code>)
1232anywhere outside a string.
1233If the text immediately after <code>--</code> is not an opening long bracket,
1234the comment is a <em>short comment</em>,
1235which runs until the end of the line.
1236Otherwise, it is a <em>long comment</em>,
1237which runs until the corresponding closing long bracket.
1238Long comments are frequently used to disable code temporarily.
1239
1240
1241
1242
1243
1244<h2>3.2 &ndash; <a name="3.2">Variables</a></h2>
1245
1246<p>
1247Variables are places that store values.
1248There are three kinds of variables in Lua:
1249global variables, local variables, and table fields.
1250
1251
1252<p>
1253A single name can denote a global variable or a local variable
1254(or a function's formal parameter,
1255which is a particular kind of local variable):
1256
1257<pre>
1258	var ::= Name
1259</pre><p>
1260Name denotes identifiers, as defined in <a href="#3.1">&sect;3.1</a>.
1261
1262
1263<p>
1264Any variable name is assumed to be global unless explicitly declared
1265as a local (see <a href="#3.3.7">&sect;3.3.7</a>).
1266Local variables are <em>lexically scoped</em>:
1267local variables can be freely accessed by functions
1268defined inside their scope (see <a href="#3.5">&sect;3.5</a>).
1269
1270
1271<p>
1272Before the first assignment to a variable, its value is <b>nil</b>.
1273
1274
1275<p>
1276Square brackets are used to index a table:
1277
1278<pre>
1279	var ::= prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo;
1280</pre><p>
1281The meaning of accesses to table fields can be changed via metatables
1282(see <a href="#2.4">&sect;2.4</a>).
1283
1284
1285<p>
1286The syntax <code>var.Name</code> is just syntactic sugar for
1287<code>var["Name"]</code>:
1288
1289<pre>
1290	var ::= prefixexp &lsquo;<b>.</b>&rsquo; Name
1291</pre>
1292
1293<p>
1294An access to a global variable <code>x</code>
1295is equivalent to <code>_ENV.x</code>.
1296Due to the way that chunks are compiled,
1297<code>_ENV</code> is never a global name (see <a href="#2.2">&sect;2.2</a>).
1298
1299
1300
1301
1302
1303<h2>3.3 &ndash; <a name="3.3">Statements</a></h2>
1304
1305<p>
1306Lua supports an almost conventional set of statements,
1307similar to those in Pascal or C.
1308This set includes
1309assignments, control structures, function calls,
1310and variable declarations.
1311
1312
1313
1314<h3>3.3.1 &ndash; <a name="3.3.1">Blocks</a></h3>
1315
1316<p>
1317A block is a list of statements,
1318which are executed sequentially:
1319
1320<pre>
1321	block ::= {stat}
1322</pre><p>
1323Lua has <em>empty statements</em>
1324that allow you to separate statements with semicolons,
1325start a block with a semicolon
1326or write two semicolons in sequence:
1327
1328<pre>
1329	stat ::= &lsquo;<b>;</b>&rsquo;
1330</pre>
1331
1332<p>
1333Function calls and assignments
1334can start with an open parenthesis.
1335This possibility leads to an ambiguity in Lua's grammar.
1336Consider the following fragment:
1337
1338<pre>
1339     a = b + c
1340     (print or io.write)('done')
1341</pre><p>
1342The grammar could see it in two ways:
1343
1344<pre>
1345     a = b + c(print or io.write)('done')
1346
1347     a = b + c; (print or io.write)('done')
1348</pre><p>
1349The current parser always sees such constructions
1350in the first way,
1351interpreting the open parenthesis
1352as the start of the arguments to a call.
1353To avoid this ambiguity,
1354it is a good practice to always precede with a semicolon
1355statements that start with a parenthesis:
1356
1357<pre>
1358     ;(print or io.write)('done')
1359</pre>
1360
1361<p>
1362A block can be explicitly delimited to produce a single statement:
1363
1364<pre>
1365	stat ::= <b>do</b> block <b>end</b>
1366</pre><p>
1367Explicit blocks are useful
1368to control the scope of variable declarations.
1369Explicit blocks are also sometimes used to
1370add a <b>return</b> statement in the middle
1371of another block (see <a href="#3.3.4">&sect;3.3.4</a>).
1372
1373
1374
1375
1376
1377<h3>3.3.2 &ndash; <a name="3.3.2">Chunks</a></h3>
1378
1379<p>
1380The unit of compilation of Lua is called a <em>chunk</em>.
1381Syntactically,
1382a chunk is simply a block:
1383
1384<pre>
1385	chunk ::= block
1386</pre>
1387
1388<p>
1389Lua handles a chunk as the body of an anonymous function
1390with a variable number of arguments
1391(see <a href="#3.4.11">&sect;3.4.11</a>).
1392As such, chunks can define local variables,
1393receive arguments, and return values.
1394Moreover, such anonymous function is compiled as in the
1395scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">&sect;2.2</a>).
1396The resulting function always has <code>_ENV</code> as its only upvalue,
1397even if it does not use that variable.
1398
1399
1400<p>
1401A chunk can be stored in a file or in a string inside the host program.
1402To execute a chunk,
1403Lua first <em>loads</em> it,
1404precompiling the chunk's code into instructions for a virtual machine,
1405and then Lua executes the compiled code
1406with an interpreter for the virtual machine.
1407
1408
1409<p>
1410Chunks can also be precompiled into binary form;
1411see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details.
1412Programs in source and compiled forms are interchangeable;
1413Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>).
1414
1415
1416
1417
1418
1419<h3>3.3.3 &ndash; <a name="3.3.3">Assignment</a></h3>
1420
1421<p>
1422Lua allows multiple assignments.
1423Therefore, the syntax for assignment
1424defines a list of variables on the left side
1425and a list of expressions on the right side.
1426The elements in both lists are separated by commas:
1427
1428<pre>
1429	stat ::= varlist &lsquo;<b>=</b>&rsquo; explist
1430	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
1431	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
1432</pre><p>
1433Expressions are discussed in <a href="#3.4">&sect;3.4</a>.
1434
1435
1436<p>
1437Before the assignment,
1438the list of values is <em>adjusted</em> to the length of
1439the list of variables.
1440If there are more values than needed,
1441the excess values are thrown away.
1442If there are fewer values than needed,
1443the list is extended with as many  <b>nil</b>'s as needed.
1444If the list of expressions ends with a function call,
1445then all values returned by that call enter the list of values,
1446before the adjustment
1447(except when the call is enclosed in parentheses; see <a href="#3.4">&sect;3.4</a>).
1448
1449
1450<p>
1451The assignment statement first evaluates all its expressions
1452and only then the assignments are performed.
1453Thus the code
1454
1455<pre>
1456     i = 3
1457     i, a[i] = i+1, 20
1458</pre><p>
1459sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
1460because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
1461before it is assigned&nbsp;4.
1462Similarly, the line
1463
1464<pre>
1465     x, y = y, x
1466</pre><p>
1467exchanges the values of <code>x</code> and <code>y</code>,
1468and
1469
1470<pre>
1471     x, y, z = y, z, x
1472</pre><p>
1473cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.
1474
1475
1476<p>
1477An assignment to a global name <code>x = val</code>
1478is equivalent to the assignment
1479<code>_ENV.x = val</code> (see <a href="#2.2">&sect;2.2</a>).
1480
1481
1482<p>
1483The meaning of assignments to table fields and
1484global variables (which are actually table fields, too)
1485can be changed via metatables (see <a href="#2.4">&sect;2.4</a>).
1486
1487
1488
1489
1490
1491<h3>3.3.4 &ndash; <a name="3.3.4">Control Structures</a></h3><p>
1492The control structures
1493<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
1494familiar syntax:
1495
1496
1497
1498
1499<pre>
1500	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
1501	stat ::= <b>repeat</b> block <b>until</b> exp
1502	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
1503</pre><p>
1504Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">&sect;3.3.5</a>).
1505
1506
1507<p>
1508The condition expression of a
1509control structure can return any value.
1510Both <b>false</b> and <b>nil</b> are considered false.
1511All values different from <b>nil</b> and <b>false</b> are considered true
1512(in particular, the number 0 and the empty string are also true).
1513
1514
1515<p>
1516In the <b>repeat</b>&ndash;<b>until</b> loop,
1517the inner block does not end at the <b>until</b> keyword,
1518but only after the condition.
1519So, the condition can refer to local variables
1520declared inside the loop block.
1521
1522
1523<p>
1524The <b>goto</b> statement transfers the program control to a label.
1525For syntactical reasons,
1526labels in Lua are considered statements too:
1527
1528
1529
1530<pre>
1531	stat ::= <b>goto</b> Name
1532	stat ::= label
1533	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
1534</pre>
1535
1536<p>
1537A label is visible in the entire block where it is defined,
1538except
1539inside nested blocks where a label with the same name is defined and
1540inside nested functions.
1541A goto may jump to any visible label as long as it does not
1542enter into the scope of a local variable.
1543
1544
1545<p>
1546Labels and empty statements are called <em>void statements</em>,
1547as they perform no actions.
1548
1549
1550<p>
1551The <b>break</b> statement terminates the execution of a
1552<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
1553skipping to the next statement after the loop:
1554
1555
1556<pre>
1557	stat ::= <b>break</b>
1558</pre><p>
1559A <b>break</b> ends the innermost enclosing loop.
1560
1561
1562<p>
1563The <b>return</b> statement is used to return values
1564from a function or a chunk
1565(which is an anonymous function).
1566
1567Functions can return more than one value,
1568so the syntax for the <b>return</b> statement is
1569
1570<pre>
1571	stat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
1572</pre>
1573
1574<p>
1575The <b>return</b> statement can only be written
1576as the last statement of a block.
1577If it is really necessary to <b>return</b> in the middle of a block,
1578then an explicit inner block can be used,
1579as in the idiom <code>do return end</code>,
1580because now <b>return</b> is the last statement in its (inner) block.
1581
1582
1583
1584
1585
1586<h3>3.3.5 &ndash; <a name="3.3.5">For Statement</a></h3>
1587
1588<p>
1589
1590The <b>for</b> statement has two forms:
1591one numerical and one generic.
1592
1593
1594<p>
1595The numerical <b>for</b> loop repeats a block of code while a
1596control variable runs through an arithmetic progression.
1597It has the following syntax:
1598
1599<pre>
1600	stat ::= <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b>
1601</pre><p>
1602The <em>block</em> is repeated for <em>name</em> starting at the value of
1603the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
1604third <em>exp</em>.
1605More precisely, a <b>for</b> statement like
1606
1607<pre>
1608     for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
1609</pre><p>
1610is equivalent to the code:
1611
1612<pre>
1613     do
1614       local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
1615       if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
1616       <em>var</em> = <em>var</em> - <em>step</em>
1617       while true do
1618         <em>var</em> = <em>var</em> + <em>step</em>
1619         if (<em>step</em> &gt;= 0 and <em>var</em> &gt; <em>limit</em>) or (<em>step</em> &lt; 0 and <em>var</em> &lt; <em>limit</em>) then
1620           break
1621         end
1622         local v = <em>var</em>
1623         <em>block</em>
1624       end
1625     end
1626</pre>
1627
1628<p>
1629Note the following:
1630
1631<ul>
1632
1633<li>
1634All three control expressions are evaluated only once,
1635before the loop starts.
1636They must all result in numbers.
1637</li>
1638
1639<li>
1640<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
1641The names shown here are for explanatory purposes only.
1642</li>
1643
1644<li>
1645If the third expression (the step) is absent,
1646then a step of&nbsp;1 is used.
1647</li>
1648
1649<li>
1650You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop.
1651</li>
1652
1653<li>
1654The loop variable <code>v</code> is local to the loop body.
1655If you need its value after the loop,
1656assign it to another variable before exiting the loop.
1657</li>
1658
1659</ul>
1660
1661<p>
1662The generic <b>for</b> statement works over functions,
1663called <em>iterators</em>.
1664On each iteration, the iterator function is called to produce a new value,
1665stopping when this new value is <b>nil</b>.
1666The generic <b>for</b> loop has the following syntax:
1667
1668<pre>
1669	stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
1670	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
1671</pre><p>
1672A <b>for</b> statement like
1673
1674<pre>
1675     for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
1676</pre><p>
1677is equivalent to the code:
1678
1679<pre>
1680     do
1681       local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
1682       while true do
1683         local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
1684         if <em>var_1</em> == nil then break end
1685         <em>var</em> = <em>var_1</em>
1686         <em>block</em>
1687       end
1688     end
1689</pre><p>
1690Note the following:
1691
1692<ul>
1693
1694<li>
1695<code><em>explist</em></code> is evaluated only once.
1696Its results are an <em>iterator</em> function,
1697a <em>state</em>,
1698and an initial value for the first <em>iterator variable</em>.
1699</li>
1700
1701<li>
1702<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
1703The names are here for explanatory purposes only.
1704</li>
1705
1706<li>
1707You can use <b>break</b> to exit a <b>for</b> loop.
1708</li>
1709
1710<li>
1711The loop variables <code><em>var_i</em></code> are local to the loop;
1712you cannot use their values after the <b>for</b> ends.
1713If you need these values,
1714then assign them to other variables before breaking or exiting the loop.
1715</li>
1716
1717</ul>
1718
1719
1720
1721
1722<h3>3.3.6 &ndash; <a name="3.3.6">Function Calls as Statements</a></h3><p>
1723To allow possible side-effects,
1724function calls can be executed as statements:
1725
1726<pre>
1727	stat ::= functioncall
1728</pre><p>
1729In this case, all returned values are thrown away.
1730Function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>.
1731
1732
1733
1734
1735
1736<h3>3.3.7 &ndash; <a name="3.3.7">Local Declarations</a></h3><p>
1737Local variables can be declared anywhere inside a block.
1738The declaration can include an initial assignment:
1739
1740<pre>
1741	stat ::= <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
1742</pre><p>
1743If present, an initial assignment has the same semantics
1744of a multiple assignment (see <a href="#3.3.3">&sect;3.3.3</a>).
1745Otherwise, all variables are initialized with <b>nil</b>.
1746
1747
1748<p>
1749A chunk is also a block (see <a href="#3.3.2">&sect;3.3.2</a>),
1750and so local variables can be declared in a chunk outside any explicit block.
1751
1752
1753<p>
1754The visibility rules for local variables are explained in <a href="#3.5">&sect;3.5</a>.
1755
1756
1757
1758
1759
1760
1761
1762<h2>3.4 &ndash; <a name="3.4">Expressions</a></h2>
1763
1764<p>
1765The basic expressions in Lua are the following:
1766
1767<pre>
1768	exp ::= prefixexp
1769	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
1770	exp ::= Numeral
1771	exp ::= LiteralString
1772	exp ::= functiondef
1773	exp ::= tableconstructor
1774	exp ::= &lsquo;<b>...</b>&rsquo;
1775	exp ::= exp binop exp
1776	exp ::= unop exp
1777	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
1778</pre>
1779
1780<p>
1781Numerals and literal strings are explained in <a href="#3.1">&sect;3.1</a>;
1782variables are explained in <a href="#3.2">&sect;3.2</a>;
1783function definitions are explained in <a href="#3.4.11">&sect;3.4.11</a>;
1784function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>;
1785table constructors are explained in <a href="#3.4.9">&sect;3.4.9</a>.
1786Vararg expressions,
1787denoted by three dots ('<code>...</code>'), can only be used when
1788directly inside a vararg function;
1789they are explained in <a href="#3.4.11">&sect;3.4.11</a>.
1790
1791
1792<p>
1793Binary operators comprise arithmetic operators (see <a href="#3.4.1">&sect;3.4.1</a>),
1794bitwise operators (see <a href="#3.4.2">&sect;3.4.2</a>),
1795relational operators (see <a href="#3.4.4">&sect;3.4.4</a>), logical operators (see <a href="#3.4.5">&sect;3.4.5</a>),
1796and the concatenation operator (see <a href="#3.4.6">&sect;3.4.6</a>).
1797Unary operators comprise the unary minus (see <a href="#3.4.1">&sect;3.4.1</a>),
1798the unary bitwise NOT (see <a href="#3.4.2">&sect;3.4.2</a>),
1799the unary logical <b>not</b> (see <a href="#3.4.5">&sect;3.4.5</a>),
1800and the unary <em>length operator</em> (see <a href="#3.4.7">&sect;3.4.7</a>).
1801
1802
1803<p>
1804Both function calls and vararg expressions can result in multiple values.
1805If a function call is used as a statement (see <a href="#3.3.6">&sect;3.3.6</a>),
1806then its return list is adjusted to zero elements,
1807thus discarding all returned values.
1808If an expression is used as the last (or the only) element
1809of a list of expressions,
1810then no adjustment is made
1811(unless the expression is enclosed in parentheses).
1812In all other contexts,
1813Lua adjusts the result list to one element,
1814either discarding all values except the first one
1815or adding a single <b>nil</b> if there are no values.
1816
1817
1818<p>
1819Here are some examples:
1820
1821<pre>
1822     f()                -- adjusted to 0 results
1823     g(f(), x)          -- f() is adjusted to 1 result
1824     g(x, f())          -- g gets x plus all results from f()
1825     a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
1826     a,b = ...          -- a gets the first vararg argument, b gets
1827                        -- the second (both a and b can get nil if there
1828                        -- is no corresponding vararg argument)
1829
1830     a,b,c = x, f()     -- f() is adjusted to 2 results
1831     a,b,c = f()        -- f() is adjusted to 3 results
1832     return f()         -- returns all results from f()
1833     return ...         -- returns all received vararg arguments
1834     return x,y,f()     -- returns x, y, and all results from f()
1835     {f()}              -- creates a list with all results from f()
1836     {...}              -- creates a list with all vararg arguments
1837     {f(), nil}         -- f() is adjusted to 1 result
1838</pre>
1839
1840<p>
1841Any expression enclosed in parentheses always results in only one value.
1842Thus,
1843<code>(f(x,y,z))</code> is always a single value,
1844even if <code>f</code> returns several values.
1845(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
1846or <b>nil</b> if <code>f</code> does not return any values.)
1847
1848
1849
1850<h3>3.4.1 &ndash; <a name="3.4.1">Arithmetic Operators</a></h3><p>
1851Lua supports the following arithmetic operators:
1852
1853<ul>
1854<li><b><code>+</code>: </b>addition</li>
1855<li><b><code>-</code>: </b>subtraction</li>
1856<li><b><code>*</code>: </b>multiplication</li>
1857<li><b><code>/</code>: </b>float division</li>
1858<li><b><code>//</code>: </b>floor division</li>
1859<li><b><code>%</code>: </b>modulo</li>
1860<li><b><code>^</code>: </b>exponentiation</li>
1861<li><b><code>-</code>: </b>unary minus</li>
1862</ul>
1863
1864<p>
1865With the exception of exponentiation and float division,
1866the arithmetic operators work as follows:
1867If both operands are integers,
1868the operation is performed over integers and the result is an integer.
1869Otherwise, if both operands are numbers
1870or strings that can be converted to
1871numbers (see <a href="#3.4.3">&sect;3.4.3</a>),
1872then they are converted to floats,
1873the operation is performed following the usual rules
1874for floating-point arithmetic
1875(usually the IEEE 754 standard),
1876and the result is a float.
1877
1878
1879<p>
1880Exponentiation and float division (<code>/</code>)
1881always convert their operands to floats
1882and the result is always a float.
1883Exponentiation uses the ISO&nbsp;C function <code>pow</code>,
1884so that it works for non-integer exponents too.
1885
1886
1887<p>
1888Floor division (<code>//</code>) is a division
1889that rounds the quotient towards minus infinity,
1890that is, the floor of the division of its operands.
1891
1892
1893<p>
1894Modulo is defined as the remainder of a division
1895that rounds the quotient towards minus infinity (floor division).
1896
1897
1898<p>
1899In case of overflows in integer arithmetic,
1900all operations <em>wrap around</em>,
1901according to the usual rules of two-complement arithmetic.
1902(In other words,
1903they return the unique representable integer
1904that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.)
1905
1906
1907
1908<h3>3.4.2 &ndash; <a name="3.4.2">Bitwise Operators</a></h3><p>
1909Lua supports the following bitwise operators:
1910
1911<ul>
1912<li><b><code>&amp;</code>: </b>bitwise AND</li>
1913<li><b><code>&#124;</code>: </b>bitwise OR</li>
1914<li><b><code>~</code>: </b>bitwise exclusive OR</li>
1915<li><b><code>&gt;&gt;</code>: </b>right shift</li>
1916<li><b><code>&lt;&lt;</code>: </b>left shift</li>
1917<li><b><code>~</code>: </b>unary bitwise NOT</li>
1918</ul>
1919
1920<p>
1921All bitwise operations convert its operands to integers
1922(see <a href="#3.4.3">&sect;3.4.3</a>),
1923operate on all bits of those integers,
1924and result in an integer.
1925
1926
1927<p>
1928Both right and left shifts fill the vacant bits with zeros.
1929Negative displacements shift to the other direction;
1930displacements with absolute values equal to or higher than
1931the number of bits in an integer
1932result in zero (as all bits are shifted out).
1933
1934
1935
1936
1937
1938<h3>3.4.3 &ndash; <a name="3.4.3">Coercions and Conversions</a></h3><p>
1939Lua provides some automatic conversions between some
1940types and representations at run time.
1941Bitwise operators always convert float operands to integers.
1942Exponentiation and float division
1943always convert integer operands to floats.
1944All other arithmetic operations applied to mixed numbers
1945(integers and floats) convert the integer operand to a float;
1946this is called the <em>usual rule</em>.
1947The C API also converts both integers to floats and
1948floats to integers, as needed.
1949Moreover, string concatenation accepts numbers as arguments,
1950besides strings.
1951
1952
1953<p>
1954Lua also converts strings to numbers,
1955whenever a number is expected.
1956
1957
1958<p>
1959In a conversion from integer to float,
1960if the integer value has an exact representation as a float,
1961that is the result.
1962Otherwise,
1963the conversion gets the nearest higher or
1964the nearest lower representable value.
1965This kind of conversion never fails.
1966
1967
1968<p>
1969The conversion from float to integer
1970checks whether the float has an exact representation as an integer
1971(that is, the float has an integral value and
1972it is in the range of integer representation).
1973If it does, that representation is the result.
1974Otherwise, the conversion fails.
1975
1976
1977<p>
1978The conversion from strings to numbers goes as follows:
1979First, the string is converted to an integer or a float,
1980following its syntax and the rules of the Lua lexer.
1981(The string may have also leading and trailing spaces and a sign.)
1982Then, the resulting number (float or integer)
1983is converted to the type (float or integer) required by the context
1984(e.g., the operation that forced the conversion).
1985
1986
1987<p>
1988All conversions from strings to numbers
1989accept both a dot and the current locale mark
1990as the radix character.
1991(The Lua lexer, however, accepts only a dot.)
1992
1993
1994<p>
1995The conversion from numbers to strings uses a
1996non-specified human-readable format.
1997For complete control over how numbers are converted to strings,
1998use the <code>format</code> function from the string library
1999(see <a href="#pdf-string.format"><code>string.format</code></a>).
2000
2001
2002
2003
2004
2005<h3>3.4.4 &ndash; <a name="3.4.4">Relational Operators</a></h3><p>
2006Lua supports the following relational operators:
2007
2008<ul>
2009<li><b><code>==</code>: </b>equality</li>
2010<li><b><code>~=</code>: </b>inequality</li>
2011<li><b><code>&lt;</code>: </b>less than</li>
2012<li><b><code>&gt;</code>: </b>greater than</li>
2013<li><b><code>&lt;=</code>: </b>less or equal</li>
2014<li><b><code>&gt;=</code>: </b>greater or equal</li>
2015</ul><p>
2016These operators always result in <b>false</b> or <b>true</b>.
2017
2018
2019<p>
2020Equality (<code>==</code>) first compares the type of its operands.
2021If the types are different, then the result is <b>false</b>.
2022Otherwise, the values of the operands are compared.
2023Strings are compared in the obvious way.
2024Numbers are equal if they denote the same mathematical value.
2025
2026
2027<p>
2028Tables, userdata, and threads
2029are compared by reference:
2030two objects are considered equal only if they are the same object.
2031Every time you create a new object
2032(a table, userdata, or thread),
2033this new object is different from any previously existing object.
2034A closure is always equal to itself.
2035Closures with any detectable difference
2036(different behavior, different definition) are always different.
2037Closures created at different times but with no detectable differences
2038may be classified as equal or not
2039(depending on internal caching details).
2040
2041
2042<p>
2043You can change the way that Lua compares tables and userdata
2044by using the "eq" metamethod (see <a href="#2.4">&sect;2.4</a>).
2045
2046
2047<p>
2048Equality comparisons do not convert strings to numbers
2049or vice versa.
2050Thus, <code>"0"==0</code> evaluates to <b>false</b>,
2051and <code>t[0]</code> and <code>t["0"]</code> denote different
2052entries in a table.
2053
2054
2055<p>
2056The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
2057
2058
2059<p>
2060The order operators work as follows.
2061If both arguments are numbers,
2062then they are compared according to their mathematical values
2063(regardless of their subtypes).
2064Otherwise, if both arguments are strings,
2065then their values are compared according to the current locale.
2066Otherwise, Lua tries to call the "lt" or the "le"
2067metamethod (see <a href="#2.4">&sect;2.4</a>).
2068A comparison <code>a &gt; b</code> is translated to <code>b &lt; a</code>
2069and <code>a &gt;= b</code> is translated to <code>b &lt;= a</code>.
2070
2071
2072<p>
2073Following the IEEE 754 standard,
2074NaN is considered neither smaller than,
2075nor equal to, nor greater than any value (including itself).
2076
2077
2078
2079
2080
2081<h3>3.4.5 &ndash; <a name="3.4.5">Logical Operators</a></h3><p>
2082The logical operators in Lua are
2083<b>and</b>, <b>or</b>, and <b>not</b>.
2084Like the control structures (see <a href="#3.3.4">&sect;3.3.4</a>),
2085all logical operators consider both <b>false</b> and <b>nil</b> as false
2086and anything else as true.
2087
2088
2089<p>
2090The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
2091The conjunction operator <b>and</b> returns its first argument
2092if this value is <b>false</b> or <b>nil</b>;
2093otherwise, <b>and</b> returns its second argument.
2094The disjunction operator <b>or</b> returns its first argument
2095if this value is different from <b>nil</b> and <b>false</b>;
2096otherwise, <b>or</b> returns its second argument.
2097Both <b>and</b> and <b>or</b> use short-circuit evaluation;
2098that is,
2099the second operand is evaluated only if necessary.
2100Here are some examples:
2101
2102<pre>
2103     10 or 20            --&gt; 10
2104     10 or error()       --&gt; 10
2105     nil or "a"          --&gt; "a"
2106     nil and 10          --&gt; nil
2107     false and error()   --&gt; false
2108     false and nil       --&gt; false
2109     false or nil        --&gt; nil
2110     10 and 20           --&gt; 20
2111</pre><p>
2112(In this manual,
2113<code>--&gt;</code> indicates the result of the preceding expression.)
2114
2115
2116
2117
2118
2119<h3>3.4.6 &ndash; <a name="3.4.6">Concatenation</a></h3><p>
2120The string concatenation operator in Lua is
2121denoted by two dots ('<code>..</code>').
2122If both operands are strings or numbers, then they are converted to
2123strings according to the rules described in <a href="#3.4.3">&sect;3.4.3</a>.
2124Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">&sect;2.4</a>).
2125
2126
2127
2128
2129
2130<h3>3.4.7 &ndash; <a name="3.4.7">The Length Operator</a></h3>
2131
2132<p>
2133The length operator is denoted by the unary prefix operator <code>#</code>.
2134
2135
2136<p>
2137The length of a string is its number of bytes
2138(that is, the usual meaning of string length when each
2139character is one byte).
2140
2141
2142<p>
2143The length operator applied on a table
2144returns a border in that table.
2145A <em>border</em> in a table <code>t</code> is any natural number
2146that satisfies the following condition:
2147
2148<pre>
2149     (border == 0 or t[border] ~= nil) and t[border + 1] == nil
2150</pre><p>
2151In words,
2152a border is any (natural) index in a table
2153where a non-nil value is followed by a nil value
2154(or zero, when index 1 is nil).
2155
2156
2157<p>
2158A table with exactly one border is called a <em>sequence</em>.
2159For instance, the table <code>{10, 20, 30, 40, 50}</code> is a sequence,
2160as it has only one border (5).
2161The table <code>{10, 20, 30, nil, 50}</code> has two borders (3 and 5),
2162and therefore it is not a sequence.
2163The table <code>{nil, 20, 30, nil, nil, 60, nil}</code>
2164has three borders (0, 3, and 6),
2165so it is not a sequence, too.
2166The table <code>{}</code> is a sequence with border 0.
2167Note that non-natural keys do not interfere
2168with whether a table is a sequence.
2169
2170
2171<p>
2172When <code>t</code> is a sequence,
2173<code>#t</code> returns its only border,
2174which corresponds to the intuitive notion of the length of the sequence.
2175When <code>t</code> is not a sequence,
2176<code>#t</code> can return any of its borders.
2177(The exact one depends on details of
2178the internal representation of the table,
2179which in turn can depend on how the table was populated and
2180the memory addresses of its non-numeric keys.)
2181
2182
2183<p>
2184The computation of the length of a table
2185has a guaranteed worst time of <em>O(log n)</em>,
2186where <em>n</em> is the largest natural key in the table.
2187
2188
2189<p>
2190A program can modify the behavior of the length operator for
2191any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">&sect;2.4</a>).
2192
2193
2194
2195
2196
2197<h3>3.4.8 &ndash; <a name="3.4.8">Precedence</a></h3><p>
2198Operator precedence in Lua follows the table below,
2199from lower to higher priority:
2200
2201<pre>
2202     or
2203     and
2204     &lt;     &gt;     &lt;=    &gt;=    ~=    ==
2205     |
2206     ~
2207     &amp;
2208     &lt;&lt;    &gt;&gt;
2209     ..
2210     +     -
2211     *     /     //    %
2212     unary operators (not   #     -     ~)
2213     ^
2214</pre><p>
2215As usual,
2216you can use parentheses to change the precedences of an expression.
2217The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
2218operators are right associative.
2219All other binary operators are left associative.
2220
2221
2222
2223
2224
2225<h3>3.4.9 &ndash; <a name="3.4.9">Table Constructors</a></h3><p>
2226Table constructors are expressions that create tables.
2227Every time a constructor is evaluated, a new table is created.
2228A constructor can be used to create an empty table
2229or to create a table and initialize some of its fields.
2230The general syntax for constructors is
2231
2232<pre>
2233	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
2234	fieldlist ::= field {fieldsep field} [fieldsep]
2235	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
2236	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
2237</pre>
2238
2239<p>
2240Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
2241with key <code>exp1</code> and value <code>exp2</code>.
2242A field of the form <code>name = exp</code> is equivalent to
2243<code>["name"] = exp</code>.
2244Finally, fields of the form <code>exp</code> are equivalent to
2245<code>[i] = exp</code>, where <code>i</code> are consecutive integers
2246starting with 1.
2247Fields in the other formats do not affect this counting.
2248For example,
2249
2250<pre>
2251     a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
2252</pre><p>
2253is equivalent to
2254
2255<pre>
2256     do
2257       local t = {}
2258       t[f(1)] = g
2259       t[1] = "x"         -- 1st exp
2260       t[2] = "y"         -- 2nd exp
2261       t.x = 1            -- t["x"] = 1
2262       t[3] = f(x)        -- 3rd exp
2263       t[30] = 23
2264       t[4] = 45          -- 4th exp
2265       a = t
2266     end
2267</pre>
2268
2269<p>
2270The order of the assignments in a constructor is undefined.
2271(This order would be relevant only when there are repeated keys.)
2272
2273
2274<p>
2275If the last field in the list has the form <code>exp</code>
2276and the expression is a function call or a vararg expression,
2277then all values returned by this expression enter the list consecutively
2278(see <a href="#3.4.10">&sect;3.4.10</a>).
2279
2280
2281<p>
2282The field list can have an optional trailing separator,
2283as a convenience for machine-generated code.
2284
2285
2286
2287
2288
2289<h3>3.4.10 &ndash; <a name="3.4.10">Function Calls</a></h3><p>
2290A function call in Lua has the following syntax:
2291
2292<pre>
2293	functioncall ::= prefixexp args
2294</pre><p>
2295In a function call,
2296first prefixexp and args are evaluated.
2297If the value of prefixexp has type <em>function</em>,
2298then this function is called
2299with the given arguments.
2300Otherwise, the prefixexp "call" metamethod is called,
2301having as first argument the value of prefixexp,
2302followed by the original call arguments
2303(see <a href="#2.4">&sect;2.4</a>).
2304
2305
2306<p>
2307The form
2308
2309<pre>
2310	functioncall ::= prefixexp &lsquo;<b>:</b>&rsquo; Name args
2311</pre><p>
2312can be used to call "methods".
2313A call <code>v:name(<em>args</em>)</code>
2314is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
2315except that <code>v</code> is evaluated only once.
2316
2317
2318<p>
2319Arguments have the following syntax:
2320
2321<pre>
2322	args ::= &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo;
2323	args ::= tableconstructor
2324	args ::= LiteralString
2325</pre><p>
2326All argument expressions are evaluated before the call.
2327A call of the form <code>f{<em>fields</em>}</code> is
2328syntactic sugar for <code>f({<em>fields</em>})</code>;
2329that is, the argument list is a single new table.
2330A call of the form <code>f'<em>string</em>'</code>
2331(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
2332is syntactic sugar for <code>f('<em>string</em>')</code>;
2333that is, the argument list is a single literal string.
2334
2335
2336<p>
2337A call of the form <code>return <em>functioncall</em></code> is called
2338a <em>tail call</em>.
2339Lua implements <em>proper tail calls</em>
2340(or <em>proper tail recursion</em>):
2341in a tail call,
2342the called function reuses the stack entry of the calling function.
2343Therefore, there is no limit on the number of nested tail calls that
2344a program can execute.
2345However, a tail call erases any debug information about the
2346calling function.
2347Note that a tail call only happens with a particular syntax,
2348where the <b>return</b> has one single function call as argument;
2349this syntax makes the calling function return exactly
2350the returns of the called function.
2351So, none of the following examples are tail calls:
2352
2353<pre>
2354     return (f(x))        -- results adjusted to 1
2355     return 2 * f(x)
2356     return x, f(x)       -- additional results
2357     f(x); return         -- results discarded
2358     return x or f(x)     -- results adjusted to 1
2359</pre>
2360
2361
2362
2363
2364<h3>3.4.11 &ndash; <a name="3.4.11">Function Definitions</a></h3>
2365
2366<p>
2367The syntax for function definition is
2368
2369<pre>
2370	functiondef ::= <b>function</b> funcbody
2371	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
2372</pre>
2373
2374<p>
2375The following syntactic sugar simplifies function definitions:
2376
2377<pre>
2378	stat ::= <b>function</b> funcname funcbody
2379	stat ::= <b>local</b> <b>function</b> Name funcbody
2380	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
2381</pre><p>
2382The statement
2383
2384<pre>
2385     function f () <em>body</em> end
2386</pre><p>
2387translates to
2388
2389<pre>
2390     f = function () <em>body</em> end
2391</pre><p>
2392The statement
2393
2394<pre>
2395     function t.a.b.c.f () <em>body</em> end
2396</pre><p>
2397translates to
2398
2399<pre>
2400     t.a.b.c.f = function () <em>body</em> end
2401</pre><p>
2402The statement
2403
2404<pre>
2405     local function f () <em>body</em> end
2406</pre><p>
2407translates to
2408
2409<pre>
2410     local f; f = function () <em>body</em> end
2411</pre><p>
2412not to
2413
2414<pre>
2415     local f = function () <em>body</em> end
2416</pre><p>
2417(This only makes a difference when the body of the function
2418contains references to <code>f</code>.)
2419
2420
2421<p>
2422A function definition is an executable expression,
2423whose value has type <em>function</em>.
2424When Lua precompiles a chunk,
2425all its function bodies are precompiled too.
2426Then, whenever Lua executes the function definition,
2427the function is <em>instantiated</em> (or <em>closed</em>).
2428This function instance (or <em>closure</em>)
2429is the final value of the expression.
2430
2431
2432<p>
2433Parameters act as local variables that are
2434initialized with the argument values:
2435
2436<pre>
2437	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
2438</pre><p>
2439When a function is called,
2440the list of arguments is adjusted to
2441the length of the list of parameters,
2442unless the function is a <em>vararg function</em>,
2443which is indicated by three dots ('<code>...</code>')
2444at the end of its parameter list.
2445A vararg function does not adjust its argument list;
2446instead, it collects all extra arguments and supplies them
2447to the function through a <em>vararg expression</em>,
2448which is also written as three dots.
2449The value of this expression is a list of all actual extra arguments,
2450similar to a function with multiple results.
2451If a vararg expression is used inside another expression
2452or in the middle of a list of expressions,
2453then its return list is adjusted to one element.
2454If the expression is used as the last element of a list of expressions,
2455then no adjustment is made
2456(unless that last expression is enclosed in parentheses).
2457
2458
2459<p>
2460As an example, consider the following definitions:
2461
2462<pre>
2463     function f(a, b) end
2464     function g(a, b, ...) end
2465     function r() return 1,2,3 end
2466</pre><p>
2467Then, we have the following mapping from arguments to parameters and
2468to the vararg expression:
2469
2470<pre>
2471     CALL            PARAMETERS
2472
2473     f(3)             a=3, b=nil
2474     f(3, 4)          a=3, b=4
2475     f(3, 4, 5)       a=3, b=4
2476     f(r(), 10)       a=1, b=10
2477     f(r())           a=1, b=2
2478
2479     g(3)             a=3, b=nil, ... --&gt;  (nothing)
2480     g(3, 4)          a=3, b=4,   ... --&gt;  (nothing)
2481     g(3, 4, 5, 8)    a=3, b=4,   ... --&gt;  5  8
2482     g(5, r())        a=5, b=1,   ... --&gt;  2  3
2483</pre>
2484
2485<p>
2486Results are returned using the <b>return</b> statement (see <a href="#3.3.4">&sect;3.3.4</a>).
2487If control reaches the end of a function
2488without encountering a <b>return</b> statement,
2489then the function returns with no results.
2490
2491
2492<p>
2493
2494There is a system-dependent limit on the number of values
2495that a function may return.
2496This limit is guaranteed to be larger than 1000.
2497
2498
2499<p>
2500The <em>colon</em> syntax
2501is used for defining <em>methods</em>,
2502that is, functions that have an implicit extra parameter <code>self</code>.
2503Thus, the statement
2504
2505<pre>
2506     function t.a.b.c:f (<em>params</em>) <em>body</em> end
2507</pre><p>
2508is syntactic sugar for
2509
2510<pre>
2511     t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
2512</pre>
2513
2514
2515
2516
2517
2518
2519<h2>3.5 &ndash; <a name="3.5">Visibility Rules</a></h2>
2520
2521<p>
2522
2523Lua is a lexically scoped language.
2524The scope of a local variable begins at the first statement after
2525its declaration and lasts until the last non-void statement
2526of the innermost block that includes the declaration.
2527Consider the following example:
2528
2529<pre>
2530     x = 10                -- global variable
2531     do                    -- new block
2532       local x = x         -- new 'x', with value 10
2533       print(x)            --&gt; 10
2534       x = x+1
2535       do                  -- another block
2536         local x = x+1     -- another 'x'
2537         print(x)          --&gt; 12
2538       end
2539       print(x)            --&gt; 11
2540     end
2541     print(x)              --&gt; 10  (the global one)
2542</pre>
2543
2544<p>
2545Notice that, in a declaration like <code>local x = x</code>,
2546the new <code>x</code> being declared is not in scope yet,
2547and so the second <code>x</code> refers to the outside variable.
2548
2549
2550<p>
2551Because of the lexical scoping rules,
2552local variables can be freely accessed by functions
2553defined inside their scope.
2554A local variable used by an inner function is called
2555an <em>upvalue</em>, or <em>external local variable</em>,
2556inside the inner function.
2557
2558
2559<p>
2560Notice that each execution of a <b>local</b> statement
2561defines new local variables.
2562Consider the following example:
2563
2564<pre>
2565     a = {}
2566     local x = 20
2567     for i=1,10 do
2568       local y = 0
2569       a[i] = function () y=y+1; return x+y end
2570     end
2571</pre><p>
2572The loop creates ten closures
2573(that is, ten instances of the anonymous function).
2574Each of these closures uses a different <code>y</code> variable,
2575while all of them share the same <code>x</code>.
2576
2577
2578
2579
2580
2581<h1>4 &ndash; <a name="4">The Application Program Interface</a></h1>
2582
2583<p>
2584
2585This section describes the C&nbsp;API for Lua, that is,
2586the set of C&nbsp;functions available to the host program to communicate
2587with Lua.
2588All API functions and related types and constants
2589are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
2590
2591
2592<p>
2593Even when we use the term "function",
2594any facility in the API may be provided as a macro instead.
2595Except where stated otherwise,
2596all such macros use each of their arguments exactly once
2597(except for the first argument, which is always a Lua state),
2598and so do not generate any hidden side-effects.
2599
2600
2601<p>
2602As in most C&nbsp;libraries,
2603the Lua API functions do not check their arguments for validity or consistency.
2604However, you can change this behavior by compiling Lua
2605with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined.
2606
2607
2608<p>
2609The Lua library is fully reentrant:
2610it has no global variables.
2611It keeps all information it needs in a dynamic structure,
2612called the <em>Lua state</em>.
2613
2614
2615<p>
2616Each Lua state has one or more threads,
2617which correspond to independent, cooperative lines of execution.
2618The type <a href="#lua_State"><code>lua_State</code></a> (despite its name) refers to a thread.
2619(Indirectly, through the thread, it also refers to the
2620Lua state associated to the thread.)
2621
2622
2623<p>
2624A pointer to a thread must be passed as the first argument to
2625every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
2626which creates a Lua state from scratch and returns a pointer
2627to the <em>main thread</em> in the new state.
2628
2629
2630
2631<h2>4.1 &ndash; <a name="4.1">The Stack</a></h2>
2632
2633<p>
2634Lua uses a <em>virtual stack</em> to pass values to and from C.
2635Each element in this stack represents a Lua value
2636(<b>nil</b>, number, string, etc.).
2637Functions in the API can access this stack through the
2638Lua state parameter that they receive.
2639
2640
2641<p>
2642Whenever Lua calls C, the called function gets a new stack,
2643which is independent of previous stacks and of stacks of
2644C&nbsp;functions that are still active.
2645This stack initially contains any arguments to the C&nbsp;function
2646and it is where the C&nbsp;function can store temporary
2647Lua values and must push its results
2648to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
2649
2650
2651<p>
2652For convenience,
2653most query operations in the API do not follow a strict stack discipline.
2654Instead, they can refer to any element in the stack
2655by using an <em>index</em>:
2656A positive index represents an absolute stack position
2657(starting at&nbsp;1);
2658a negative index represents an offset relative to the top of the stack.
2659More specifically, if the stack has <em>n</em> elements,
2660then index&nbsp;1 represents the first element
2661(that is, the element that was pushed onto the stack first)
2662and
2663index&nbsp;<em>n</em> represents the last element;
2664index&nbsp;-1 also represents the last element
2665(that is, the element at the&nbsp;top)
2666and index <em>-n</em> represents the first element.
2667
2668
2669
2670
2671
2672<h2>4.2 &ndash; <a name="4.2">Stack Size</a></h2>
2673
2674<p>
2675When you interact with the Lua API,
2676you are responsible for ensuring consistency.
2677In particular,
2678<em>you are responsible for controlling stack overflow</em>.
2679You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
2680to ensure that the stack has enough space for pushing new elements.
2681
2682
2683<p>
2684Whenever Lua calls C,
2685it ensures that the stack has space for
2686at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
2687<code>LUA_MINSTACK</code> is defined as 20,
2688so that usually you do not have to worry about stack space
2689unless your code has loops pushing elements onto the stack.
2690
2691
2692<p>
2693When you call a Lua function
2694without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
2695Lua ensures that the stack has enough space for all results,
2696but it does not ensure any extra space.
2697So, before pushing anything in the stack after such a call
2698you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
2699
2700
2701
2702
2703
2704<h2>4.3 &ndash; <a name="4.3">Valid and Acceptable Indices</a></h2>
2705
2706<p>
2707Any function in the API that receives stack indices
2708works only with <em>valid indices</em> or <em>acceptable indices</em>.
2709
2710
2711<p>
2712A <em>valid index</em> is an index that refers to a
2713position that stores a modifiable Lua value.
2714It comprises stack indices between&nbsp;1 and the stack top
2715(<code>1 &le; abs(index) &le; top</code>)
2716
2717plus <em>pseudo-indices</em>,
2718which represent some positions that are accessible to C&nbsp;code
2719but that are not in the stack.
2720Pseudo-indices are used to access the registry (see <a href="#4.5">&sect;4.5</a>)
2721and the upvalues of a C&nbsp;function (see <a href="#4.4">&sect;4.4</a>).
2722
2723
2724<p>
2725Functions that do not need a specific mutable position,
2726but only a value (e.g., query functions),
2727can be called with acceptable indices.
2728An <em>acceptable index</em> can be any valid index,
2729but it also can be any positive index after the stack top
2730within the space allocated for the stack,
2731that is, indices up to the stack size.
2732(Note that 0 is never an acceptable index.)
2733Except when noted otherwise,
2734functions in the API work with acceptable indices.
2735
2736
2737<p>
2738Acceptable indices serve to avoid extra tests
2739against the stack top when querying the stack.
2740For instance, a C&nbsp;function can query its third argument
2741without the need to first check whether there is a third argument,
2742that is, without the need to check whether 3 is a valid index.
2743
2744
2745<p>
2746For functions that can be called with acceptable indices,
2747any non-valid index is treated as if it
2748contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>,
2749which behaves like a nil value.
2750
2751
2752
2753
2754
2755<h2>4.4 &ndash; <a name="4.4">C Closures</a></h2>
2756
2757<p>
2758When a C&nbsp;function is created,
2759it is possible to associate some values with it,
2760thus creating a <em>C&nbsp;closure</em>
2761(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>);
2762these values are called <em>upvalues</em> and are
2763accessible to the function whenever it is called.
2764
2765
2766<p>
2767Whenever a C&nbsp;function is called,
2768its upvalues are located at specific pseudo-indices.
2769These pseudo-indices are produced by the macro
2770<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>.
2771The first upvalue associated with a function is at index
2772<code>lua_upvalueindex(1)</code>, and so on.
2773Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
2774where <em>n</em> is greater than the number of upvalues of the
2775current function
2776(but not greater than 256,
2777which is one plus the maximum number of upvalues in a closure),
2778produces an acceptable but invalid index.
2779
2780
2781
2782
2783
2784<h2>4.5 &ndash; <a name="4.5">Registry</a></h2>
2785
2786<p>
2787Lua provides a <em>registry</em>,
2788a predefined table that can be used by any C&nbsp;code to
2789store whatever Lua values it needs to store.
2790The registry table is always located at pseudo-index
2791<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
2792Any C&nbsp;library can store data into this table,
2793but it must take care to choose keys
2794that are different from those used
2795by other libraries, to avoid collisions.
2796Typically, you should use as key a string containing your library name,
2797or a light userdata with the address of a C&nbsp;object in your code,
2798or any Lua object created by your code.
2799As with variable names,
2800string keys starting with an underscore followed by
2801uppercase letters are reserved for Lua.
2802
2803
2804<p>
2805The integer keys in the registry are used
2806by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>)
2807and by some predefined values.
2808Therefore, integer keys must not be used for other purposes.
2809
2810
2811<p>
2812When you create a new Lua state,
2813its registry comes with some predefined values.
2814These predefined values are indexed with integer keys
2815defined as constants in <code>lua.h</code>.
2816The following constants are defined:
2817
2818<ul>
2819<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has
2820the main thread of the state.
2821(The main thread is the one created together with the state.)
2822</li>
2823
2824<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has
2825the global environment.
2826</li>
2827</ul>
2828
2829
2830
2831
2832<h2>4.6 &ndash; <a name="4.6">Error Handling in C</a></h2>
2833
2834<p>
2835Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
2836(Lua will use exceptions if you compile it as C++;
2837search for <code>LUAI_THROW</code> in the source code for details.)
2838When Lua faces any error
2839(such as a memory allocation error or a type error)
2840it <em>raises</em> an error;
2841that is, it does a long jump.
2842A <em>protected environment</em> uses <code>setjmp</code>
2843to set a recovery point;
2844any error jumps to the most recent active recovery point.
2845
2846
2847<p>
2848Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.
2849
2850
2851<p>
2852Most functions in the API can raise an error,
2853for instance due to a memory allocation error.
2854The documentation for each function indicates whether
2855it can raise errors.
2856
2857
2858<p>
2859If an error happens outside any protected environment,
2860Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>)
2861and then calls <code>abort</code>,
2862thus exiting the host application.
2863Your panic function can avoid this exit by
2864never returning
2865(e.g., doing a long jump to your own recovery point outside Lua).
2866
2867
2868<p>
2869The panic function,
2870as its name implies,
2871is a mechanism of last resort.
2872Programs should avoid it.
2873As a general rule,
2874when a C&nbsp;function is called by Lua with a Lua state,
2875it can do whatever it wants on that Lua state,
2876as it should be already protected.
2877However,
2878when C code operates on other Lua states
2879(e.g., a Lua argument to the function,
2880a Lua state stored in the registry, or
2881the result of <a href="#lua_newthread"><code>lua_newthread</code></a>),
2882it should use them only in API calls that cannot raise errors.
2883
2884
2885<p>
2886The panic function runs as if it were a message handler (see <a href="#2.3">&sect;2.3</a>);
2887in particular, the error object is at the top of the stack.
2888However, there is no guarantee about stack space.
2889To push anything on the stack,
2890the panic function must first check the available space (see <a href="#4.2">&sect;4.2</a>).
2891
2892
2893
2894
2895
2896<h2>4.7 &ndash; <a name="4.7">Handling Yields in C</a></h2>
2897
2898<p>
2899Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine.
2900Therefore, if a C&nbsp;function <code>foo</code> calls an API function
2901and this API function yields
2902(directly or indirectly by calling another function that yields),
2903Lua cannot return to <code>foo</code> any more,
2904because the <code>longjmp</code> removes its frame from the C stack.
2905
2906
2907<p>
2908To avoid this kind of problem,
2909Lua raises an error whenever it tries to yield across an API call,
2910except for three functions:
2911<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2912All those functions receive a <em>continuation function</em>
2913(as a parameter named <code>k</code>) to continue execution after a yield.
2914
2915
2916<p>
2917We need to set some terminology to explain continuations.
2918We have a C&nbsp;function called from Lua which we will call
2919the <em>original function</em>.
2920This original function then calls one of those three functions in the C API,
2921which we will call the <em>callee function</em>,
2922that then yields the current thread.
2923(This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
2924or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a>
2925and the function called by them yields.)
2926
2927
2928<p>
2929Suppose the running thread yields while executing the callee function.
2930After the thread resumes,
2931it eventually will finish running the callee function.
2932However,
2933the callee function cannot return to the original function,
2934because its frame in the C stack was destroyed by the yield.
2935Instead, Lua calls a <em>continuation function</em>,
2936which was given as an argument to the callee function.
2937As the name implies,
2938the continuation function should continue the task
2939of the original function.
2940
2941
2942<p>
2943As an illustration, consider the following function:
2944
2945<pre>
2946     int original_function (lua_State *L) {
2947       ...     /* code 1 */
2948       status = lua_pcall(L, n, m, h);  /* calls Lua */
2949       ...     /* code 2 */
2950     }
2951</pre><p>
2952Now we want to allow
2953the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield.
2954First, we can rewrite our function like here:
2955
2956<pre>
2957     int k (lua_State *L, int status, lua_KContext ctx) {
2958       ...  /* code 2 */
2959     }
2960
2961     int original_function (lua_State *L) {
2962       ...     /* code 1 */
2963       return k(L, lua_pcall(L, n, m, h), ctx);
2964     }
2965</pre><p>
2966In the above code,
2967the new function <code>k</code> is a
2968<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>),
2969which should do all the work that the original function
2970was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>.
2971Now, we must inform Lua that it must call <code>k</code> if the Lua code
2972being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way
2973(errors or yielding),
2974so we rewrite the code as here,
2975replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>:
2976
2977<pre>
2978     int original_function (lua_State *L) {
2979       ...     /* code 1 */
2980       return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1);
2981     }
2982</pre><p>
2983Note the external, explicit call to the continuation:
2984Lua will call the continuation only if needed, that is,
2985in case of errors or resuming after a yield.
2986If the called function returns normally without ever yielding,
2987<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally.
2988(Of course, instead of calling the continuation in that case,
2989you can do the equivalent work directly inside the original function.)
2990
2991
2992<p>
2993Besides the Lua state,
2994the continuation function has two other parameters:
2995the final status of the call plus the context value (<code>ctx</code>) that
2996was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2997(Lua does not use this context value;
2998it only passes this value from the original function to the
2999continuation function.)
3000For <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
3001the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
3002except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield
3003(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>).
3004For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>,
3005the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation.
3006(For these two functions,
3007Lua will not call the continuation in case of errors,
3008because they do not handle errors.)
3009Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>,
3010you should call the continuation function
3011with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status.
3012(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling
3013directly the continuation function,
3014because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.)
3015
3016
3017<p>
3018Lua treats the continuation function as if it were the original function.
3019The continuation function receives the same Lua stack
3020from the original function,
3021in the same state it would be if the callee function had returned.
3022(For instance,
3023after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are
3024removed from the stack and replaced by the results from the call.)
3025It also has the same upvalues.
3026Whatever it returns is handled by Lua as if it were the return
3027of the original function.
3028
3029
3030
3031
3032
3033<h2>4.8 &ndash; <a name="4.8">Functions and Types</a></h2>
3034
3035<p>
3036Here we list all functions and types from the C&nbsp;API in
3037alphabetical order.
3038Each function has an indicator like this:
3039<span class="apii">[-o, +p, <em>x</em>]</span>
3040
3041
3042<p>
3043The first field, <code>o</code>,
3044is how many elements the function pops from the stack.
3045The second field, <code>p</code>,
3046is how many elements the function pushes onto the stack.
3047(Any function always pushes its results after popping its arguments.)
3048A field in the form <code>x|y</code> means the function can push (or pop)
3049<code>x</code> or <code>y</code> elements,
3050depending on the situation;
3051an interrogation mark '<code>?</code>' means that
3052we cannot know how many elements the function pops/pushes
3053by looking only at its arguments
3054(e.g., they may depend on what is on the stack).
3055The third field, <code>x</code>,
3056tells whether the function may raise errors:
3057'<code>-</code>' means the function never raises any error;
3058'<code>m</code>' means the function may raise out-of-memory errors
3059and errors running a <code>__gc</code> metamethod;
3060'<code>e</code>' means the function may raise any errors
3061(it can run arbitrary Lua code,
3062either directly or through metamethods);
3063'<code>v</code>' means the function may raise an error on purpose.
3064
3065
3066
3067<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p>
3068<span class="apii">[-0, +0, &ndash;]</span>
3069<pre>int lua_absindex (lua_State *L, int idx);</pre>
3070
3071<p>
3072Converts the acceptable index <code>idx</code>
3073into an equivalent absolute index
3074(that is, one that does not depend on the stack top).
3075
3076
3077
3078
3079
3080<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
3081<pre>typedef void * (*lua_Alloc) (void *ud,
3082                             void *ptr,
3083                             size_t osize,
3084                             size_t nsize);</pre>
3085
3086<p>
3087The type of the memory-allocation function used by Lua states.
3088The allocator function must provide a
3089functionality similar to <code>realloc</code>,
3090but not exactly the same.
3091Its arguments are
3092<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
3093<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
3094<code>osize</code>, the original size of the block or some code about what
3095is being allocated;
3096and <code>nsize</code>, the new size of the block.
3097
3098
3099<p>
3100When <code>ptr</code> is not <code>NULL</code>,
3101<code>osize</code> is the size of the block pointed by <code>ptr</code>,
3102that is, the size given when it was allocated or reallocated.
3103
3104
3105<p>
3106When <code>ptr</code> is <code>NULL</code>,
3107<code>osize</code> encodes the kind of object that Lua is allocating.
3108<code>osize</code> is any of
3109<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
3110<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when)
3111Lua is creating a new object of that type.
3112When <code>osize</code> is some other value,
3113Lua is allocating memory for something else.
3114
3115
3116<p>
3117Lua assumes the following behavior from the allocator function:
3118
3119
3120<p>
3121When <code>nsize</code> is zero,
3122the allocator must behave like <code>free</code>
3123and return <code>NULL</code>.
3124
3125
3126<p>
3127When <code>nsize</code> is not zero,
3128the allocator must behave like <code>realloc</code>.
3129The allocator returns <code>NULL</code>
3130if and only if it cannot fulfill the request.
3131Lua assumes that the allocator never fails when
3132<code>osize &gt;= nsize</code>.
3133
3134
3135<p>
3136Here is a simple implementation for the allocator function.
3137It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
3138
3139<pre>
3140     static void *l_alloc (void *ud, void *ptr, size_t osize,
3141                                                size_t nsize) {
3142       (void)ud;  (void)osize;  /* not used */
3143       if (nsize == 0) {
3144         free(ptr);
3145         return NULL;
3146       }
3147       else
3148         return realloc(ptr, nsize);
3149     }
3150</pre><p>
3151Note that Standard&nbsp;C ensures
3152that <code>free(NULL)</code> has no effect and that
3153<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>.
3154This code assumes that <code>realloc</code> does not fail when shrinking a block.
3155(Although Standard&nbsp;C does not ensure this behavior,
3156it seems to be a safe assumption.)
3157
3158
3159
3160
3161
3162<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p>
3163<span class="apii">[-(2|1), +1, <em>e</em>]</span>
3164<pre>void lua_arith (lua_State *L, int op);</pre>
3165
3166<p>
3167Performs an arithmetic or bitwise operation over the two values
3168(or one, in the case of negations)
3169at the top of the stack,
3170with the value at the top being the second operand,
3171pops these values, and pushes the result of the operation.
3172The function follows the semantics of the corresponding Lua operator
3173(that is, it may call metamethods).
3174
3175
3176<p>
3177The value of <code>op</code> must be one of the following constants:
3178
3179<ul>
3180
3181<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li>
3182<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li>
3183<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li>
3184<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li>
3185<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li>
3186<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li>
3187<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li>
3188<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li>
3189<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise NOT (<code>~</code>)</li>
3190<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise AND (<code>&amp;</code>)</li>
3191<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise OR (<code>|</code>)</li>
3192<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive OR (<code>~</code>)</li>
3193<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code>&lt;&lt;</code>)</li>
3194<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>&gt;&gt;</code>)</li>
3195
3196</ul>
3197
3198
3199
3200
3201<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
3202<span class="apii">[-0, +0, &ndash;]</span>
3203<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
3204
3205<p>
3206Sets a new panic function and returns the old one (see <a href="#4.6">&sect;4.6</a>).
3207
3208
3209
3210
3211
3212<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
3213<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span>
3214<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
3215
3216<p>
3217Calls a function.
3218
3219
3220<p>
3221To call a function you must use the following protocol:
3222first, the function to be called is pushed onto the stack;
3223then, the arguments to the function are pushed
3224in direct order;
3225that is, the first argument is pushed first.
3226Finally you call <a href="#lua_call"><code>lua_call</code></a>;
3227<code>nargs</code> is the number of arguments that you pushed onto the stack.
3228All arguments and the function value are popped from the stack
3229when the function is called.
3230The function results are pushed onto the stack when the function returns.
3231The number of results is adjusted to <code>nresults</code>,
3232unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
3233In this case, all results from the function are pushed;
3234Lua takes care that the returned values fit into the stack space,
3235but it does not ensure any extra space in the stack.
3236The function results are pushed onto the stack in direct order
3237(the first result is pushed first),
3238so that after the call the last result is on the top of the stack.
3239
3240
3241<p>
3242Any error inside the called function is propagated upwards
3243(with a <code>longjmp</code>).
3244
3245
3246<p>
3247The following example shows how the host program can do the
3248equivalent to this Lua code:
3249
3250<pre>
3251     a = f("how", t.x, 14)
3252</pre><p>
3253Here it is in&nbsp;C:
3254
3255<pre>
3256     lua_getglobal(L, "f");                  /* function to be called */
3257     lua_pushliteral(L, "how");                       /* 1st argument */
3258     lua_getglobal(L, "t");                    /* table to be indexed */
3259     lua_getfield(L, -1, "x");        /* push result of t.x (2nd arg) */
3260     lua_remove(L, -2);                  /* remove 't' from the stack */
3261     lua_pushinteger(L, 14);                          /* 3rd argument */
3262     lua_call(L, 3, 1);     /* call 'f' with 3 arguments and 1 result */
3263     lua_setglobal(L, "a");                         /* set global 'a' */
3264</pre><p>
3265Note that the code above is <em>balanced</em>:
3266at its end, the stack is back to its original configuration.
3267This is considered good programming practice.
3268
3269
3270
3271
3272
3273<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p>
3274<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
3275<pre>void lua_callk (lua_State *L,
3276                int nargs,
3277                int nresults,
3278                lua_KContext ctx,
3279                lua_KFunction k);</pre>
3280
3281<p>
3282This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>,
3283but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
3284
3285
3286
3287
3288
3289<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
3290<pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
3291
3292<p>
3293Type for C&nbsp;functions.
3294
3295
3296<p>
3297In order to communicate properly with Lua,
3298a C&nbsp;function must use the following protocol,
3299which defines the way parameters and results are passed:
3300a C&nbsp;function receives its arguments from Lua in its stack
3301in direct order (the first argument is pushed first).
3302So, when the function starts,
3303<code>lua_gettop(L)</code> returns the number of arguments received by the function.
3304The first argument (if any) is at index 1
3305and its last argument is at index <code>lua_gettop(L)</code>.
3306To return values to Lua, a C&nbsp;function just pushes them onto the stack,
3307in direct order (the first result is pushed first),
3308and returns the number of results.
3309Any other value in the stack below the results will be properly
3310discarded by Lua.
3311Like a Lua function, a C&nbsp;function called by Lua can also return
3312many results.
3313
3314
3315<p>
3316As an example, the following function receives a variable number
3317of numeric arguments and returns their average and their sum:
3318
3319<pre>
3320     static int foo (lua_State *L) {
3321       int n = lua_gettop(L);    /* number of arguments */
3322       lua_Number sum = 0.0;
3323       int i;
3324       for (i = 1; i &lt;= n; i++) {
3325         if (!lua_isnumber(L, i)) {
3326           lua_pushliteral(L, "incorrect argument");
3327           lua_error(L);
3328         }
3329         sum += lua_tonumber(L, i);
3330       }
3331       lua_pushnumber(L, sum/n);        /* first result */
3332       lua_pushnumber(L, sum);         /* second result */
3333       return 2;                   /* number of results */
3334     }
3335</pre>
3336
3337
3338
3339
3340<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
3341<span class="apii">[-0, +0, &ndash;]</span>
3342<pre>int lua_checkstack (lua_State *L, int n);</pre>
3343
3344<p>
3345Ensures that the stack has space for at least <code>n</code> extra slots
3346(that is, that you can safely push up to <code>n</code> values into it).
3347It returns false if it cannot fulfill the request,
3348either because it would cause the stack
3349to be larger than a fixed maximum size
3350(typically at least several thousand elements) or
3351because it cannot allocate memory for the extra space.
3352This function never shrinks the stack;
3353if the stack already has space for the extra slots,
3354it is left unchanged.
3355
3356
3357
3358
3359
3360<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
3361<span class="apii">[-0, +0, &ndash;]</span>
3362<pre>void lua_close (lua_State *L);</pre>
3363
3364<p>
3365Destroys all objects in the given Lua state
3366(calling the corresponding garbage-collection metamethods, if any)
3367and frees all dynamic memory used by this state.
3368In several platforms, you may not need to call this function,
3369because all resources are naturally released when the host program ends.
3370On the other hand, long-running programs that create multiple states,
3371such as daemons or web servers,
3372will probably need to close states as soon as they are not needed.
3373
3374
3375
3376
3377
3378<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p>
3379<span class="apii">[-0, +0, <em>e</em>]</span>
3380<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre>
3381
3382<p>
3383Compares two Lua values.
3384Returns 1 if the value at index <code>index1</code> satisfies <code>op</code>
3385when compared with the value at index <code>index2</code>,
3386following the semantics of the corresponding Lua operator
3387(that is, it may call metamethods).
3388Otherwise returns&nbsp;0.
3389Also returns&nbsp;0 if any of the indices is not valid.
3390
3391
3392<p>
3393The value of <code>op</code> must be one of the following constants:
3394
3395<ul>
3396
3397<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li>
3398<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code>&lt;</code>)</li>
3399<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code>&lt;=</code>)</li>
3400
3401</ul>
3402
3403
3404
3405
3406<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
3407<span class="apii">[-n, +1, <em>e</em>]</span>
3408<pre>void lua_concat (lua_State *L, int n);</pre>
3409
3410<p>
3411Concatenates the <code>n</code> values at the top of the stack,
3412pops them, and leaves the result at the top.
3413If <code>n</code>&nbsp;is&nbsp;1, the result is the single value on the stack
3414(that is, the function does nothing);
3415if <code>n</code> is 0, the result is the empty string.
3416Concatenation is performed following the usual semantics of Lua
3417(see <a href="#3.4.6">&sect;3.4.6</a>).
3418
3419
3420
3421
3422
3423<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p>
3424<span class="apii">[-0, +0, &ndash;]</span>
3425<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre>
3426
3427<p>
3428Copies the element at index <code>fromidx</code>
3429into the valid index <code>toidx</code>,
3430replacing the value at that position.
3431Values at other positions are not affected.
3432
3433
3434
3435
3436
3437<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
3438<span class="apii">[-0, +1, <em>m</em>]</span>
3439<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
3440
3441<p>
3442Creates a new empty table and pushes it onto the stack.
3443Parameter <code>narr</code> is a hint for how many elements the table
3444will have as a sequence;
3445parameter <code>nrec</code> is a hint for how many other elements
3446the table will have.
3447Lua may use these hints to preallocate memory for the new table.
3448This preallocation is useful for performance when you know in advance
3449how many elements the table will have.
3450Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
3451
3452
3453
3454
3455
3456<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
3457<span class="apii">[-0, +0, &ndash;]</span>
3458<pre>int lua_dump (lua_State *L,
3459                        lua_Writer writer,
3460                        void *data,
3461                        int strip);</pre>
3462
3463<p>
3464Dumps a function as a binary chunk.
3465Receives a Lua function on the top of the stack
3466and produces a binary chunk that,
3467if loaded again,
3468results in a function equivalent to the one dumped.
3469As it produces parts of the chunk,
3470<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
3471with the given <code>data</code>
3472to write them.
3473
3474
3475<p>
3476If <code>strip</code> is true,
3477the binary representation may not include all debug information
3478about the function,
3479to save space.
3480
3481
3482<p>
3483The value returned is the error code returned by the last
3484call to the writer;
34850&nbsp;means no errors.
3486
3487
3488<p>
3489This function does not pop the Lua function from the stack.
3490
3491
3492
3493
3494
3495<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
3496<span class="apii">[-1, +0, <em>v</em>]</span>
3497<pre>int lua_error (lua_State *L);</pre>
3498
3499<p>
3500Generates a Lua error,
3501using the value at the top of the stack as the error object.
3502This function does a long jump,
3503and therefore never returns
3504(see <a href="#luaL_error"><code>luaL_error</code></a>).
3505
3506
3507
3508
3509
3510<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
3511<span class="apii">[-0, +0, <em>m</em>]</span>
3512<pre>int lua_gc (lua_State *L, int what, int data);</pre>
3513
3514<p>
3515Controls the garbage collector.
3516
3517
3518<p>
3519This function performs several tasks,
3520according to the value of the parameter <code>what</code>:
3521
3522<ul>
3523
3524<li><b><code>LUA_GCSTOP</code>: </b>
3525stops the garbage collector.
3526</li>
3527
3528<li><b><code>LUA_GCRESTART</code>: </b>
3529restarts the garbage collector.
3530</li>
3531
3532<li><b><code>LUA_GCCOLLECT</code>: </b>
3533performs a full garbage-collection cycle.
3534</li>
3535
3536<li><b><code>LUA_GCCOUNT</code>: </b>
3537returns the current amount of memory (in Kbytes) in use by Lua.
3538</li>
3539
3540<li><b><code>LUA_GCCOUNTB</code>: </b>
3541returns the remainder of dividing the current amount of bytes of
3542memory in use by Lua by 1024.
3543</li>
3544
3545<li><b><code>LUA_GCSTEP</code>: </b>
3546performs an incremental step of garbage collection.
3547</li>
3548
3549<li><b><code>LUA_GCSETPAUSE</code>: </b>
3550sets <code>data</code> as the new value
3551for the <em>pause</em> of the collector (see <a href="#2.5">&sect;2.5</a>)
3552and returns the previous value of the pause.
3553</li>
3554
3555<li><b><code>LUA_GCSETSTEPMUL</code>: </b>
3556sets <code>data</code> as the new value for the <em>step multiplier</em> of
3557the collector (see <a href="#2.5">&sect;2.5</a>)
3558and returns the previous value of the step multiplier.
3559</li>
3560
3561<li><b><code>LUA_GCISRUNNING</code>: </b>
3562returns a boolean that tells whether the collector is running
3563(i.e., not stopped).
3564</li>
3565
3566</ul>
3567
3568<p>
3569For more details about these options,
3570see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>.
3571
3572
3573
3574
3575
3576<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
3577<span class="apii">[-0, +0, &ndash;]</span>
3578<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
3579
3580<p>
3581Returns the memory-allocation function of a given state.
3582If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
3583opaque pointer given when the memory-allocator function was set.
3584
3585
3586
3587
3588
3589<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
3590<span class="apii">[-0, +1, <em>e</em>]</span>
3591<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre>
3592
3593<p>
3594Pushes onto the stack the value <code>t[k]</code>,
3595where <code>t</code> is the value at the given index.
3596As in Lua, this function may trigger a metamethod
3597for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3598
3599
3600<p>
3601Returns the type of the pushed value.
3602
3603
3604
3605
3606
3607<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p>
3608<span class="apii">[-0, +0, &ndash;]</span>
3609<pre>void *lua_getextraspace (lua_State *L);</pre>
3610
3611<p>
3612Returns a pointer to a raw memory area associated with the
3613given Lua state.
3614The application can use this area for any purpose;
3615Lua does not use it for anything.
3616
3617
3618<p>
3619Each new thread has this area initialized with a copy
3620of the area of the main thread.
3621
3622
3623<p>
3624By default, this area has the size of a pointer to void,
3625but you can recompile Lua with a different size for this area.
3626(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.)
3627
3628
3629
3630
3631
3632<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
3633<span class="apii">[-0, +1, <em>e</em>]</span>
3634<pre>int lua_getglobal (lua_State *L, const char *name);</pre>
3635
3636<p>
3637Pushes onto the stack the value of the global <code>name</code>.
3638Returns the type of that value.
3639
3640
3641
3642
3643
3644<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p>
3645<span class="apii">[-0, +1, <em>e</em>]</span>
3646<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre>
3647
3648<p>
3649Pushes onto the stack the value <code>t[i]</code>,
3650where <code>t</code> is the value at the given index.
3651As in Lua, this function may trigger a metamethod
3652for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3653
3654
3655<p>
3656Returns the type of the pushed value.
3657
3658
3659
3660
3661
3662<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
3663<span class="apii">[-0, +(0|1), &ndash;]</span>
3664<pre>int lua_getmetatable (lua_State *L, int index);</pre>
3665
3666<p>
3667If the value at the given index has a metatable,
3668the function pushes that metatable onto the stack and returns&nbsp;1.
3669Otherwise,
3670the function returns&nbsp;0 and pushes nothing on the stack.
3671
3672
3673
3674
3675
3676<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
3677<span class="apii">[-1, +1, <em>e</em>]</span>
3678<pre>int lua_gettable (lua_State *L, int index);</pre>
3679
3680<p>
3681Pushes onto the stack the value <code>t[k]</code>,
3682where <code>t</code> is the value at the given index
3683and <code>k</code> is the value at the top of the stack.
3684
3685
3686<p>
3687This function pops the key from the stack,
3688pushing the resulting value in its place.
3689As in Lua, this function may trigger a metamethod
3690for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3691
3692
3693<p>
3694Returns the type of the pushed value.
3695
3696
3697
3698
3699
3700<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
3701<span class="apii">[-0, +0, &ndash;]</span>
3702<pre>int lua_gettop (lua_State *L);</pre>
3703
3704<p>
3705Returns the index of the top element in the stack.
3706Because indices start at&nbsp;1,
3707this result is equal to the number of elements in the stack;
3708in particular, 0&nbsp;means an empty stack.
3709
3710
3711
3712
3713
3714<hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p>
3715<span class="apii">[-0, +1, &ndash;]</span>
3716<pre>int lua_getuservalue (lua_State *L, int index);</pre>
3717
3718<p>
3719Pushes onto the stack the Lua value associated with the full userdata
3720at the given index.
3721
3722
3723<p>
3724Returns the type of the pushed value.
3725
3726
3727
3728
3729
3730<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
3731<span class="apii">[-1, +1, &ndash;]</span>
3732<pre>void lua_insert (lua_State *L, int index);</pre>
3733
3734<p>
3735Moves the top element into the given valid index,
3736shifting up the elements above this index to open space.
3737This function cannot be called with a pseudo-index,
3738because a pseudo-index is not an actual stack position.
3739
3740
3741
3742
3743
3744<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
3745<pre>typedef ... lua_Integer;</pre>
3746
3747<p>
3748The type of integers in Lua.
3749
3750
3751<p>
3752By default this type is <code>long long</code>,
3753(usually a 64-bit two-complement integer),
3754but that can be changed to <code>long</code> or <code>int</code>
3755(usually a 32-bit two-complement integer).
3756(See <code>LUA_INT_TYPE</code> in <code>luaconf.h</code>.)
3757
3758
3759<p>
3760Lua also defines the constants
3761<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>,
3762with the minimum and the maximum values that fit in this type.
3763
3764
3765
3766
3767
3768<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
3769<span class="apii">[-0, +0, &ndash;]</span>
3770<pre>int lua_isboolean (lua_State *L, int index);</pre>
3771
3772<p>
3773Returns 1 if the value at the given index is a boolean,
3774and 0&nbsp;otherwise.
3775
3776
3777
3778
3779
3780<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
3781<span class="apii">[-0, +0, &ndash;]</span>
3782<pre>int lua_iscfunction (lua_State *L, int index);</pre>
3783
3784<p>
3785Returns 1 if the value at the given index is a C&nbsp;function,
3786and 0&nbsp;otherwise.
3787
3788
3789
3790
3791
3792<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
3793<span class="apii">[-0, +0, &ndash;]</span>
3794<pre>int lua_isfunction (lua_State *L, int index);</pre>
3795
3796<p>
3797Returns 1 if the value at the given index is a function
3798(either C or Lua), and 0&nbsp;otherwise.
3799
3800
3801
3802
3803
3804<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p>
3805<span class="apii">[-0, +0, &ndash;]</span>
3806<pre>int lua_isinteger (lua_State *L, int index);</pre>
3807
3808<p>
3809Returns 1 if the value at the given index is an integer
3810(that is, the value is a number and is represented as an integer),
3811and 0&nbsp;otherwise.
3812
3813
3814
3815
3816
3817<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
3818<span class="apii">[-0, +0, &ndash;]</span>
3819<pre>int lua_islightuserdata (lua_State *L, int index);</pre>
3820
3821<p>
3822Returns 1 if the value at the given index is a light userdata,
3823and 0&nbsp;otherwise.
3824
3825
3826
3827
3828
3829<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
3830<span class="apii">[-0, +0, &ndash;]</span>
3831<pre>int lua_isnil (lua_State *L, int index);</pre>
3832
3833<p>
3834Returns 1 if the value at the given index is <b>nil</b>,
3835and 0&nbsp;otherwise.
3836
3837
3838
3839
3840
3841<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
3842<span class="apii">[-0, +0, &ndash;]</span>
3843<pre>int lua_isnone (lua_State *L, int index);</pre>
3844
3845<p>
3846Returns 1 if the given index is not valid,
3847and 0&nbsp;otherwise.
3848
3849
3850
3851
3852
3853<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
3854<span class="apii">[-0, +0, &ndash;]</span>
3855<pre>int lua_isnoneornil (lua_State *L, int index);</pre>
3856
3857<p>
3858Returns 1 if the given index is not valid
3859or if the value at this index is <b>nil</b>,
3860and 0&nbsp;otherwise.
3861
3862
3863
3864
3865
3866<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
3867<span class="apii">[-0, +0, &ndash;]</span>
3868<pre>int lua_isnumber (lua_State *L, int index);</pre>
3869
3870<p>
3871Returns 1 if the value at the given index is a number
3872or a string convertible to a number,
3873and 0&nbsp;otherwise.
3874
3875
3876
3877
3878
3879<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
3880<span class="apii">[-0, +0, &ndash;]</span>
3881<pre>int lua_isstring (lua_State *L, int index);</pre>
3882
3883<p>
3884Returns 1 if the value at the given index is a string
3885or a number (which is always convertible to a string),
3886and 0&nbsp;otherwise.
3887
3888
3889
3890
3891
3892<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
3893<span class="apii">[-0, +0, &ndash;]</span>
3894<pre>int lua_istable (lua_State *L, int index);</pre>
3895
3896<p>
3897Returns 1 if the value at the given index is a table,
3898and 0&nbsp;otherwise.
3899
3900
3901
3902
3903
3904<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
3905<span class="apii">[-0, +0, &ndash;]</span>
3906<pre>int lua_isthread (lua_State *L, int index);</pre>
3907
3908<p>
3909Returns 1 if the value at the given index is a thread,
3910and 0&nbsp;otherwise.
3911
3912
3913
3914
3915
3916<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
3917<span class="apii">[-0, +0, &ndash;]</span>
3918<pre>int lua_isuserdata (lua_State *L, int index);</pre>
3919
3920<p>
3921Returns 1 if the value at the given index is a userdata
3922(either full or light), and 0&nbsp;otherwise.
3923
3924
3925
3926
3927
3928<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p>
3929<span class="apii">[-0, +0, &ndash;]</span>
3930<pre>int lua_isyieldable (lua_State *L);</pre>
3931
3932<p>
3933Returns 1 if the given coroutine can yield,
3934and 0&nbsp;otherwise.
3935
3936
3937
3938
3939
3940<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3>
3941<pre>typedef ... lua_KContext;</pre>
3942
3943<p>
3944The type for continuation-function contexts.
3945It must be a numeric type.
3946This type is defined as <code>intptr_t</code>
3947when <code>intptr_t</code> is available,
3948so that it can store pointers too.
3949Otherwise, it is defined as <code>ptrdiff_t</code>.
3950
3951
3952
3953
3954
3955<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3>
3956<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre>
3957
3958<p>
3959Type for continuation functions (see <a href="#4.7">&sect;4.7</a>).
3960
3961
3962
3963
3964
3965<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p>
3966<span class="apii">[-0, +1, <em>e</em>]</span>
3967<pre>void lua_len (lua_State *L, int index);</pre>
3968
3969<p>
3970Returns the length of the value at the given index.
3971It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>) and
3972may trigger a metamethod for the "length" event (see <a href="#2.4">&sect;2.4</a>).
3973The result is pushed on the stack.
3974
3975
3976
3977
3978
3979<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
3980<span class="apii">[-0, +1, &ndash;]</span>
3981<pre>int lua_load (lua_State *L,
3982              lua_Reader reader,
3983              void *data,
3984              const char *chunkname,
3985              const char *mode);</pre>
3986
3987<p>
3988Loads a Lua chunk without running it.
3989If there are no errors,
3990<code>lua_load</code> pushes the compiled chunk as a Lua
3991function on top of the stack.
3992Otherwise, it pushes an error message.
3993
3994
3995<p>
3996The return values of <code>lua_load</code> are:
3997
3998<ul>
3999
4000<li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li>
4001
4002<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b>
4003syntax error during precompilation;</li>
4004
4005<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
4006memory allocation (out-of-memory) error;</li>
4007
4008<li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
4009error while running a <code>__gc</code> metamethod.
4010(This error has no relation with the chunk being loaded.
4011It is generated by the garbage collector.)
4012</li>
4013
4014</ul>
4015
4016<p>
4017The <code>lua_load</code> function uses a user-supplied <code>reader</code> function
4018to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
4019The <code>data</code> argument is an opaque value passed to the reader function.
4020
4021
4022<p>
4023The <code>chunkname</code> argument gives a name to the chunk,
4024which is used for error messages and in debug information (see <a href="#4.9">&sect;4.9</a>).
4025
4026
4027<p>
4028<code>lua_load</code> automatically detects whether the chunk is text or binary
4029and loads it accordingly (see program <code>luac</code>).
4030The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>,
4031with the addition that
4032a <code>NULL</code> value is equivalent to the string "<code>bt</code>".
4033
4034
4035<p>
4036<code>lua_load</code> uses the stack internally,
4037so the reader function must always leave the stack
4038unmodified when returning.
4039
4040
4041<p>
4042If the resulting function has upvalues,
4043its first upvalue is set to the value of the global environment
4044stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">&sect;4.5</a>).
4045When loading main chunks,
4046this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
4047Other upvalues are initialized with <b>nil</b>.
4048
4049
4050
4051
4052
4053<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
4054<span class="apii">[-0, +0, &ndash;]</span>
4055<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
4056
4057<p>
4058Creates a new thread running in a new, independent state.
4059Returns <code>NULL</code> if it cannot create the thread or the state
4060(due to lack of memory).
4061The argument <code>f</code> is the allocator function;
4062Lua does all memory allocation for this state
4063through this function (see <a href="#lua_Alloc"><code>lua_Alloc</code></a>).
4064The second argument, <code>ud</code>, is an opaque pointer that Lua
4065passes to the allocator in every call.
4066
4067
4068
4069
4070
4071<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
4072<span class="apii">[-0, +1, <em>m</em>]</span>
4073<pre>void lua_newtable (lua_State *L);</pre>
4074
4075<p>
4076Creates a new empty table and pushes it onto the stack.
4077It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
4078
4079
4080
4081
4082
4083<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
4084<span class="apii">[-0, +1, <em>m</em>]</span>
4085<pre>lua_State *lua_newthread (lua_State *L);</pre>
4086
4087<p>
4088Creates a new thread, pushes it on the stack,
4089and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
4090The new thread returned by this function shares with the original thread
4091its global environment,
4092but has an independent execution stack.
4093
4094
4095<p>
4096There is no explicit function to close or to destroy a thread.
4097Threads are subject to garbage collection,
4098like any Lua object.
4099
4100
4101
4102
4103
4104<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
4105<span class="apii">[-0, +1, <em>m</em>]</span>
4106<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
4107
4108<p>
4109This function allocates a new block of memory with the given size,
4110pushes onto the stack a new full userdata with the block address,
4111and returns this address.
4112The host program can freely use this memory.
4113
4114
4115
4116
4117
4118<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
4119<span class="apii">[-1, +(2|0), <em>e</em>]</span>
4120<pre>int lua_next (lua_State *L, int index);</pre>
4121
4122<p>
4123Pops a key from the stack,
4124and pushes a key&ndash;value pair from the table at the given index
4125(the "next" pair after the given key).
4126If there are no more elements in the table,
4127then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
4128
4129
4130<p>
4131A typical traversal looks like this:
4132
4133<pre>
4134     /* table is in the stack at index 't' */
4135     lua_pushnil(L);  /* first key */
4136     while (lua_next(L, t) != 0) {
4137       /* uses 'key' (at index -2) and 'value' (at index -1) */
4138       printf("%s - %s\n",
4139              lua_typename(L, lua_type(L, -2)),
4140              lua_typename(L, lua_type(L, -1)));
4141       /* removes 'value'; keeps 'key' for next iteration */
4142       lua_pop(L, 1);
4143     }
4144</pre>
4145
4146<p>
4147While traversing a table,
4148do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
4149unless you know that the key is actually a string.
4150Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change
4151the value at the given index;
4152this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
4153
4154
4155<p>
4156See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
4157the table during its traversal.
4158
4159
4160
4161
4162
4163<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
4164<pre>typedef ... lua_Number;</pre>
4165
4166<p>
4167The type of floats in Lua.
4168
4169
4170<p>
4171By default this type is double,
4172but that can be changed to a single float or a long double.
4173(See <code>LUA_FLOAT_TYPE</code> in <code>luaconf.h</code>.)
4174
4175
4176
4177
4178
4179<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3>
4180<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre>
4181
4182<p>
4183Converts a Lua float to a Lua integer.
4184This macro assumes that <code>n</code> has an integral value.
4185If that value is within the range of Lua integers,
4186it is converted to an integer and assigned to <code>*p</code>.
4187The macro results in a boolean indicating whether the
4188conversion was successful.
4189(Note that this range test can be tricky to do
4190correctly without this macro,
4191due to roundings.)
4192
4193
4194<p>
4195This macro may evaluate its arguments more than once.
4196
4197
4198
4199
4200
4201<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
4202<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4203<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre>
4204
4205<p>
4206Calls a function in protected mode.
4207
4208
4209<p>
4210Both <code>nargs</code> and <code>nresults</code> have the same meaning as
4211in <a href="#lua_call"><code>lua_call</code></a>.
4212If there are no errors during the call,
4213<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
4214However, if there is any error,
4215<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
4216pushes a single value on the stack (the error object),
4217and returns an error code.
4218Like <a href="#lua_call"><code>lua_call</code></a>,
4219<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
4220and its arguments from the stack.
4221
4222
4223<p>
4224If <code>msgh</code> is 0,
4225then the error object returned on the stack
4226is exactly the original error object.
4227Otherwise, <code>msgh</code> is the stack index of a
4228<em>message handler</em>.
4229(This index cannot be a pseudo-index.)
4230In case of runtime errors,
4231this function will be called with the error object
4232and its return value will be the object
4233returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
4234
4235
4236<p>
4237Typically, the message handler is used to add more debug
4238information to the error object, such as a stack traceback.
4239Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
4240since by then the stack has unwound.
4241
4242
4243<p>
4244The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants
4245(defined in <code>lua.h</code>):
4246
4247<ul>
4248
4249<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b>
4250success.</li>
4251
4252<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b>
4253a runtime error.
4254</li>
4255
4256<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
4257memory allocation error.
4258For such errors, Lua does not call the message handler.
4259</li>
4260
4261<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b>
4262error while running the message handler.
4263</li>
4264
4265<li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
4266error while running a <code>__gc</code> metamethod.
4267For such errors, Lua does not call the message handler
4268(as this kind of error typically has no relation
4269with the function being called).
4270</li>
4271
4272</ul>
4273
4274
4275
4276
4277<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p>
4278<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4279<pre>int lua_pcallk (lua_State *L,
4280                int nargs,
4281                int nresults,
4282                int msgh,
4283                lua_KContext ctx,
4284                lua_KFunction k);</pre>
4285
4286<p>
4287This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>,
4288but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
4289
4290
4291
4292
4293
4294<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
4295<span class="apii">[-n, +0, &ndash;]</span>
4296<pre>void lua_pop (lua_State *L, int n);</pre>
4297
4298<p>
4299Pops <code>n</code> elements from the stack.
4300
4301
4302
4303
4304
4305<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
4306<span class="apii">[-0, +1, &ndash;]</span>
4307<pre>void lua_pushboolean (lua_State *L, int b);</pre>
4308
4309<p>
4310Pushes a boolean value with value <code>b</code> onto the stack.
4311
4312
4313
4314
4315
4316<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
4317<span class="apii">[-n, +1, <em>m</em>]</span>
4318<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
4319
4320<p>
4321Pushes a new C&nbsp;closure onto the stack.
4322
4323
4324<p>
4325When a C&nbsp;function is created,
4326it is possible to associate some values with it,
4327thus creating a C&nbsp;closure (see <a href="#4.4">&sect;4.4</a>);
4328these values are then accessible to the function whenever it is called.
4329To associate values with a C&nbsp;function,
4330first these values must be pushed onto the stack
4331(when there are multiple values, the first value is pushed first).
4332Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
4333is called to create and push the C&nbsp;function onto the stack,
4334with the argument <code>n</code> telling how many values will be
4335associated with the function.
4336<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
4337
4338
4339<p>
4340The maximum value for <code>n</code> is 255.
4341
4342
4343<p>
4344When <code>n</code> is zero,
4345this function creates a <em>light C&nbsp;function</em>,
4346which is just a pointer to the C&nbsp;function.
4347In that case, it never raises a memory error.
4348
4349
4350
4351
4352
4353<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
4354<span class="apii">[-0, +1, &ndash;]</span>
4355<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
4356
4357<p>
4358Pushes a C&nbsp;function onto the stack.
4359This function receives a pointer to a C&nbsp;function
4360and pushes onto the stack a Lua value of type <code>function</code> that,
4361when called, invokes the corresponding C&nbsp;function.
4362
4363
4364<p>
4365Any function to be callable by Lua must
4366follow the correct protocol to receive its parameters
4367and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
4368
4369
4370
4371
4372
4373<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
4374<span class="apii">[-0, +1, <em>e</em>]</span>
4375<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
4376
4377<p>
4378Pushes onto the stack a formatted string
4379and returns a pointer to this string.
4380It is similar to the ISO&nbsp;C function <code>sprintf</code>,
4381but has some important differences:
4382
4383<ul>
4384
4385<li>
4386You do not have to allocate space for the result:
4387the result is a Lua string and Lua takes care of memory allocation
4388(and deallocation, through garbage collection).
4389</li>
4390
4391<li>
4392The conversion specifiers are quite restricted.
4393There are no flags, widths, or precisions.
4394The conversion specifiers can only be
4395'<code>%%</code>' (inserts the character '<code>%</code>'),
4396'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
4397'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
4398'<code>%I</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>),
4399'<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
4400'<code>%d</code>' (inserts an <code>int</code>),
4401'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and
4402'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence).
4403</li>
4404
4405</ul>
4406
4407<p>
4408Unlike other push functions,
4409this function checks for the stack space it needs,
4410including the slot for its result.
4411
4412
4413
4414
4415
4416<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p>
4417<span class="apii">[-0, +1, &ndash;]</span>
4418<pre>void lua_pushglobaltable (lua_State *L);</pre>
4419
4420<p>
4421Pushes the global environment onto the stack.
4422
4423
4424
4425
4426
4427<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
4428<span class="apii">[-0, +1, &ndash;]</span>
4429<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
4430
4431<p>
4432Pushes an integer with value <code>n</code> onto the stack.
4433
4434
4435
4436
4437
4438<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
4439<span class="apii">[-0, +1, &ndash;]</span>
4440<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
4441
4442<p>
4443Pushes a light userdata onto the stack.
4444
4445
4446<p>
4447Userdata represent C&nbsp;values in Lua.
4448A <em>light userdata</em> represents a pointer, a <code>void*</code>.
4449It is a value (like a number):
4450you do not create it, it has no individual metatable,
4451and it is not collected (as it was never created).
4452A light userdata is equal to "any"
4453light userdata with the same C&nbsp;address.
4454
4455
4456
4457
4458
4459<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
4460<span class="apii">[-0, +1, <em>m</em>]</span>
4461<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre>
4462
4463<p>
4464This macro is equivalent to <a href="#lua_pushstring"><code>lua_pushstring</code></a>,
4465but should be used only when <code>s</code> is a literal string.
4466
4467
4468
4469
4470
4471<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
4472<span class="apii">[-0, +1, <em>m</em>]</span>
4473<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
4474
4475<p>
4476Pushes the string pointed to by <code>s</code> with size <code>len</code>
4477onto the stack.
4478Lua makes (or reuses) an internal copy of the given string,
4479so the memory at <code>s</code> can be freed or reused immediately after
4480the function returns.
4481The string can contain any binary data,
4482including embedded zeros.
4483
4484
4485<p>
4486Returns a pointer to the internal copy of the string.
4487
4488
4489
4490
4491
4492<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
4493<span class="apii">[-0, +1, &ndash;]</span>
4494<pre>void lua_pushnil (lua_State *L);</pre>
4495
4496<p>
4497Pushes a nil value onto the stack.
4498
4499
4500
4501
4502
4503<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
4504<span class="apii">[-0, +1, &ndash;]</span>
4505<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
4506
4507<p>
4508Pushes a float with value <code>n</code> onto the stack.
4509
4510
4511
4512
4513
4514<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
4515<span class="apii">[-0, +1, <em>m</em>]</span>
4516<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre>
4517
4518<p>
4519Pushes the zero-terminated string pointed to by <code>s</code>
4520onto the stack.
4521Lua makes (or reuses) an internal copy of the given string,
4522so the memory at <code>s</code> can be freed or reused immediately after
4523the function returns.
4524
4525
4526<p>
4527Returns a pointer to the internal copy of the string.
4528
4529
4530<p>
4531If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>.
4532
4533
4534
4535
4536
4537<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
4538<span class="apii">[-0, +1, &ndash;]</span>
4539<pre>int lua_pushthread (lua_State *L);</pre>
4540
4541<p>
4542Pushes the thread represented by <code>L</code> onto the stack.
4543Returns 1 if this thread is the main thread of its state.
4544
4545
4546
4547
4548
4549<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
4550<span class="apii">[-0, +1, &ndash;]</span>
4551<pre>void lua_pushvalue (lua_State *L, int index);</pre>
4552
4553<p>
4554Pushes a copy of the element at the given index
4555onto the stack.
4556
4557
4558
4559
4560
4561<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
4562<span class="apii">[-0, +1, <em>m</em>]</span>
4563<pre>const char *lua_pushvfstring (lua_State *L,
4564                              const char *fmt,
4565                              va_list argp);</pre>
4566
4567<p>
4568Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
4569instead of a variable number of arguments.
4570
4571
4572
4573
4574
4575<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
4576<span class="apii">[-0, +0, &ndash;]</span>
4577<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
4578
4579<p>
4580Returns 1 if the two values in indices <code>index1</code> and
4581<code>index2</code> are primitively equal
4582(that is, without calling the <code>__eq</code> metamethod).
4583Otherwise returns&nbsp;0.
4584Also returns&nbsp;0 if any of the indices are not valid.
4585
4586
4587
4588
4589
4590<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
4591<span class="apii">[-1, +1, &ndash;]</span>
4592<pre>int lua_rawget (lua_State *L, int index);</pre>
4593
4594<p>
4595Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
4596(i.e., without metamethods).
4597
4598
4599
4600
4601
4602<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
4603<span class="apii">[-0, +1, &ndash;]</span>
4604<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre>
4605
4606<p>
4607Pushes onto the stack the value <code>t[n]</code>,
4608where <code>t</code> is the table at the given index.
4609The access is raw,
4610that is, it does not invoke the <code>__index</code> metamethod.
4611
4612
4613<p>
4614Returns the type of the pushed value.
4615
4616
4617
4618
4619
4620<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p>
4621<span class="apii">[-0, +1, &ndash;]</span>
4622<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre>
4623
4624<p>
4625Pushes onto the stack the value <code>t[k]</code>,
4626where <code>t</code> is the table at the given index and
4627<code>k</code> is the pointer <code>p</code> represented as a light userdata.
4628The access is raw;
4629that is, it does not invoke the <code>__index</code> metamethod.
4630
4631
4632<p>
4633Returns the type of the pushed value.
4634
4635
4636
4637
4638
4639<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p>
4640<span class="apii">[-0, +0, &ndash;]</span>
4641<pre>size_t lua_rawlen (lua_State *L, int index);</pre>
4642
4643<p>
4644Returns the raw "length" of the value at the given index:
4645for strings, this is the string length;
4646for tables, this is the result of the length operator ('<code>#</code>')
4647with no metamethods;
4648for userdata, this is the size of the block of memory allocated
4649for the userdata;
4650for other values, it is&nbsp;0.
4651
4652
4653
4654
4655
4656<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
4657<span class="apii">[-2, +0, <em>m</em>]</span>
4658<pre>void lua_rawset (lua_State *L, int index);</pre>
4659
4660<p>
4661Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
4662(i.e., without metamethods).
4663
4664
4665
4666
4667
4668<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
4669<span class="apii">[-1, +0, <em>m</em>]</span>
4670<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre>
4671
4672<p>
4673Does the equivalent of <code>t[i] = v</code>,
4674where <code>t</code> is the table at the given index
4675and <code>v</code> is the value at the top of the stack.
4676
4677
4678<p>
4679This function pops the value from the stack.
4680The assignment is raw,
4681that is, it does not invoke the <code>__newindex</code> metamethod.
4682
4683
4684
4685
4686
4687<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p>
4688<span class="apii">[-1, +0, <em>m</em>]</span>
4689<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre>
4690
4691<p>
4692Does the equivalent of <code>t[p] = v</code>,
4693where <code>t</code> is the table at the given index,
4694<code>p</code> is encoded as a light userdata,
4695and <code>v</code> is the value at the top of the stack.
4696
4697
4698<p>
4699This function pops the value from the stack.
4700The assignment is raw,
4701that is, it does not invoke <code>__newindex</code> metamethod.
4702
4703
4704
4705
4706
4707<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
4708<pre>typedef const char * (*lua_Reader) (lua_State *L,
4709                                    void *data,
4710                                    size_t *size);</pre>
4711
4712<p>
4713The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
4714Every time it needs another piece of the chunk,
4715<a href="#lua_load"><code>lua_load</code></a> calls the reader,
4716passing along its <code>data</code> parameter.
4717The reader must return a pointer to a block of memory
4718with a new piece of the chunk
4719and set <code>size</code> to the block size.
4720The block must exist until the reader function is called again.
4721To signal the end of the chunk,
4722the reader must return <code>NULL</code> or set <code>size</code> to zero.
4723The reader function may return pieces of any size greater than zero.
4724
4725
4726
4727
4728
4729<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
4730<span class="apii">[-0, +0, <em>e</em>]</span>
4731<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre>
4732
4733<p>
4734Sets the C&nbsp;function <code>f</code> as the new value of global <code>name</code>.
4735It is defined as a macro:
4736
4737<pre>
4738     #define lua_register(L,n,f) \
4739            (lua_pushcfunction(L, f), lua_setglobal(L, n))
4740</pre>
4741
4742
4743
4744
4745<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
4746<span class="apii">[-1, +0, &ndash;]</span>
4747<pre>void lua_remove (lua_State *L, int index);</pre>
4748
4749<p>
4750Removes the element at the given valid index,
4751shifting down the elements above this index to fill the gap.
4752This function cannot be called with a pseudo-index,
4753because a pseudo-index is not an actual stack position.
4754
4755
4756
4757
4758
4759<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
4760<span class="apii">[-1, +0, &ndash;]</span>
4761<pre>void lua_replace (lua_State *L, int index);</pre>
4762
4763<p>
4764Moves the top element into the given valid index
4765without shifting any element
4766(therefore replacing the value at that given index),
4767and then pops the top element.
4768
4769
4770
4771
4772
4773<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
4774<span class="apii">[-?, +?, &ndash;]</span>
4775<pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre>
4776
4777<p>
4778Starts and resumes a coroutine in the given thread <code>L</code>.
4779
4780
4781<p>
4782To start a coroutine,
4783you push onto the thread stack the main function plus any arguments;
4784then you call <a href="#lua_resume"><code>lua_resume</code></a>,
4785with <code>nargs</code> being the number of arguments.
4786This call returns when the coroutine suspends or finishes its execution.
4787When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
4788or all values returned by the body function.
4789<a href="#lua_resume"><code>lua_resume</code></a> returns
4790<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
4791<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution
4792without errors,
4793or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
4794
4795
4796<p>
4797In case of errors,
4798the stack is not unwound,
4799so you can use the debug API over it.
4800The error object is on the top of the stack.
4801
4802
4803<p>
4804To resume a coroutine,
4805you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>,
4806put on its stack only the values to
4807be passed as results from <code>yield</code>,
4808and then call <a href="#lua_resume"><code>lua_resume</code></a>.
4809
4810
4811<p>
4812The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>.
4813If there is no such coroutine,
4814this parameter can be <code>NULL</code>.
4815
4816
4817
4818
4819
4820<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p>
4821<span class="apii">[-0, +0, &ndash;]</span>
4822<pre>void lua_rotate (lua_State *L, int idx, int n);</pre>
4823
4824<p>
4825Rotates the stack elements between the valid index <code>idx</code>
4826and the top of the stack.
4827The elements are rotated <code>n</code> positions in the direction of the top,
4828for a positive <code>n</code>,
4829or <code>-n</code> positions in the direction of the bottom,
4830for a negative <code>n</code>.
4831The absolute value of <code>n</code> must not be greater than the size
4832of the slice being rotated.
4833This function cannot be called with a pseudo-index,
4834because a pseudo-index is not an actual stack position.
4835
4836
4837
4838
4839
4840<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
4841<span class="apii">[-0, +0, &ndash;]</span>
4842<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
4843
4844<p>
4845Changes the allocator function of a given state to <code>f</code>
4846with user data <code>ud</code>.
4847
4848
4849
4850
4851
4852<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
4853<span class="apii">[-1, +0, <em>e</em>]</span>
4854<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
4855
4856<p>
4857Does the equivalent to <code>t[k] = v</code>,
4858where <code>t</code> is the value at the given index
4859and <code>v</code> is the value at the top of the stack.
4860
4861
4862<p>
4863This function pops the value from the stack.
4864As in Lua, this function may trigger a metamethod
4865for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4866
4867
4868
4869
4870
4871<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
4872<span class="apii">[-1, +0, <em>e</em>]</span>
4873<pre>void lua_setglobal (lua_State *L, const char *name);</pre>
4874
4875<p>
4876Pops a value from the stack and
4877sets it as the new value of global <code>name</code>.
4878
4879
4880
4881
4882
4883<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p>
4884<span class="apii">[-1, +0, <em>e</em>]</span>
4885<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre>
4886
4887<p>
4888Does the equivalent to <code>t[n] = v</code>,
4889where <code>t</code> is the value at the given index
4890and <code>v</code> is the value at the top of the stack.
4891
4892
4893<p>
4894This function pops the value from the stack.
4895As in Lua, this function may trigger a metamethod
4896for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4897
4898
4899
4900
4901
4902<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
4903<span class="apii">[-1, +0, &ndash;]</span>
4904<pre>void lua_setmetatable (lua_State *L, int index);</pre>
4905
4906<p>
4907Pops a table from the stack and
4908sets it as the new metatable for the value at the given index.
4909
4910
4911
4912
4913
4914<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
4915<span class="apii">[-2, +0, <em>e</em>]</span>
4916<pre>void lua_settable (lua_State *L, int index);</pre>
4917
4918<p>
4919Does the equivalent to <code>t[k] = v</code>,
4920where <code>t</code> is the value at the given index,
4921<code>v</code> is the value at the top of the stack,
4922and <code>k</code> is the value just below the top.
4923
4924
4925<p>
4926This function pops both the key and the value from the stack.
4927As in Lua, this function may trigger a metamethod
4928for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4929
4930
4931
4932
4933
4934<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
4935<span class="apii">[-?, +?, &ndash;]</span>
4936<pre>void lua_settop (lua_State *L, int index);</pre>
4937
4938<p>
4939Accepts any index, or&nbsp;0,
4940and sets the stack top to this index.
4941If the new top is larger than the old one,
4942then the new elements are filled with <b>nil</b>.
4943If <code>index</code> is&nbsp;0, then all stack elements are removed.
4944
4945
4946
4947
4948
4949<hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p>
4950<span class="apii">[-1, +0, &ndash;]</span>
4951<pre>void lua_setuservalue (lua_State *L, int index);</pre>
4952
4953<p>
4954Pops a value from the stack and sets it as
4955the new value associated to the full userdata at the given index.
4956
4957
4958
4959
4960
4961<hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
4962<pre>typedef struct lua_State lua_State;</pre>
4963
4964<p>
4965An opaque structure that points to a thread and indirectly
4966(through the thread) to the whole state of a Lua interpreter.
4967The Lua library is fully reentrant:
4968it has no global variables.
4969All information about a state is accessible through this structure.
4970
4971
4972<p>
4973A pointer to this structure must be passed as the first argument to
4974every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
4975which creates a Lua state from scratch.
4976
4977
4978
4979
4980
4981<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
4982<span class="apii">[-0, +0, &ndash;]</span>
4983<pre>int lua_status (lua_State *L);</pre>
4984
4985<p>
4986Returns the status of the thread <code>L</code>.
4987
4988
4989<p>
4990The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread,
4991an error code if the thread finished the execution
4992of a <a href="#lua_resume"><code>lua_resume</code></a> with an error,
4993or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
4994
4995
4996<p>
4997You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>.
4998You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>
4999(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a>
5000(to resume a coroutine).
5001
5002
5003
5004
5005
5006<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p>
5007<span class="apii">[-0, +1, &ndash;]</span>
5008<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre>
5009
5010<p>
5011Converts the zero-terminated string <code>s</code> to a number,
5012pushes that number into the stack,
5013and returns the total size of the string,
5014that is, its length plus one.
5015The conversion can result in an integer or a float,
5016according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
5017The string may have leading and trailing spaces and a sign.
5018If the string is not a valid numeral,
5019returns 0 and pushes nothing.
5020(Note that the result can be used as a boolean,
5021true if the conversion succeeds.)
5022
5023
5024
5025
5026
5027<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
5028<span class="apii">[-0, +0, &ndash;]</span>
5029<pre>int lua_toboolean (lua_State *L, int index);</pre>
5030
5031<p>
5032Converts the Lua value at the given index to a C&nbsp;boolean
5033value (0&nbsp;or&nbsp;1).
5034Like all tests in Lua,
5035<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value
5036different from <b>false</b> and <b>nil</b>;
5037otherwise it returns false.
5038(If you want to accept only actual boolean values,
5039use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
5040
5041
5042
5043
5044
5045<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
5046<span class="apii">[-0, +0, &ndash;]</span>
5047<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
5048
5049<p>
5050Converts a value at the given index to a C&nbsp;function.
5051That value must be a C&nbsp;function;
5052otherwise, returns <code>NULL</code>.
5053
5054
5055
5056
5057
5058<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
5059<span class="apii">[-0, +0, &ndash;]</span>
5060<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>
5061
5062<p>
5063Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
5064
5065
5066
5067
5068
5069<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p>
5070<span class="apii">[-0, +0, &ndash;]</span>
5071<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre>
5072
5073<p>
5074Converts the Lua value at the given index
5075to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
5076The Lua value must be an integer,
5077or a number or string convertible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>);
5078otherwise, <code>lua_tointegerx</code> returns&nbsp;0.
5079
5080
5081<p>
5082If <code>isnum</code> is not <code>NULL</code>,
5083its referent is assigned a boolean value that
5084indicates whether the operation succeeded.
5085
5086
5087
5088
5089
5090<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
5091<span class="apii">[-0, +0, <em>m</em>]</span>
5092<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
5093
5094<p>
5095Converts the Lua value at the given index to a C&nbsp;string.
5096If <code>len</code> is not <code>NULL</code>,
5097it sets <code>*len</code> with the string length.
5098The Lua value must be a string or a number;
5099otherwise, the function returns <code>NULL</code>.
5100If the value is a number,
5101then <code>lua_tolstring</code> also
5102<em>changes the actual value in the stack to a string</em>.
5103(This change confuses <a href="#lua_next"><code>lua_next</code></a>
5104when <code>lua_tolstring</code> is applied to keys during a table traversal.)
5105
5106
5107<p>
5108<code>lua_tolstring</code> returns a pointer
5109to a string inside the Lua state.
5110This string always has a zero ('<code>\0</code>')
5111after its last character (as in&nbsp;C),
5112but can contain other zeros in its body.
5113
5114
5115<p>
5116Because Lua has garbage collection,
5117there is no guarantee that the pointer returned by <code>lua_tolstring</code>
5118will be valid after the corresponding Lua value is removed from the stack.
5119
5120
5121
5122
5123
5124<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
5125<span class="apii">[-0, +0, &ndash;]</span>
5126<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
5127
5128<p>
5129Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
5130
5131
5132
5133
5134
5135<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p>
5136<span class="apii">[-0, +0, &ndash;]</span>
5137<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre>
5138
5139<p>
5140Converts the Lua value at the given index
5141to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
5142The Lua value must be a number or a string convertible to a number
5143(see <a href="#3.4.3">&sect;3.4.3</a>);
5144otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns&nbsp;0.
5145
5146
5147<p>
5148If <code>isnum</code> is not <code>NULL</code>,
5149its referent is assigned a boolean value that
5150indicates whether the operation succeeded.
5151
5152
5153
5154
5155
5156<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
5157<span class="apii">[-0, +0, &ndash;]</span>
5158<pre>const void *lua_topointer (lua_State *L, int index);</pre>
5159
5160<p>
5161Converts the value at the given index to a generic
5162C&nbsp;pointer (<code>void*</code>).
5163The value can be a userdata, a table, a thread, or a function;
5164otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
5165Different objects will give different pointers.
5166There is no way to convert the pointer back to its original value.
5167
5168
5169<p>
5170Typically this function is used only for hashing and debug information.
5171
5172
5173
5174
5175
5176<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
5177<span class="apii">[-0, +0, <em>m</em>]</span>
5178<pre>const char *lua_tostring (lua_State *L, int index);</pre>
5179
5180<p>
5181Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
5182
5183
5184
5185
5186
5187<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
5188<span class="apii">[-0, +0, &ndash;]</span>
5189<pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
5190
5191<p>
5192Converts the value at the given index to a Lua thread
5193(represented as <code>lua_State*</code>).
5194This value must be a thread;
5195otherwise, the function returns <code>NULL</code>.
5196
5197
5198
5199
5200
5201<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
5202<span class="apii">[-0, +0, &ndash;]</span>
5203<pre>void *lua_touserdata (lua_State *L, int index);</pre>
5204
5205<p>
5206If the value at the given index is a full userdata,
5207returns its block address.
5208If the value is a light userdata,
5209returns its pointer.
5210Otherwise, returns <code>NULL</code>.
5211
5212
5213
5214
5215
5216<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
5217<span class="apii">[-0, +0, &ndash;]</span>
5218<pre>int lua_type (lua_State *L, int index);</pre>
5219
5220<p>
5221Returns the type of the value in the given valid index,
5222or <code>LUA_TNONE</code> for a non-valid (but acceptable) index.
5223The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
5224defined in <code>lua.h</code>:
5225<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a> (0),
5226<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>,
5227<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>,
5228<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>,
5229<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>,
5230<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
5231<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>,
5232<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>,
5233and
5234<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>.
5235
5236
5237
5238
5239
5240<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
5241<span class="apii">[-0, +0, &ndash;]</span>
5242<pre>const char *lua_typename (lua_State *L, int tp);</pre>
5243
5244<p>
5245Returns the name of the type encoded by the value <code>tp</code>,
5246which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
5247
5248
5249
5250
5251
5252<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3>
5253<pre>typedef ... lua_Unsigned;</pre>
5254
5255<p>
5256The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>.
5257
5258
5259
5260
5261
5262<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p>
5263<span class="apii">[-0, +0, &ndash;]</span>
5264<pre>int lua_upvalueindex (int i);</pre>
5265
5266<p>
5267Returns the pseudo-index that represents the <code>i</code>-th upvalue of
5268the running function (see <a href="#4.4">&sect;4.4</a>).
5269
5270
5271
5272
5273
5274<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p>
5275<span class="apii">[-0, +0, &ndash;]</span>
5276<pre>const lua_Number *lua_version (lua_State *L);</pre>
5277
5278<p>
5279Returns the address of the version number
5280(a C static variable)
5281stored in the Lua core.
5282When called with a valid <a href="#lua_State"><code>lua_State</code></a>,
5283returns the address of the version used to create that state.
5284When called with <code>NULL</code>,
5285returns the address of the version running the call.
5286
5287
5288
5289
5290
5291<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
5292<pre>typedef int (*lua_Writer) (lua_State *L,
5293                           const void* p,
5294                           size_t sz,
5295                           void* ud);</pre>
5296
5297<p>
5298The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
5299Every time it produces another piece of chunk,
5300<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
5301passing along the buffer to be written (<code>p</code>),
5302its size (<code>sz</code>),
5303and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
5304
5305
5306<p>
5307The writer returns an error code:
53080&nbsp;means no errors;
5309any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
5310calling the writer again.
5311
5312
5313
5314
5315
5316<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
5317<span class="apii">[-?, +?, &ndash;]</span>
5318<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
5319
5320<p>
5321Exchange values between different threads of the same state.
5322
5323
5324<p>
5325This function pops <code>n</code> values from the stack <code>from</code>,
5326and pushes them onto the stack <code>to</code>.
5327
5328
5329
5330
5331
5332<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
5333<span class="apii">[-?, +?, <em>e</em>]</span>
5334<pre>int lua_yield (lua_State *L, int nresults);</pre>
5335
5336<p>
5337This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5338but it has no continuation (see <a href="#4.7">&sect;4.7</a>).
5339Therefore, when the thread resumes,
5340it continues the function that called
5341the function calling <code>lua_yield</code>.
5342
5343
5344
5345
5346
5347<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p>
5348<span class="apii">[-?, +?, <em>e</em>]</span>
5349<pre>int lua_yieldk (lua_State *L,
5350                int nresults,
5351                lua_KContext ctx,
5352                lua_KFunction k);</pre>
5353
5354<p>
5355Yields a coroutine (thread).
5356
5357
5358<p>
5359When a C&nbsp;function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5360the running coroutine suspends its execution,
5361and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
5362The parameter <code>nresults</code> is the number of values from the stack
5363that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
5364
5365
5366<p>
5367When the coroutine is resumed again,
5368Lua calls the given continuation function <code>k</code> to continue
5369the execution of the C&nbsp;function that yielded (see <a href="#4.7">&sect;4.7</a>).
5370This continuation function receives the same stack
5371from the previous function,
5372with the <code>n</code> results removed and
5373replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>.
5374Moreover,
5375the continuation function receives the value <code>ctx</code>
5376that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>.
5377
5378
5379<p>
5380Usually, this function does not return;
5381when the coroutine eventually resumes,
5382it continues executing the continuation function.
5383However, there is one special case,
5384which is when this function is called
5385from inside a line or a count hook (see <a href="#4.9">&sect;4.9</a>).
5386In that case, <code>lua_yieldk</code> should be called with no continuation
5387(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>) and no results,
5388and the hook should return immediately after the call.
5389Lua will yield and,
5390when the coroutine resumes again,
5391it will continue the normal execution
5392of the (Lua) function that triggered the hook.
5393
5394
5395<p>
5396This function can raise an error if it is called from a thread
5397with a pending C call with no continuation function,
5398or it is called from a thread that is not running inside a resume
5399(e.g., the main thread).
5400
5401
5402
5403
5404
5405
5406
5407<h2>4.9 &ndash; <a name="4.9">The Debug Interface</a></h2>
5408
5409<p>
5410Lua has no built-in debugging facilities.
5411Instead, it offers a special interface
5412by means of functions and <em>hooks</em>.
5413This interface allows the construction of different
5414kinds of debuggers, profilers, and other tools
5415that need "inside information" from the interpreter.
5416
5417
5418
5419<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
5420<pre>typedef struct lua_Debug {
5421  int event;
5422  const char *name;           /* (n) */
5423  const char *namewhat;       /* (n) */
5424  const char *what;           /* (S) */
5425  const char *source;         /* (S) */
5426  int currentline;            /* (l) */
5427  int linedefined;            /* (S) */
5428  int lastlinedefined;        /* (S) */
5429  unsigned char nups;         /* (u) number of upvalues */
5430  unsigned char nparams;      /* (u) number of parameters */
5431  char isvararg;              /* (u) */
5432  char istailcall;            /* (t) */
5433  char short_src[LUA_IDSIZE]; /* (S) */
5434  /* private part */
5435  <em>other fields</em>
5436} lua_Debug;</pre>
5437
5438<p>
5439A structure used to carry different pieces of
5440information about a function or an activation record.
5441<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
5442of this structure, for later use.
5443To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
5444call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5445
5446
5447<p>
5448The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
5449
5450<ul>
5451
5452<li><b><code>source</code>: </b>
5453the name of the chunk that created the function.
5454If <code>source</code> starts with a '<code>@</code>',
5455it means that the function was defined in a file where
5456the file name follows the '<code>@</code>'.
5457If <code>source</code> starts with a '<code>=</code>',
5458the remainder of its contents describe the source in a user-dependent manner.
5459Otherwise,
5460the function was defined in a string where
5461<code>source</code> is that string.
5462</li>
5463
5464<li><b><code>short_src</code>: </b>
5465a "printable" version of <code>source</code>, to be used in error messages.
5466</li>
5467
5468<li><b><code>linedefined</code>: </b>
5469the line number where the definition of the function starts.
5470</li>
5471
5472<li><b><code>lastlinedefined</code>: </b>
5473the line number where the definition of the function ends.
5474</li>
5475
5476<li><b><code>what</code>: </b>
5477the string <code>"Lua"</code> if the function is a Lua function,
5478<code>"C"</code> if it is a C&nbsp;function,
5479<code>"main"</code> if it is the main part of a chunk.
5480</li>
5481
5482<li><b><code>currentline</code>: </b>
5483the current line where the given function is executing.
5484When no line information is available,
5485<code>currentline</code> is set to -1.
5486</li>
5487
5488<li><b><code>name</code>: </b>
5489a reasonable name for the given function.
5490Because functions in Lua are first-class values,
5491they do not have a fixed name:
5492some functions can be the value of multiple global variables,
5493while others can be stored only in a table field.
5494The <code>lua_getinfo</code> function checks how the function was
5495called to find a suitable name.
5496If it cannot find a name,
5497then <code>name</code> is set to <code>NULL</code>.
5498</li>
5499
5500<li><b><code>namewhat</code>: </b>
5501explains the <code>name</code> field.
5502The value of <code>namewhat</code> can be
5503<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
5504<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
5505according to how the function was called.
5506(Lua uses the empty string when no other option seems to apply.)
5507</li>
5508
5509<li><b><code>istailcall</code>: </b>
5510true if this function invocation was called by a tail call.
5511In this case, the caller of this level is not in the stack.
5512</li>
5513
5514<li><b><code>nups</code>: </b>
5515the number of upvalues of the function.
5516</li>
5517
5518<li><b><code>nparams</code>: </b>
5519the number of fixed parameters of the function
5520(always 0&nbsp;for C&nbsp;functions).
5521</li>
5522
5523<li><b><code>isvararg</code>: </b>
5524true if the function is a vararg function
5525(always true for C&nbsp;functions).
5526</li>
5527
5528</ul>
5529
5530
5531
5532
5533<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
5534<span class="apii">[-0, +0, &ndash;]</span>
5535<pre>lua_Hook lua_gethook (lua_State *L);</pre>
5536
5537<p>
5538Returns the current hook function.
5539
5540
5541
5542
5543
5544<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
5545<span class="apii">[-0, +0, &ndash;]</span>
5546<pre>int lua_gethookcount (lua_State *L);</pre>
5547
5548<p>
5549Returns the current hook count.
5550
5551
5552
5553
5554
5555<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
5556<span class="apii">[-0, +0, &ndash;]</span>
5557<pre>int lua_gethookmask (lua_State *L);</pre>
5558
5559<p>
5560Returns the current hook mask.
5561
5562
5563
5564
5565
5566<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
5567<span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span>
5568<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
5569
5570<p>
5571Gets information about a specific function or function invocation.
5572
5573
5574<p>
5575To get information about a function invocation,
5576the parameter <code>ar</code> must be a valid activation record that was
5577filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5578given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5579
5580
5581<p>
5582To get information about a function, you push it onto the stack
5583and start the <code>what</code> string with the character '<code>&gt;</code>'.
5584(In that case,
5585<code>lua_getinfo</code> pops the function from the top of the stack.)
5586For instance, to know in which line a function <code>f</code> was defined,
5587you can write the following code:
5588
5589<pre>
5590     lua_Debug ar;
5591     lua_getglobal(L, "f");  /* get global 'f' */
5592     lua_getinfo(L, "&gt;S", &amp;ar);
5593     printf("%d\n", ar.linedefined);
5594</pre>
5595
5596<p>
5597Each character in the string <code>what</code>
5598selects some fields of the structure <code>ar</code> to be filled or
5599a value to be pushed on the stack:
5600
5601<ul>
5602
5603<li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>;
5604</li>
5605
5606<li><b>'<code>S</code>': </b>
5607fills in the fields <code>source</code>, <code>short_src</code>,
5608<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
5609</li>
5610
5611<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>;
5612</li>
5613
5614<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>;
5615</li>
5616
5617<li><b>'<code>u</code>': </b> fills in the fields
5618<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>;
5619</li>
5620
5621<li><b>'<code>f</code>': </b>
5622pushes onto the stack the function that is
5623running at the given level;
5624</li>
5625
5626<li><b>'<code>L</code>': </b>
5627pushes onto the stack a table whose indices are the
5628numbers of the lines that are valid on the function.
5629(A <em>valid line</em> is a line with some associated code,
5630that is, a line where you can put a break point.
5631Non-valid lines include empty lines and comments.)
5632
5633
5634<p>
5635If this option is given together with option '<code>f</code>',
5636its table is pushed after the function.
5637</li>
5638
5639</ul>
5640
5641<p>
5642This function returns 0 on error
5643(for instance, an invalid option in <code>what</code>).
5644
5645
5646
5647
5648
5649<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
5650<span class="apii">[-0, +(0|1), &ndash;]</span>
5651<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5652
5653<p>
5654Gets information about a local variable of
5655a given activation record or a given function.
5656
5657
5658<p>
5659In the first case,
5660the parameter <code>ar</code> must be a valid activation record that was
5661filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5662given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5663The index <code>n</code> selects which local variable to inspect;
5664see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices
5665and names.
5666
5667
5668<p>
5669<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
5670and returns its name.
5671
5672
5673<p>
5674In the second case, <code>ar</code> must be <code>NULL</code> and the function
5675to be inspected must be at the top of the stack.
5676In this case, only parameters of Lua functions are visible
5677(as there is no information about what variables are active)
5678and no values are pushed onto the stack.
5679
5680
5681<p>
5682Returns <code>NULL</code> (and pushes nothing)
5683when the index is greater than
5684the number of active local variables.
5685
5686
5687
5688
5689
5690<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
5691<span class="apii">[-0, +0, &ndash;]</span>
5692<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
5693
5694<p>
5695Gets information about the interpreter runtime stack.
5696
5697
5698<p>
5699This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
5700an identification of the <em>activation record</em>
5701of the function executing at a given level.
5702Level&nbsp;0 is the current running function,
5703whereas level <em>n+1</em> is the function that has called level <em>n</em>
5704(except for tail calls, which do not count on the stack).
5705When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
5706when called with a level greater than the stack depth,
5707it returns 0.
5708
5709
5710
5711
5712
5713<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
5714<span class="apii">[-0, +(0|1), &ndash;]</span>
5715<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
5716
5717<p>
5718Gets information about the <code>n</code>-th upvalue
5719of the closure at index <code>funcindex</code>.
5720It pushes the upvalue's value onto the stack
5721and returns its name.
5722Returns <code>NULL</code> (and pushes nothing)
5723when the index <code>n</code> is greater than the number of upvalues.
5724
5725
5726<p>
5727For C&nbsp;functions, this function uses the empty string <code>""</code>
5728as a name for all upvalues.
5729(For Lua functions,
5730upvalues are the external local variables that the function uses,
5731and that are consequently included in its closure.)
5732
5733
5734<p>
5735Upvalues have no particular order,
5736as they are active through the whole function.
5737They are numbered in an arbitrary order.
5738
5739
5740
5741
5742
5743<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
5744<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
5745
5746<p>
5747Type for debugging hook functions.
5748
5749
5750<p>
5751Whenever a hook is called, its <code>ar</code> argument has its field
5752<code>event</code> set to the specific event that triggered the hook.
5753Lua identifies these events with the following constants:
5754<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
5755<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
5756and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
5757Moreover, for line events, the field <code>currentline</code> is also set.
5758To get the value of any other field in <code>ar</code>,
5759the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5760
5761
5762<p>
5763For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>,
5764the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call;
5765in this case, there will be no corresponding return event.
5766
5767
5768<p>
5769While Lua is running a hook, it disables other calls to hooks.
5770Therefore, if a hook calls back Lua to execute a function or a chunk,
5771this execution occurs without any calls to hooks.
5772
5773
5774<p>
5775Hook functions cannot have continuations,
5776that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5777<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>.
5778
5779
5780<p>
5781Hook functions can yield under the following conditions:
5782Only count and line events can yield;
5783to yield, a hook function must finish its execution
5784calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero
5785(that is, with no values).
5786
5787
5788
5789
5790
5791<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
5792<span class="apii">[-0, +0, &ndash;]</span>
5793<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
5794
5795<p>
5796Sets the debugging hook function.
5797
5798
5799<p>
5800Argument <code>f</code> is the hook function.
5801<code>mask</code> specifies on which events the hook will be called:
5802it is formed by a bitwise OR of the constants
5803<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
5804<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
5805<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
5806and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
5807The <code>count</code> argument is only meaningful when the mask
5808includes <code>LUA_MASKCOUNT</code>.
5809For each event, the hook is called as explained below:
5810
5811<ul>
5812
5813<li><b>The call hook: </b> is called when the interpreter calls a function.
5814The hook is called just after Lua enters the new function,
5815before the function gets its arguments.
5816</li>
5817
5818<li><b>The return hook: </b> is called when the interpreter returns from a function.
5819The hook is called just before Lua leaves the function.
5820There is no standard way to access the values
5821to be returned by the function.
5822</li>
5823
5824<li><b>The line hook: </b> is called when the interpreter is about to
5825start the execution of a new line of code,
5826or when it jumps back in the code (even to the same line).
5827(This event only happens while Lua is executing a Lua function.)
5828</li>
5829
5830<li><b>The count hook: </b> is called after the interpreter executes every
5831<code>count</code> instructions.
5832(This event only happens while Lua is executing a Lua function.)
5833</li>
5834
5835</ul>
5836
5837<p>
5838A hook is disabled by setting <code>mask</code> to zero.
5839
5840
5841
5842
5843
5844<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
5845<span class="apii">[-(0|1), +0, &ndash;]</span>
5846<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5847
5848<p>
5849Sets the value of a local variable of a given activation record.
5850It assigns the value at the top of the stack
5851to the variable and returns its name.
5852It also pops the value from the stack.
5853
5854
5855<p>
5856Returns <code>NULL</code> (and pops nothing)
5857when the index is greater than
5858the number of active local variables.
5859
5860
5861<p>
5862Parameters <code>ar</code> and <code>n</code> are as in function <a href="#lua_getlocal"><code>lua_getlocal</code></a>.
5863
5864
5865
5866
5867
5868<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
5869<span class="apii">[-(0|1), +0, &ndash;]</span>
5870<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
5871
5872<p>
5873Sets the value of a closure's upvalue.
5874It assigns the value at the top of the stack
5875to the upvalue and returns its name.
5876It also pops the value from the stack.
5877
5878
5879<p>
5880Returns <code>NULL</code> (and pops nothing)
5881when the index <code>n</code> is greater than the number of upvalues.
5882
5883
5884<p>
5885Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>.
5886
5887
5888
5889
5890
5891<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p>
5892<span class="apii">[-0, +0, &ndash;]</span>
5893<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre>
5894
5895<p>
5896Returns a unique identifier for the upvalue numbered <code>n</code>
5897from the closure at index <code>funcindex</code>.
5898
5899
5900<p>
5901These unique identifiers allow a program to check whether different
5902closures share upvalues.
5903Lua closures that share an upvalue
5904(that is, that access a same external local variable)
5905will return identical ids for those upvalue indices.
5906
5907
5908<p>
5909Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>,
5910but <code>n</code> cannot be greater than the number of upvalues.
5911
5912
5913
5914
5915
5916<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p>
5917<span class="apii">[-0, +0, &ndash;]</span>
5918<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1,
5919                                    int funcindex2, int n2);</pre>
5920
5921<p>
5922Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code>
5923refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>.
5924
5925
5926
5927
5928
5929
5930
5931<h1>5 &ndash; <a name="5">The Auxiliary Library</a></h1>
5932
5933<p>
5934
5935The <em>auxiliary library</em> provides several convenient functions
5936to interface C with Lua.
5937While the basic API provides the primitive functions for all
5938interactions between C and Lua,
5939the auxiliary library provides higher-level functions for some
5940common tasks.
5941
5942
5943<p>
5944All functions and types from the auxiliary library
5945are defined in header file <code>lauxlib.h</code> and
5946have a prefix <code>luaL_</code>.
5947
5948
5949<p>
5950All functions in the auxiliary library are built on
5951top of the basic API,
5952and so they provide nothing that cannot be done with that API.
5953Nevertheless, the use of the auxiliary library ensures
5954more consistency to your code.
5955
5956
5957<p>
5958Several functions in the auxiliary library use internally some
5959extra stack slots.
5960When a function in the auxiliary library uses less than five slots,
5961it does not check the stack size;
5962it simply assumes that there are enough slots.
5963
5964
5965<p>
5966Several functions in the auxiliary library are used to
5967check C&nbsp;function arguments.
5968Because the error message is formatted for arguments
5969(e.g., "<code>bad argument #1</code>"),
5970you should not use these functions for other stack values.
5971
5972
5973<p>
5974Functions called <code>luaL_check*</code>
5975always raise an error if the check is not satisfied.
5976
5977
5978
5979<h2>5.1 &ndash; <a name="5.1">Functions and Types</a></h2>
5980
5981<p>
5982Here we list all functions and types from the auxiliary library
5983in alphabetical order.
5984
5985
5986
5987<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
5988<span class="apii">[-?, +?, <em>m</em>]</span>
5989<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
5990
5991<p>
5992Adds the byte <code>c</code> to the buffer <code>B</code>
5993(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5994
5995
5996
5997
5998
5999<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
6000<span class="apii">[-?, +?, <em>m</em>]</span>
6001<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
6002
6003<p>
6004Adds the string pointed to by <code>s</code> with length <code>l</code> to
6005the buffer <code>B</code>
6006(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6007The string can contain embedded zeros.
6008
6009
6010
6011
6012
6013<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
6014<span class="apii">[-?, +?, &ndash;]</span>
6015<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
6016
6017<p>
6018Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
6019a string of length <code>n</code> previously copied to the
6020buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
6021
6022
6023
6024
6025
6026<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
6027<span class="apii">[-?, +?, <em>m</em>]</span>
6028<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
6029
6030<p>
6031Adds the zero-terminated string pointed to by <code>s</code>
6032to the buffer <code>B</code>
6033(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6034
6035
6036
6037
6038
6039<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
6040<span class="apii">[-1, +?, <em>m</em>]</span>
6041<pre>void luaL_addvalue (luaL_Buffer *B);</pre>
6042
6043<p>
6044Adds the value at the top of the stack
6045to the buffer <code>B</code>
6046(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6047Pops the value.
6048
6049
6050<p>
6051This is the only function on string buffers that can (and must)
6052be called with an extra element on the stack,
6053which is the value to be added to the buffer.
6054
6055
6056
6057
6058
6059<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
6060<span class="apii">[-0, +0, <em>v</em>]</span>
6061<pre>void luaL_argcheck (lua_State *L,
6062                    int cond,
6063                    int arg,
6064                    const char *extramsg);</pre>
6065
6066<p>
6067Checks whether <code>cond</code> is true.
6068If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>).
6069
6070
6071
6072
6073
6074<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
6075<span class="apii">[-0, +0, <em>v</em>]</span>
6076<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre>
6077
6078<p>
6079Raises an error reporting a problem with argument <code>arg</code>
6080of the C&nbsp;function that called it,
6081using a standard message
6082that includes <code>extramsg</code> as a comment:
6083
6084<pre>
6085     bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>)
6086</pre><p>
6087This function never returns.
6088
6089
6090
6091
6092
6093<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
6094<pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
6095
6096<p>
6097Type for a <em>string buffer</em>.
6098
6099
6100<p>
6101A string buffer allows C&nbsp;code to build Lua strings piecemeal.
6102Its pattern of use is as follows:
6103
6104<ul>
6105
6106<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6107
6108<li>Then initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>
6109
6110<li>
6111Then add string pieces to the buffer calling any of
6112the <code>luaL_add*</code> functions.
6113</li>
6114
6115<li>
6116Finish by calling <code>luaL_pushresult(&amp;b)</code>.
6117This call leaves the final string on the top of the stack.
6118</li>
6119
6120</ul>
6121
6122<p>
6123If you know beforehand the total size of the resulting string,
6124you can use the buffer like this:
6125
6126<ul>
6127
6128<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6129
6130<li>Then initialize it and preallocate a space of
6131size <code>sz</code> with a call <code>luaL_buffinitsize(L, &amp;b, sz)</code>.</li>
6132
6133<li>Then copy the string into that space.</li>
6134
6135<li>
6136Finish by calling <code>luaL_pushresultsize(&amp;b, sz)</code>,
6137where <code>sz</code> is the total size of the resulting string
6138copied into that space.
6139</li>
6140
6141</ul>
6142
6143<p>
6144During its normal operation,
6145a string buffer uses a variable number of stack slots.
6146So, while using a buffer, you cannot assume that you know where
6147the top of the stack is.
6148You can use the stack between successive calls to buffer operations
6149as long as that use is balanced;
6150that is,
6151when you call a buffer operation,
6152the stack is at the same level
6153it was immediately after the previous buffer operation.
6154(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
6155After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
6156level when the buffer was initialized,
6157plus the final string on its top.
6158
6159
6160
6161
6162
6163<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
6164<span class="apii">[-0, +0, &ndash;]</span>
6165<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
6166
6167<p>
6168Initializes a buffer <code>B</code>.
6169This function does not allocate any space;
6170the buffer must be declared as a variable
6171(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6172
6173
6174
6175
6176
6177<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p>
6178<span class="apii">[-?, +?, <em>m</em>]</span>
6179<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre>
6180
6181<p>
6182Equivalent to the sequence
6183<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>.
6184
6185
6186
6187
6188
6189<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
6190<span class="apii">[-0, +(0|1), <em>e</em>]</span>
6191<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
6192
6193<p>
6194Calls a metamethod.
6195
6196
6197<p>
6198If the object at index <code>obj</code> has a metatable and this
6199metatable has a field <code>e</code>,
6200this function calls this field passing the object as its only argument.
6201In this case this function returns true and pushes onto the
6202stack the value returned by the call.
6203If there is no metatable or no metamethod,
6204this function returns false (without pushing any value on the stack).
6205
6206
6207
6208
6209
6210<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
6211<span class="apii">[-0, +0, <em>v</em>]</span>
6212<pre>void luaL_checkany (lua_State *L, int arg);</pre>
6213
6214<p>
6215Checks whether the function has an argument
6216of any type (including <b>nil</b>) at position <code>arg</code>.
6217
6218
6219
6220
6221
6222<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
6223<span class="apii">[-0, +0, <em>v</em>]</span>
6224<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre>
6225
6226<p>
6227Checks whether the function argument <code>arg</code> is an integer
6228(or can be converted to an integer)
6229and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
6230
6231
6232
6233
6234
6235<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
6236<span class="apii">[-0, +0, <em>v</em>]</span>
6237<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre>
6238
6239<p>
6240Checks whether the function argument <code>arg</code> is a string
6241and returns this string;
6242if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
6243with the string's length.
6244
6245
6246<p>
6247This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6248so all conversions and caveats of that function apply here.
6249
6250
6251
6252
6253
6254<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
6255<span class="apii">[-0, +0, <em>v</em>]</span>
6256<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre>
6257
6258<p>
6259Checks whether the function argument <code>arg</code> is a number
6260and returns this number.
6261
6262
6263
6264
6265
6266<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
6267<span class="apii">[-0, +0, <em>v</em>]</span>
6268<pre>int luaL_checkoption (lua_State *L,
6269                      int arg,
6270                      const char *def,
6271                      const char *const lst[]);</pre>
6272
6273<p>
6274Checks whether the function argument <code>arg</code> is a string and
6275searches for this string in the array <code>lst</code>
6276(which must be NULL-terminated).
6277Returns the index in the array where the string was found.
6278Raises an error if the argument is not a string or
6279if the string cannot be found.
6280
6281
6282<p>
6283If <code>def</code> is not <code>NULL</code>,
6284the function uses <code>def</code> as a default value when
6285there is no argument <code>arg</code> or when this argument is <b>nil</b>.
6286
6287
6288<p>
6289This is a useful function for mapping strings to C&nbsp;enums.
6290(The usual convention in Lua libraries is
6291to use strings instead of numbers to select options.)
6292
6293
6294
6295
6296
6297<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
6298<span class="apii">[-0, +0, <em>v</em>]</span>
6299<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
6300
6301<p>
6302Grows the stack size to <code>top + sz</code> elements,
6303raising an error if the stack cannot grow to that size.
6304<code>msg</code> is an additional text to go into the error message
6305(or <code>NULL</code> for no additional text).
6306
6307
6308
6309
6310
6311<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
6312<span class="apii">[-0, +0, <em>v</em>]</span>
6313<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre>
6314
6315<p>
6316Checks whether the function argument <code>arg</code> is a string
6317and returns this string.
6318
6319
6320<p>
6321This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6322so all conversions and caveats of that function apply here.
6323
6324
6325
6326
6327
6328<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
6329<span class="apii">[-0, +0, <em>v</em>]</span>
6330<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre>
6331
6332<p>
6333Checks whether the function argument <code>arg</code> has type <code>t</code>.
6334See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.
6335
6336
6337
6338
6339
6340<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
6341<span class="apii">[-0, +0, <em>v</em>]</span>
6342<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre>
6343
6344<p>
6345Checks whether the function argument <code>arg</code> is a userdata
6346of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and
6347returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>).
6348
6349
6350
6351
6352
6353<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p>
6354<span class="apii">[-0, +0, <em>v</em>]</span>
6355<pre>void luaL_checkversion (lua_State *L);</pre>
6356
6357<p>
6358Checks whether the core running the call,
6359the core that created the Lua state,
6360and the code making the call are all using the same version of Lua.
6361Also checks whether the core running the call
6362and the core that created the Lua state
6363are using the same address space.
6364
6365
6366
6367
6368
6369<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
6370<span class="apii">[-0, +?, <em>e</em>]</span>
6371<pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
6372
6373<p>
6374Loads and runs the given file.
6375It is defined as the following macro:
6376
6377<pre>
6378     (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
6379</pre><p>
6380It returns false if there are no errors
6381or true in case of errors.
6382
6383
6384
6385
6386
6387<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
6388<span class="apii">[-0, +?, &ndash;]</span>
6389<pre>int luaL_dostring (lua_State *L, const char *str);</pre>
6390
6391<p>
6392Loads and runs the given string.
6393It is defined as the following macro:
6394
6395<pre>
6396     (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
6397</pre><p>
6398It returns false if there are no errors
6399or true in case of errors.
6400
6401
6402
6403
6404
6405<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
6406<span class="apii">[-0, +0, <em>v</em>]</span>
6407<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
6408
6409<p>
6410Raises an error.
6411The error message format is given by <code>fmt</code>
6412plus any extra arguments,
6413following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
6414It also adds at the beginning of the message the file name and
6415the line number where the error occurred,
6416if this information is available.
6417
6418
6419<p>
6420This function never returns,
6421but it is an idiom to use it in C&nbsp;functions
6422as <code>return luaL_error(<em>args</em>)</code>.
6423
6424
6425
6426
6427
6428<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p>
6429<span class="apii">[-0, +3, <em>m</em>]</span>
6430<pre>int luaL_execresult (lua_State *L, int stat);</pre>
6431
6432<p>
6433This function produces the return values for
6434process-related functions in the standard library
6435(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>).
6436
6437
6438
6439
6440
6441<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p>
6442<span class="apii">[-0, +(1|3), <em>m</em>]</span>
6443<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre>
6444
6445<p>
6446This function produces the return values for
6447file-related functions in the standard library
6448(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.).
6449
6450
6451
6452
6453
6454<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
6455<span class="apii">[-0, +(0|1), <em>m</em>]</span>
6456<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
6457
6458<p>
6459Pushes onto the stack the field <code>e</code> from the metatable
6460of the object at index <code>obj</code> and returns the type of the pushed value.
6461If the object does not have a metatable,
6462or if the metatable does not have this field,
6463pushes nothing and returns <code>LUA_TNIL</code>.
6464
6465
6466
6467
6468
6469<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
6470<span class="apii">[-0, +1, <em>m</em>]</span>
6471<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre>
6472
6473<p>
6474Pushes onto the stack the metatable associated with name <code>tname</code>
6475in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>)
6476(<b>nil</b> if there is no metatable associated with that name).
6477Returns the type of the pushed value.
6478
6479
6480
6481
6482
6483<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p>
6484<span class="apii">[-0, +1, <em>e</em>]</span>
6485<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre>
6486
6487<p>
6488Ensures that the value <code>t[fname]</code>,
6489where <code>t</code> is the value at index <code>idx</code>,
6490is a table,
6491and pushes that table onto the stack.
6492Returns true if it finds a previous table there
6493and false if it creates a new table.
6494
6495
6496
6497
6498
6499<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
6500<span class="apii">[-0, +1, <em>m</em>]</span>
6501<pre>const char *luaL_gsub (lua_State *L,
6502                       const char *s,
6503                       const char *p,
6504                       const char *r);</pre>
6505
6506<p>
6507Creates a copy of string <code>s</code> by replacing
6508any occurrence of the string <code>p</code>
6509with the string <code>r</code>.
6510Pushes the resulting string on the stack and returns it.
6511
6512
6513
6514
6515
6516<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p>
6517<span class="apii">[-0, +0, <em>e</em>]</span>
6518<pre>lua_Integer luaL_len (lua_State *L, int index);</pre>
6519
6520<p>
6521Returns the "length" of the value at the given index
6522as a number;
6523it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>).
6524Raises an error if the result of the operation is not an integer.
6525(This case only can happen through metamethods.)
6526
6527
6528
6529
6530
6531<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
6532<span class="apii">[-0, +1, &ndash;]</span>
6533<pre>int luaL_loadbuffer (lua_State *L,
6534                     const char *buff,
6535                     size_t sz,
6536                     const char *name);</pre>
6537
6538<p>
6539Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>.
6540
6541
6542
6543
6544
6545<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p>
6546<span class="apii">[-0, +1, &ndash;]</span>
6547<pre>int luaL_loadbufferx (lua_State *L,
6548                      const char *buff,
6549                      size_t sz,
6550                      const char *name,
6551                      const char *mode);</pre>
6552
6553<p>
6554Loads a buffer as a Lua chunk.
6555This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
6556buffer pointed to by <code>buff</code> with size <code>sz</code>.
6557
6558
6559<p>
6560This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6561<code>name</code> is the chunk name,
6562used for debug information and error messages.
6563The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6564
6565
6566
6567
6568
6569<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
6570<span class="apii">[-0, +1, <em>m</em>]</span>
6571<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
6572
6573<p>
6574Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>.
6575
6576
6577
6578
6579
6580<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p>
6581<span class="apii">[-0, +1, <em>m</em>]</span>
6582<pre>int luaL_loadfilex (lua_State *L, const char *filename,
6583                                            const char *mode);</pre>
6584
6585<p>
6586Loads a file as a Lua chunk.
6587This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
6588named <code>filename</code>.
6589If <code>filename</code> is <code>NULL</code>,
6590then it loads from the standard input.
6591The first line in the file is ignored if it starts with a <code>#</code>.
6592
6593
6594<p>
6595The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6596
6597
6598<p>
6599This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
6600but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
6601for file-related errors
6602(e.g., it cannot open or read the file).
6603
6604
6605<p>
6606As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6607it does not run it.
6608
6609
6610
6611
6612
6613<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
6614<span class="apii">[-0, +1, &ndash;]</span>
6615<pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
6616
6617<p>
6618Loads a string as a Lua chunk.
6619This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
6620the zero-terminated string <code>s</code>.
6621
6622
6623<p>
6624This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6625
6626
6627<p>
6628Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6629it does not run it.
6630
6631
6632
6633
6634
6635<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p>
6636<span class="apii">[-0, +1, <em>m</em>]</span>
6637<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre>
6638
6639<p>
6640Creates a new table and registers there
6641the functions in list <code>l</code>.
6642
6643
6644<p>
6645It is implemented as the following macro:
6646
6647<pre>
6648     (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
6649</pre><p>
6650The array <code>l</code> must be the actual array,
6651not a pointer to it.
6652
6653
6654
6655
6656
6657<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p>
6658<span class="apii">[-0, +1, <em>m</em>]</span>
6659<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre>
6660
6661<p>
6662Creates a new table with a size optimized
6663to store all entries in the array <code>l</code>
6664(but does not actually store them).
6665It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>
6666(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>).
6667
6668
6669<p>
6670It is implemented as a macro.
6671The array <code>l</code> must be the actual array,
6672not a pointer to it.
6673
6674
6675
6676
6677
6678<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
6679<span class="apii">[-0, +1, <em>m</em>]</span>
6680<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
6681
6682<p>
6683If the registry already has the key <code>tname</code>,
6684returns 0.
6685Otherwise,
6686creates a new table to be used as a metatable for userdata,
6687adds to this new table the pair <code>__name = tname</code>,
6688adds to the registry the pair <code>[tname] = new table</code>,
6689and returns 1.
6690(The entry <code>__name</code> is used by some error-reporting functions.)
6691
6692
6693<p>
6694In both cases pushes onto the stack the final value associated
6695with <code>tname</code> in the registry.
6696
6697
6698
6699
6700
6701<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
6702<span class="apii">[-0, +0, &ndash;]</span>
6703<pre>lua_State *luaL_newstate (void);</pre>
6704
6705<p>
6706Creates a new Lua state.
6707It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
6708allocator based on the standard&nbsp;C <code>realloc</code> function
6709and then sets a panic function (see <a href="#4.6">&sect;4.6</a>) that prints
6710an error message to the standard error output in case of fatal
6711errors.
6712
6713
6714<p>
6715Returns the new state,
6716or <code>NULL</code> if there is a memory allocation error.
6717
6718
6719
6720
6721
6722<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
6723<span class="apii">[-0, +0, <em>e</em>]</span>
6724<pre>void luaL_openlibs (lua_State *L);</pre>
6725
6726<p>
6727Opens all standard Lua libraries into the given state.
6728
6729
6730
6731
6732
6733<hr><h3><a name="luaL_opt"><code>luaL_opt</code></a></h3><p>
6734<span class="apii">[-0, +0, <em>e</em>]</span>
6735<pre>T luaL_opt (L, func, arg, dflt);</pre>
6736
6737<p>
6738This macro is defined as follows:
6739
6740<pre>
6741     (lua_isnoneornil(L,(arg)) ? (dflt) : func(L,(arg)))
6742</pre><p>
6743In words, if the argument <code>arg</code> is nil or absent,
6744the macro results in the default <code>dflt</code>.
6745Otherwise, it results in the result of calling <code>func</code>
6746with the state <code>L</code> and the argument index <code>arg</code> as
6747arguments.
6748Note that it evaluates the expression <code>dflt</code> only if needed.
6749
6750
6751
6752
6753
6754<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
6755<span class="apii">[-0, +0, <em>v</em>]</span>
6756<pre>lua_Integer luaL_optinteger (lua_State *L,
6757                             int arg,
6758                             lua_Integer d);</pre>
6759
6760<p>
6761If the function argument <code>arg</code> is an integer
6762(or convertible to an integer),
6763returns this integer.
6764If this argument is absent or is <b>nil</b>,
6765returns <code>d</code>.
6766Otherwise, raises an error.
6767
6768
6769
6770
6771
6772<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
6773<span class="apii">[-0, +0, <em>v</em>]</span>
6774<pre>const char *luaL_optlstring (lua_State *L,
6775                             int arg,
6776                             const char *d,
6777                             size_t *l);</pre>
6778
6779<p>
6780If the function argument <code>arg</code> is a string,
6781returns this string.
6782If this argument is absent or is <b>nil</b>,
6783returns <code>d</code>.
6784Otherwise, raises an error.
6785
6786
6787<p>
6788If <code>l</code> is not <code>NULL</code>,
6789fills the position <code>*l</code> with the result's length.
6790If the result is <code>NULL</code>
6791(only possible when returning <code>d</code> and <code>d == NULL</code>),
6792its length is considered zero.
6793
6794
6795<p>
6796This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6797so all conversions and caveats of that function apply here.
6798
6799
6800
6801
6802
6803<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
6804<span class="apii">[-0, +0, <em>v</em>]</span>
6805<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre>
6806
6807<p>
6808If the function argument <code>arg</code> is a number,
6809returns this number.
6810If this argument is absent or is <b>nil</b>,
6811returns <code>d</code>.
6812Otherwise, raises an error.
6813
6814
6815
6816
6817
6818<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
6819<span class="apii">[-0, +0, <em>v</em>]</span>
6820<pre>const char *luaL_optstring (lua_State *L,
6821                            int arg,
6822                            const char *d);</pre>
6823
6824<p>
6825If the function argument <code>arg</code> is a string,
6826returns this string.
6827If this argument is absent or is <b>nil</b>,
6828returns <code>d</code>.
6829Otherwise, raises an error.
6830
6831
6832
6833
6834
6835<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
6836<span class="apii">[-?, +?, <em>m</em>]</span>
6837<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
6838
6839<p>
6840Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>
6841with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>.
6842
6843
6844
6845
6846
6847<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p>
6848<span class="apii">[-?, +?, <em>m</em>]</span>
6849<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre>
6850
6851<p>
6852Returns an address to a space of size <code>sz</code>
6853where you can copy a string to be added to buffer <code>B</code>
6854(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6855After copying the string into this space you must call
6856<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
6857it to the buffer.
6858
6859
6860
6861
6862
6863<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
6864<span class="apii">[-?, +1, <em>m</em>]</span>
6865<pre>void luaL_pushresult (luaL_Buffer *B);</pre>
6866
6867<p>
6868Finishes the use of buffer <code>B</code> leaving the final string on
6869the top of the stack.
6870
6871
6872
6873
6874
6875<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p>
6876<span class="apii">[-?, +1, <em>m</em>]</span>
6877<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre>
6878
6879<p>
6880Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>.
6881
6882
6883
6884
6885
6886<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
6887<span class="apii">[-1, +0, <em>m</em>]</span>
6888<pre>int luaL_ref (lua_State *L, int t);</pre>
6889
6890<p>
6891Creates and returns a <em>reference</em>,
6892in the table at index <code>t</code>,
6893for the object at the top of the stack (and pops the object).
6894
6895
6896<p>
6897A reference is a unique integer key.
6898As long as you do not manually add integer keys into table <code>t</code>,
6899<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
6900You can retrieve an object referred by reference <code>r</code>
6901by calling <code>lua_rawgeti(L, t, r)</code>.
6902Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
6903
6904
6905<p>
6906If the object at the top of the stack is <b>nil</b>,
6907<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
6908The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
6909from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
6910
6911
6912
6913
6914
6915<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
6916<pre>typedef struct luaL_Reg {
6917  const char *name;
6918  lua_CFunction func;
6919} luaL_Reg;</pre>
6920
6921<p>
6922Type for arrays of functions to be registered by
6923<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>.
6924<code>name</code> is the function name and <code>func</code> is a pointer to
6925the function.
6926Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry
6927in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
6928
6929
6930
6931
6932
6933<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p>
6934<span class="apii">[-0, +1, <em>e</em>]</span>
6935<pre>void luaL_requiref (lua_State *L, const char *modname,
6936                    lua_CFunction openf, int glb);</pre>
6937
6938<p>
6939If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>,
6940calls function <code>openf</code> with string <code>modname</code> as an argument
6941and sets the call result in <code>package.loaded[modname]</code>,
6942as if that function has been called through <a href="#pdf-require"><code>require</code></a>.
6943
6944
6945<p>
6946If <code>glb</code> is true,
6947also stores the module into global <code>modname</code>.
6948
6949
6950<p>
6951Leaves a copy of the module on the stack.
6952
6953
6954
6955
6956
6957<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p>
6958<span class="apii">[-nup, +0, <em>m</em>]</span>
6959<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre>
6960
6961<p>
6962Registers all functions in the array <code>l</code>
6963(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack
6964(below optional upvalues, see next).
6965
6966
6967<p>
6968When <code>nup</code> is not zero,
6969all functions are created sharing <code>nup</code> upvalues,
6970which must be previously pushed on the stack
6971on top of the library table.
6972These values are popped from the stack after the registration.
6973
6974
6975
6976
6977
6978<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p>
6979<span class="apii">[-0, +0, &ndash;]</span>
6980<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre>
6981
6982<p>
6983Sets the metatable of the object at the top of the stack
6984as the metatable associated with name <code>tname</code>
6985in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6986
6987
6988
6989
6990
6991<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3>
6992<pre>typedef struct luaL_Stream {
6993  FILE *f;
6994  lua_CFunction closef;
6995} luaL_Stream;</pre>
6996
6997<p>
6998The standard representation for file handles,
6999which is used by the standard I/O library.
7000
7001
7002<p>
7003A file handle is implemented as a full userdata,
7004with a metatable called <code>LUA_FILEHANDLE</code>
7005(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name).
7006The metatable is created by the I/O library
7007(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
7008
7009
7010<p>
7011This userdata must start with the structure <code>luaL_Stream</code>;
7012it can contain other data after this initial structure.
7013Field <code>f</code> points to the corresponding C stream
7014(or it can be <code>NULL</code> to indicate an incompletely created handle).
7015Field <code>closef</code> points to a Lua function
7016that will be called to close the stream
7017when the handle is closed or collected;
7018this function receives the file handle as its sole argument and
7019must return either <b>true</b> (in case of success)
7020or <b>nil</b> plus an error message (in case of error).
7021Once Lua calls this field,
7022it changes the field value to <code>NULL</code>
7023to signal that the handle is closed.
7024
7025
7026
7027
7028
7029<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p>
7030<span class="apii">[-0, +0, <em>m</em>]</span>
7031<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre>
7032
7033<p>
7034This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>,
7035except that, when the test fails,
7036it returns <code>NULL</code> instead of raising an error.
7037
7038
7039
7040
7041
7042<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p>
7043<span class="apii">[-0, +1, <em>e</em>]</span>
7044<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre>
7045
7046<p>
7047Converts any Lua value at the given index to a C&nbsp;string
7048in a reasonable format.
7049The resulting string is pushed onto the stack and also
7050returned by the function.
7051If <code>len</code> is not <code>NULL</code>,
7052the function also sets <code>*len</code> with the string length.
7053
7054
7055<p>
7056If the value has a metatable with a <code>__tostring</code> field,
7057then <code>luaL_tolstring</code> calls the corresponding metamethod
7058with the value as argument,
7059and uses the result of the call as its result.
7060
7061
7062
7063
7064
7065<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p>
7066<span class="apii">[-0, +1, <em>m</em>]</span>
7067<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg,
7068                     int level);</pre>
7069
7070<p>
7071Creates and pushes a traceback of the stack <code>L1</code>.
7072If <code>msg</code> is not <code>NULL</code> it is appended
7073at the beginning of the traceback.
7074The <code>level</code> parameter tells at which level
7075to start the traceback.
7076
7077
7078
7079
7080
7081<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
7082<span class="apii">[-0, +0, &ndash;]</span>
7083<pre>const char *luaL_typename (lua_State *L, int index);</pre>
7084
7085<p>
7086Returns the name of the type of the value at the given index.
7087
7088
7089
7090
7091
7092<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
7093<span class="apii">[-0, +0, &ndash;]</span>
7094<pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
7095
7096<p>
7097Releases reference <code>ref</code> from the table at index <code>t</code>
7098(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
7099The entry is removed from the table,
7100so that the referred object can be collected.
7101The reference <code>ref</code> is also freed to be used again.
7102
7103
7104<p>
7105If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
7106<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
7107
7108
7109
7110
7111
7112<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
7113<span class="apii">[-0, +1, <em>m</em>]</span>
7114<pre>void luaL_where (lua_State *L, int lvl);</pre>
7115
7116<p>
7117Pushes onto the stack a string identifying the current position
7118of the control at level <code>lvl</code> in the call stack.
7119Typically this string has the following format:
7120
7121<pre>
7122     <em>chunkname</em>:<em>currentline</em>:
7123</pre><p>
7124Level&nbsp;0 is the running function,
7125level&nbsp;1 is the function that called the running function,
7126etc.
7127
7128
7129<p>
7130This function is used to build a prefix for error messages.
7131
7132
7133
7134
7135
7136
7137
7138<h1>6 &ndash; <a name="6">Standard Libraries</a></h1>
7139
7140<p>
7141The standard Lua libraries provide useful functions
7142that are implemented directly through the C&nbsp;API.
7143Some of these functions provide essential services to the language
7144(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
7145others provide access to "outside" services (e.g., I/O);
7146and others could be implemented in Lua itself,
7147but are quite useful or have critical performance requirements that
7148deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).
7149
7150
7151<p>
7152All libraries are implemented through the official C&nbsp;API
7153and are provided as separate C&nbsp;modules.
7154Currently, Lua has the following standard libraries:
7155
7156<ul>
7157
7158<li>basic library (<a href="#6.1">&sect;6.1</a>);</li>
7159
7160<li>coroutine library (<a href="#6.2">&sect;6.2</a>);</li>
7161
7162<li>package library (<a href="#6.3">&sect;6.3</a>);</li>
7163
7164<li>string manipulation (<a href="#6.4">&sect;6.4</a>);</li>
7165
7166<li>basic UTF-8 support (<a href="#6.5">&sect;6.5</a>);</li>
7167
7168<li>table manipulation (<a href="#6.6">&sect;6.6</a>);</li>
7169
7170<li>mathematical functions (<a href="#6.7">&sect;6.7</a>) (sin, log, etc.);</li>
7171
7172<li>input and output (<a href="#6.8">&sect;6.8</a>);</li>
7173
7174<li>operating system facilities (<a href="#6.9">&sect;6.9</a>);</li>
7175
7176<li>debug facilities (<a href="#6.10">&sect;6.10</a>).</li>
7177
7178</ul><p>
7179Except for the basic and the package libraries,
7180each library provides all its functions as fields of a global table
7181or as methods of its objects.
7182
7183
7184<p>
7185To have access to these libraries,
7186the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
7187which opens all standard libraries.
7188Alternatively,
7189the host program can open them individually by using
7190<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call
7191<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
7192<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
7193<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library),
7194<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
7195<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library),
7196<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
7197<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
7198<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
7199<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library),
7200and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
7201These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>.
7202
7203
7204
7205<h2>6.1 &ndash; <a name="6.1">Basic Functions</a></h2>
7206
7207<p>
7208The basic library provides core functions to Lua.
7209If you do not include this library in your application,
7210you should check carefully whether you need to provide
7211implementations for some of its facilities.
7212
7213
7214<p>
7215<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
7216
7217
7218<p>
7219Calls <a href="#pdf-error"><code>error</code></a> if
7220the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
7221otherwise, returns all its arguments.
7222In case of error,
7223<code>message</code> is the error object;
7224when absent, it defaults to "<code>assertion failed!</code>"
7225
7226
7227
7228
7229<p>
7230<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3>
7231
7232
7233<p>
7234This function is a generic interface to the garbage collector.
7235It performs different functions according to its first argument, <code>opt</code>:
7236
7237<ul>
7238
7239<li><b>"<code>collect</code>": </b>
7240performs a full garbage-collection cycle.
7241This is the default option.
7242</li>
7243
7244<li><b>"<code>stop</code>": </b>
7245stops automatic execution of the garbage collector.
7246The collector will run only when explicitly invoked,
7247until a call to restart it.
7248</li>
7249
7250<li><b>"<code>restart</code>": </b>
7251restarts automatic execution of the garbage collector.
7252</li>
7253
7254<li><b>"<code>count</code>": </b>
7255returns the total memory in use by Lua in Kbytes.
7256The value has a fractional part,
7257so that it multiplied by 1024
7258gives the exact number of bytes in use by Lua
7259(except for overflows).
7260</li>
7261
7262<li><b>"<code>step</code>": </b>
7263performs a garbage-collection step.
7264The step "size" is controlled by <code>arg</code>.
7265With a zero value,
7266the collector will perform one basic (indivisible) step.
7267For non-zero values,
7268the collector will perform as if that amount of memory
7269(in KBytes) had been allocated by Lua.
7270Returns <b>true</b> if the step finished a collection cycle.
7271</li>
7272
7273<li><b>"<code>setpause</code>": </b>
7274sets <code>arg</code> as the new value for the <em>pause</em> of
7275the collector (see <a href="#2.5">&sect;2.5</a>).
7276Returns the previous value for <em>pause</em>.
7277</li>
7278
7279<li><b>"<code>setstepmul</code>": </b>
7280sets <code>arg</code> as the new value for the <em>step multiplier</em> of
7281the collector (see <a href="#2.5">&sect;2.5</a>).
7282Returns the previous value for <em>step</em>.
7283</li>
7284
7285<li><b>"<code>isrunning</code>": </b>
7286returns a boolean that tells whether the collector is running
7287(i.e., not stopped).
7288</li>
7289
7290</ul>
7291
7292
7293
7294<p>
7295<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3>
7296Opens the named file and executes its contents as a Lua chunk.
7297When called without arguments,
7298<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
7299Returns all values returned by the chunk.
7300In case of errors, <code>dofile</code> propagates the error
7301to its caller (that is, <code>dofile</code> does not run in protected mode).
7302
7303
7304
7305
7306<p>
7307<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
7308Terminates the last protected function called
7309and returns <code>message</code> as the error object.
7310Function <code>error</code> never returns.
7311
7312
7313<p>
7314Usually, <code>error</code> adds some information about the error position
7315at the beginning of the message, if the message is a string.
7316The <code>level</code> argument specifies how to get the error position.
7317With level&nbsp;1 (the default), the error position is where the
7318<code>error</code> function was called.
7319Level&nbsp;2 points the error to where the function
7320that called <code>error</code> was called; and so on.
7321Passing a level&nbsp;0 avoids the addition of error position information
7322to the message.
7323
7324
7325
7326
7327<p>
7328<hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
7329A global variable (not a function) that
7330holds the global environment (see <a href="#2.2">&sect;2.2</a>).
7331Lua itself does not use this variable;
7332changing its value does not affect any environment,
7333nor vice versa.
7334
7335
7336
7337
7338<p>
7339<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
7340
7341
7342<p>
7343If <code>object</code> does not have a metatable, returns <b>nil</b>.
7344Otherwise,
7345if the object's metatable has a <code>__metatable</code> field,
7346returns the associated value.
7347Otherwise, returns the metatable of the given object.
7348
7349
7350
7351
7352<p>
7353<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
7354
7355
7356<p>
7357Returns three values (an iterator function, the table <code>t</code>, and 0)
7358so that the construction
7359
7360<pre>
7361     for i,v in ipairs(t) do <em>body</em> end
7362</pre><p>
7363will iterate over the key&ndash;value pairs
7364(<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
7365up to the first nil value.
7366
7367
7368
7369
7370<p>
7371<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3>
7372
7373
7374<p>
7375Loads a chunk.
7376
7377
7378<p>
7379If <code>chunk</code> is a string, the chunk is this string.
7380If <code>chunk</code> is a function,
7381<code>load</code> calls it repeatedly to get the chunk pieces.
7382Each call to <code>chunk</code> must return a string that concatenates
7383with previous results.
7384A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.
7385
7386
7387<p>
7388If there are no syntactic errors,
7389returns the compiled chunk as a function;
7390otherwise, returns <b>nil</b> plus the error message.
7391
7392
7393<p>
7394If the resulting function has upvalues,
7395the first upvalue is set to the value of <code>env</code>,
7396if that parameter is given,
7397or to the value of the global environment.
7398Other upvalues are initialized with <b>nil</b>.
7399(When you load a main chunk,
7400the resulting function will always have exactly one upvalue,
7401the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
7402However,
7403when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>),
7404the resulting function can have an arbitrary number of upvalues.)
7405All upvalues are fresh, that is,
7406they are not shared with any other function.
7407
7408
7409<p>
7410<code>chunkname</code> is used as the name of the chunk for error messages
7411and debug information (see <a href="#4.9">&sect;4.9</a>).
7412When absent,
7413it defaults to <code>chunk</code>, if <code>chunk</code> is a string,
7414or to "<code>=(load)</code>" otherwise.
7415
7416
7417<p>
7418The string <code>mode</code> controls whether the chunk can be text or binary
7419(that is, a precompiled chunk).
7420It may be the string "<code>b</code>" (only binary chunks),
7421"<code>t</code>" (only text chunks),
7422or "<code>bt</code>" (both binary and text).
7423The default is "<code>bt</code>".
7424
7425
7426<p>
7427Lua does not check the consistency of binary chunks.
7428Maliciously crafted binary chunks can crash
7429the interpreter.
7430
7431
7432
7433
7434<p>
7435<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3>
7436
7437
7438<p>
7439Similar to <a href="#pdf-load"><code>load</code></a>,
7440but gets the chunk from file <code>filename</code>
7441or from the standard input,
7442if no file name is given.
7443
7444
7445
7446
7447<p>
7448<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
7449
7450
7451<p>
7452Allows a program to traverse all fields of a table.
7453Its first argument is a table and its second argument
7454is an index in this table.
7455<code>next</code> returns the next index of the table
7456and its associated value.
7457When called with <b>nil</b> as its second argument,
7458<code>next</code> returns an initial index
7459and its associated value.
7460When called with the last index,
7461or with <b>nil</b> in an empty table,
7462<code>next</code> returns <b>nil</b>.
7463If the second argument is absent, then it is interpreted as <b>nil</b>.
7464In particular,
7465you can use <code>next(t)</code> to check whether a table is empty.
7466
7467
7468<p>
7469The order in which the indices are enumerated is not specified,
7470<em>even for numeric indices</em>.
7471(To traverse a table in numerical order,
7472use a numerical <b>for</b>.)
7473
7474
7475<p>
7476The behavior of <code>next</code> is undefined if,
7477during the traversal,
7478you assign any value to a non-existent field in the table.
7479You may however modify existing fields.
7480In particular, you may clear existing fields.
7481
7482
7483
7484
7485<p>
7486<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
7487
7488
7489<p>
7490If <code>t</code> has a metamethod <code>__pairs</code>,
7491calls it with <code>t</code> as argument and returns the first three
7492results from the call.
7493
7494
7495<p>
7496Otherwise,
7497returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
7498so that the construction
7499
7500<pre>
7501     for k,v in pairs(t) do <em>body</em> end
7502</pre><p>
7503will iterate over all key&ndash;value pairs of table <code>t</code>.
7504
7505
7506<p>
7507See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
7508the table during its traversal.
7509
7510
7511
7512
7513<p>
7514<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, &middot;&middot;&middot;])</code></a></h3>
7515
7516
7517<p>
7518Calls function <code>f</code> with
7519the given arguments in <em>protected mode</em>.
7520This means that any error inside&nbsp;<code>f</code> is not propagated;
7521instead, <code>pcall</code> catches the error
7522and returns a status code.
7523Its first result is the status code (a boolean),
7524which is true if the call succeeds without errors.
7525In such case, <code>pcall</code> also returns all results from the call,
7526after this first result.
7527In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
7528
7529
7530
7531
7532<p>
7533<hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
7534Receives any number of arguments
7535and prints their values to <code>stdout</code>,
7536using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string.
7537<code>print</code> is not intended for formatted output,
7538but only as a quick way to show a value,
7539for instance for debugging.
7540For complete control over the output,
7541use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>.
7542
7543
7544
7545
7546<p>
7547<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
7548Checks whether <code>v1</code> is equal to <code>v2</code>,
7549without invoking the <code>__eq</code> metamethod.
7550Returns a boolean.
7551
7552
7553
7554
7555<p>
7556<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
7557Gets the real value of <code>table[index]</code>,
7558without invoking the <code>__index</code> metamethod.
7559<code>table</code> must be a table;
7560<code>index</code> may be any value.
7561
7562
7563
7564
7565<p>
7566<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3>
7567Returns the length of the object <code>v</code>,
7568which must be a table or a string,
7569without invoking the <code>__len</code> metamethod.
7570Returns an integer.
7571
7572
7573
7574
7575<p>
7576<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
7577Sets the real value of <code>table[index]</code> to <code>value</code>,
7578without invoking the <code>__newindex</code> metamethod.
7579<code>table</code> must be a table,
7580<code>index</code> any value different from <b>nil</b> and NaN,
7581and <code>value</code> any Lua value.
7582
7583
7584<p>
7585This function returns <code>table</code>.
7586
7587
7588
7589
7590<p>
7591<hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>
7592
7593
7594<p>
7595If <code>index</code> is a number,
7596returns all arguments after argument number <code>index</code>;
7597a negative number indexes from the end (-1 is the last argument).
7598Otherwise, <code>index</code> must be the string <code>"#"</code>,
7599and <code>select</code> returns the total number of extra arguments it received.
7600
7601
7602
7603
7604<p>
7605<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
7606
7607
7608<p>
7609Sets the metatable for the given table.
7610(To change the metatable of other types from Lua code,
7611you must use the debug library (<a href="#6.10">&sect;6.10</a>).)
7612If <code>metatable</code> is <b>nil</b>,
7613removes the metatable of the given table.
7614If the original metatable has a <code>__metatable</code> field,
7615raises an error.
7616
7617
7618<p>
7619This function returns <code>table</code>.
7620
7621
7622
7623
7624<p>
7625<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
7626
7627
7628<p>
7629When called with no <code>base</code>,
7630<code>tonumber</code> tries to convert its argument to a number.
7631If the argument is already a number or
7632a string convertible to a number,
7633then <code>tonumber</code> returns this number;
7634otherwise, it returns <b>nil</b>.
7635
7636
7637<p>
7638The conversion of strings can result in integers or floats,
7639according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
7640(The string may have leading and trailing spaces and a sign.)
7641
7642
7643<p>
7644When called with <code>base</code>,
7645then <code>e</code> must be a string to be interpreted as
7646an integer numeral in that base.
7647The base may be any integer between 2 and 36, inclusive.
7648In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
7649represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
7650with '<code>Z</code>' representing 35.
7651If the string <code>e</code> is not a valid numeral in the given base,
7652the function returns <b>nil</b>.
7653
7654
7655
7656
7657<p>
7658<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3>
7659Receives a value of any type and
7660converts it to a string in a human-readable format.
7661(For complete control of how numbers are converted,
7662use <a href="#pdf-string.format"><code>string.format</code></a>.)
7663
7664
7665<p>
7666If the metatable of <code>v</code> has a <code>__tostring</code> field,
7667then <code>tostring</code> calls the corresponding value
7668with <code>v</code> as argument,
7669and uses the result of the call as its result.
7670
7671
7672
7673
7674<p>
7675<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
7676Returns the type of its only argument, coded as a string.
7677The possible results of this function are
7678"<code>nil</code>" (a string, not the value <b>nil</b>),
7679"<code>number</code>",
7680"<code>string</code>",
7681"<code>boolean</code>",
7682"<code>table</code>",
7683"<code>function</code>",
7684"<code>thread</code>",
7685and "<code>userdata</code>".
7686
7687
7688
7689
7690<p>
7691<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
7692
7693
7694<p>
7695A global variable (not a function) that
7696holds a string containing the running Lua version.
7697The current value of this variable is "<code>Lua 5.3</code>".
7698
7699
7700
7701
7702<p>
7703<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, &middot;&middot;&middot;])</code></a></h3>
7704
7705
7706<p>
7707This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
7708except that it sets a new message handler <code>msgh</code>.
7709
7710
7711
7712
7713
7714
7715
7716<h2>6.2 &ndash; <a name="6.2">Coroutine Manipulation</a></h2>
7717
7718<p>
7719This library comprises the operations to manipulate coroutines,
7720which come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
7721See <a href="#2.6">&sect;2.6</a> for a general description of coroutines.
7722
7723
7724<p>
7725<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
7726
7727
7728<p>
7729Creates a new coroutine, with body <code>f</code>.
7730<code>f</code> must be a function.
7731Returns this new coroutine,
7732an object with type <code>"thread"</code>.
7733
7734
7735
7736
7737<p>
7738<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3>
7739
7740
7741<p>
7742Returns true when the running coroutine can yield.
7743
7744
7745<p>
7746A running coroutine is yieldable if it is not the main thread and
7747it is not inside a non-yieldable C&nbsp;function.
7748
7749
7750
7751
7752<p>
7753<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>
7754
7755
7756<p>
7757Starts or continues the execution of coroutine <code>co</code>.
7758The first time you resume a coroutine,
7759it starts running its body.
7760The values <code>val1</code>, ... are passed
7761as the arguments to the body function.
7762If the coroutine has yielded,
7763<code>resume</code> restarts it;
7764the values <code>val1</code>, ... are passed
7765as the results from the yield.
7766
7767
7768<p>
7769If the coroutine runs without any errors,
7770<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
7771(when the coroutine yields) or any values returned by the body function
7772(when the coroutine terminates).
7773If there is any error,
7774<code>resume</code> returns <b>false</b> plus the error message.
7775
7776
7777
7778
7779<p>
7780<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
7781
7782
7783<p>
7784Returns the running coroutine plus a boolean,
7785true when the running coroutine is the main one.
7786
7787
7788
7789
7790<p>
7791<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
7792
7793
7794<p>
7795Returns the status of coroutine <code>co</code>, as a string:
7796<code>"running"</code>,
7797if the coroutine is running (that is, it called <code>status</code>);
7798<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
7799or if it has not started running yet;
7800<code>"normal"</code> if the coroutine is active but not running
7801(that is, it has resumed another coroutine);
7802and <code>"dead"</code> if the coroutine has finished its body function,
7803or if it has stopped with an error.
7804
7805
7806
7807
7808<p>
7809<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
7810
7811
7812<p>
7813Creates a new coroutine, with body <code>f</code>.
7814<code>f</code> must be a function.
7815Returns a function that resumes the coroutine each time it is called.
7816Any arguments passed to the function behave as the
7817extra arguments to <code>resume</code>.
7818Returns the same values returned by <code>resume</code>,
7819except the first boolean.
7820In case of error, propagates the error.
7821
7822
7823
7824
7825<p>
7826<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>
7827
7828
7829<p>
7830Suspends the execution of the calling coroutine.
7831Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
7832
7833
7834
7835
7836
7837
7838
7839<h2>6.3 &ndash; <a name="6.3">Modules</a></h2>
7840
7841<p>
7842The package library provides basic
7843facilities for loading modules in Lua.
7844It exports one function directly in the global environment:
7845<a href="#pdf-require"><code>require</code></a>.
7846Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
7847
7848
7849<p>
7850<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
7851
7852
7853<p>
7854Loads the given module.
7855The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
7856to determine whether <code>modname</code> is already loaded.
7857If it is, then <code>require</code> returns the value stored
7858at <code>package.loaded[modname]</code>.
7859Otherwise, it tries to find a <em>loader</em> for the module.
7860
7861
7862<p>
7863To find a loader,
7864<code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence.
7865By changing this sequence,
7866we can change how <code>require</code> looks for a module.
7867The following explanation is based on the default configuration
7868for <a href="#pdf-package.searchers"><code>package.searchers</code></a>.
7869
7870
7871<p>
7872First <code>require</code> queries <code>package.preload[modname]</code>.
7873If it has a value,
7874this value (which must be a function) is the loader.
7875Otherwise <code>require</code> searches for a Lua loader using the
7876path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
7877If that also fails, it searches for a C&nbsp;loader using the
7878path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
7879If that also fails,
7880it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>).
7881
7882
7883<p>
7884Once a loader is found,
7885<code>require</code> calls the loader with two arguments:
7886<code>modname</code> and an extra value dependent on how it got the loader.
7887(If the loader came from a file,
7888this extra value is the file name.)
7889If the loader returns any non-nil value,
7890<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
7891If the loader does not return a non-nil value and
7892has not assigned any value to <code>package.loaded[modname]</code>,
7893then <code>require</code> assigns <b>true</b> to this entry.
7894In any case, <code>require</code> returns the
7895final value of <code>package.loaded[modname]</code>.
7896
7897
7898<p>
7899If there is any error loading or running the module,
7900or if it cannot find any loader for the module,
7901then <code>require</code> raises an error.
7902
7903
7904
7905
7906<p>
7907<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3>
7908
7909
7910<p>
7911A string describing some compile-time configurations for packages.
7912This string is a sequence of lines:
7913
7914<ul>
7915
7916<li>The first line is the directory separator string.
7917Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li>
7918
7919<li>The second line is the character that separates templates in a path.
7920Default is '<code>;</code>'.</li>
7921
7922<li>The third line is the string that marks the
7923substitution points in a template.
7924Default is '<code>?</code>'.</li>
7925
7926<li>The fourth line is a string that, in a path in Windows,
7927is replaced by the executable's directory.
7928Default is '<code>!</code>'.</li>
7929
7930<li>The fifth line is a mark to ignore all text after it
7931when building the <code>luaopen_</code> function name.
7932Default is '<code>-</code>'.</li>
7933
7934</ul>
7935
7936
7937
7938<p>
7939<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
7940
7941
7942<p>
7943The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.
7944
7945
7946<p>
7947Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
7948it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
7949using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a>,
7950or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>,
7951or a default path defined in <code>luaconf.h</code>.
7952
7953
7954
7955
7956<p>
7957<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
7958
7959
7960<p>
7961A table used by <a href="#pdf-require"><code>require</code></a> to control which
7962modules are already loaded.
7963When you require a module <code>modname</code> and
7964<code>package.loaded[modname]</code> is not false,
7965<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
7966
7967
7968<p>
7969This variable is only a reference to the real table;
7970assignments to this variable do not change the
7971table used by <a href="#pdf-require"><code>require</code></a>.
7972
7973
7974
7975
7976<p>
7977<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
7978
7979
7980<p>
7981Dynamically links the host program with the C&nbsp;library <code>libname</code>.
7982
7983
7984<p>
7985If <code>funcname</code> is "<code>*</code>",
7986then it only links with the library,
7987making the symbols exported by the library
7988available to other dynamically linked libraries.
7989Otherwise,
7990it looks for a function <code>funcname</code> inside the library
7991and returns this function as a C&nbsp;function.
7992So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype
7993(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
7994
7995
7996<p>
7997This is a low-level function.
7998It completely bypasses the package and module system.
7999Unlike <a href="#pdf-require"><code>require</code></a>,
8000it does not perform any path searching and
8001does not automatically adds extensions.
8002<code>libname</code> must be the complete file name of the C&nbsp;library,
8003including if necessary a path and an extension.
8004<code>funcname</code> must be the exact name exported by the C&nbsp;library
8005(which may depend on the C&nbsp;compiler and linker used).
8006
8007
8008<p>
8009This function is not supported by Standard&nbsp;C.
8010As such, it is only available on some platforms
8011(Windows, Linux, Mac OS X, Solaris, BSD,
8012plus other Unix systems that support the <code>dlfcn</code> standard).
8013
8014
8015
8016
8017<p>
8018<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
8019
8020
8021<p>
8022The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
8023
8024
8025<p>
8026At start-up, Lua initializes this variable with
8027the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or
8028the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
8029with a default path defined in <code>luaconf.h</code>,
8030if those environment variables are not defined.
8031Any "<code>;;</code>" in the value of the environment variable
8032is replaced by the default path.
8033
8034
8035
8036
8037<p>
8038<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
8039
8040
8041<p>
8042A table to store loaders for specific modules
8043(see <a href="#pdf-require"><code>require</code></a>).
8044
8045
8046<p>
8047This variable is only a reference to the real table;
8048assignments to this variable do not change the
8049table used by <a href="#pdf-require"><code>require</code></a>.
8050
8051
8052
8053
8054<p>
8055<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3>
8056
8057
8058<p>
8059A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.
8060
8061
8062<p>
8063Each entry in this table is a <em>searcher function</em>.
8064When looking for a module,
8065<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
8066with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
8067sole parameter.
8068The function can return another function (the module <em>loader</em>)
8069plus an extra value that will be passed to that loader,
8070or a string explaining why it did not find that module
8071(or <b>nil</b> if it has nothing to say).
8072
8073
8074<p>
8075Lua initializes this table with four searcher functions.
8076
8077
8078<p>
8079The first searcher simply looks for a loader in the
8080<a href="#pdf-package.preload"><code>package.preload</code></a> table.
8081
8082
8083<p>
8084The second searcher looks for a loader as a Lua library,
8085using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
8086The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8087
8088
8089<p>
8090The third searcher looks for a loader as a C&nbsp;library,
8091using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
8092Again,
8093the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8094For instance,
8095if the C&nbsp;path is the string
8096
8097<pre>
8098     "./?.so;./?.dll;/usr/local/?/init.so"
8099</pre><p>
8100the searcher for module <code>foo</code>
8101will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
8102and <code>/usr/local/foo/init.so</code>, in that order.
8103Once it finds a C&nbsp;library,
8104this searcher first uses a dynamic link facility to link the
8105application with the library.
8106Then it tries to find a C&nbsp;function inside the library to
8107be used as the loader.
8108The name of this C&nbsp;function is the string "<code>luaopen_</code>"
8109concatenated with a copy of the module name where each dot
8110is replaced by an underscore.
8111Moreover, if the module name has a hyphen,
8112its suffix after (and including) the first hyphen is removed.
8113For instance, if the module name is <code>a.b.c-v2.1</code>,
8114the function name will be <code>luaopen_a_b_c</code>.
8115
8116
8117<p>
8118The fourth searcher tries an <em>all-in-one loader</em>.
8119It searches the C&nbsp;path for a library for
8120the root name of the given module.
8121For instance, when requiring <code>a.b.c</code>,
8122it will search for a C&nbsp;library for <code>a</code>.
8123If found, it looks into it for an open function for
8124the submodule;
8125in our example, that would be <code>luaopen_a_b_c</code>.
8126With this facility, a package can pack several C&nbsp;submodules
8127into one single library,
8128with each submodule keeping its original open function.
8129
8130
8131<p>
8132All searchers except the first one (preload) return as the extra value
8133the file name where the module was found,
8134as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8135The first searcher returns no extra value.
8136
8137
8138
8139
8140<p>
8141<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3>
8142
8143
8144<p>
8145Searches for the given <code>name</code> in the given <code>path</code>.
8146
8147
8148<p>
8149A path is a string containing a sequence of
8150<em>templates</em> separated by semicolons.
8151For each template,
8152the function replaces each interrogation mark (if any)
8153in the template with a copy of <code>name</code>
8154wherein all occurrences of <code>sep</code>
8155(a dot, by default)
8156were replaced by <code>rep</code>
8157(the system's directory separator, by default),
8158and then tries to open the resulting file name.
8159
8160
8161<p>
8162For instance, if the path is the string
8163
8164<pre>
8165     "./?.lua;./?.lc;/usr/local/?/init.lua"
8166</pre><p>
8167the search for the name <code>foo.a</code>
8168will try to open the files
8169<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and
8170<code>/usr/local/foo/a/init.lua</code>, in that order.
8171
8172
8173<p>
8174Returns the resulting name of the first file that it can
8175open in read mode (after closing the file),
8176or <b>nil</b> plus an error message if none succeeds.
8177(This error message lists all file names it tried to open.)
8178
8179
8180
8181
8182
8183
8184
8185<h2>6.4 &ndash; <a name="6.4">String Manipulation</a></h2>
8186
8187<p>
8188This library provides generic functions for string manipulation,
8189such as finding and extracting substrings, and pattern matching.
8190When indexing a string in Lua, the first character is at position&nbsp;1
8191(not at&nbsp;0, as in C).
8192Indices are allowed to be negative and are interpreted as indexing backwards,
8193from the end of the string.
8194Thus, the last character is at position -1, and so on.
8195
8196
8197<p>
8198The string library provides all its functions inside the table
8199<a name="pdf-string"><code>string</code></a>.
8200It also sets a metatable for strings
8201where the <code>__index</code> field points to the <code>string</code> table.
8202Therefore, you can use the string functions in object-oriented style.
8203For instance, <code>string.byte(s,i)</code>
8204can be written as <code>s:byte(i)</code>.
8205
8206
8207<p>
8208The string library assumes one-byte character encodings.
8209
8210
8211<p>
8212<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
8213Returns the internal numeric codes of the characters <code>s[i]</code>,
8214<code>s[i+1]</code>, ..., <code>s[j]</code>.
8215The default value for <code>i</code> is&nbsp;1;
8216the default value for <code>j</code> is&nbsp;<code>i</code>.
8217These indices are corrected
8218following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>.
8219
8220
8221<p>
8222Numeric codes are not necessarily portable across platforms.
8223
8224
8225
8226
8227<p>
8228<hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
8229Receives zero or more integers.
8230Returns a string with length equal to the number of arguments,
8231in which each character has the internal numeric code equal
8232to its corresponding argument.
8233
8234
8235<p>
8236Numeric codes are not necessarily portable across platforms.
8237
8238
8239
8240
8241<p>
8242<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3>
8243
8244
8245<p>
8246Returns a string containing a binary representation
8247(a <em>binary chunk</em>)
8248of the given function,
8249so that a later <a href="#pdf-load"><code>load</code></a> on this string returns
8250a copy of the function (but with new upvalues).
8251If <code>strip</code> is a true value,
8252the binary representation may not include all debug information
8253about the function,
8254to save space.
8255
8256
8257<p>
8258Functions with upvalues have only their number of upvalues saved.
8259When (re)loaded,
8260those upvalues receive fresh instances containing <b>nil</b>.
8261(You can use the debug library to serialize
8262and reload the upvalues of a function
8263in a way adequate to your needs.)
8264
8265
8266
8267
8268<p>
8269<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
8270
8271
8272<p>
8273Looks for the first match of
8274<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8275If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
8276where this occurrence starts and ends;
8277otherwise, it returns <b>nil</b>.
8278A third, optional numeric argument <code>init</code> specifies
8279where to start the search;
8280its default value is&nbsp;1 and can be negative.
8281A value of <b>true</b> as a fourth, optional argument <code>plain</code>
8282turns off the pattern matching facilities,
8283so the function does a plain "find substring" operation,
8284with no characters in <code>pattern</code> being considered magic.
8285Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
8286
8287
8288<p>
8289If the pattern has captures,
8290then in a successful match
8291the captured values are also returned,
8292after the two indices.
8293
8294
8295
8296
8297<p>
8298<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>
8299
8300
8301<p>
8302Returns a formatted version of its variable number of arguments
8303following the description given in its first argument (which must be a string).
8304The format string follows the same rules as the ISO&nbsp;C function <code>sprintf</code>.
8305The only differences are that the options/modifiers
8306<code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>,
8307and <code>p</code> are not supported
8308and that there is an extra option, <code>q</code>.
8309
8310
8311<p>
8312The <code>q</code> option formats a string between double quotes,
8313using escape sequences when necessary to ensure that
8314it can safely be read back by the Lua interpreter.
8315For instance, the call
8316
8317<pre>
8318     string.format('%q', 'a string with "quotes" and \n new line')
8319</pre><p>
8320may produce the string:
8321
8322<pre>
8323     "a string with \"quotes\" and \
8324      new line"
8325</pre>
8326
8327<p>
8328Options
8329<code>A</code>, <code>a</code>, <code>E</code>, <code>e</code>, <code>f</code>,
8330<code>G</code>, and <code>g</code> all expect a number as argument.
8331Options <code>c</code>, <code>d</code>,
8332<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>
8333expect an integer.
8334When Lua is compiled with a C89 compiler,
8335options <code>A</code> and <code>a</code> (hexadecimal floats)
8336do not support any modifier (flags, width, length).
8337
8338
8339<p>
8340Option <code>s</code> expects a string;
8341if its argument is not a string,
8342it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>.
8343If the option has any modifier (flags, width, length),
8344the string argument should not contain embedded zeros.
8345
8346
8347
8348
8349<p>
8350<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
8351Returns an iterator function that,
8352each time it is called,
8353returns the next captures from <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>)
8354over the string <code>s</code>.
8355If <code>pattern</code> specifies no captures,
8356then the whole match is produced in each call.
8357
8358
8359<p>
8360As an example, the following loop
8361will iterate over all the words from string <code>s</code>,
8362printing one per line:
8363
8364<pre>
8365     s = "hello world from Lua"
8366     for w in string.gmatch(s, "%a+") do
8367       print(w)
8368     end
8369</pre><p>
8370The next example collects all pairs <code>key=value</code> from the
8371given string into a table:
8372
8373<pre>
8374     t = {}
8375     s = "from=world, to=Lua"
8376     for k, v in string.gmatch(s, "(%w+)=(%w+)") do
8377       t[k] = v
8378     end
8379</pre>
8380
8381<p>
8382For this function, a caret '<code>^</code>' at the start of a pattern does not
8383work as an anchor, as this would prevent the iteration.
8384
8385
8386
8387
8388<p>
8389<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
8390Returns a copy of <code>s</code>
8391in which all (or the first <code>n</code>, if given)
8392occurrences of the <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) have been
8393replaced by a replacement string specified by <code>repl</code>,
8394which can be a string, a table, or a function.
8395<code>gsub</code> also returns, as its second value,
8396the total number of matches that occurred.
8397The name <code>gsub</code> comes from <em>Global SUBstitution</em>.
8398
8399
8400<p>
8401If <code>repl</code> is a string, then its value is used for replacement.
8402The character&nbsp;<code>%</code> works as an escape character:
8403any sequence in <code>repl</code> of the form <code>%<em>d</em></code>,
8404with <em>d</em> between 1 and 9,
8405stands for the value of the <em>d</em>-th captured substring.
8406The sequence <code>%0</code> stands for the whole match.
8407The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.
8408
8409
8410<p>
8411If <code>repl</code> is a table, then the table is queried for every match,
8412using the first capture as the key.
8413
8414
8415<p>
8416If <code>repl</code> is a function, then this function is called every time a
8417match occurs, with all captured substrings passed as arguments,
8418in order.
8419
8420
8421<p>
8422In any case,
8423if the pattern specifies no captures,
8424then it behaves as if the whole pattern was inside a capture.
8425
8426
8427<p>
8428If the value returned by the table query or by the function call
8429is a string or a number,
8430then it is used as the replacement string;
8431otherwise, if it is <b>false</b> or <b>nil</b>,
8432then there is no replacement
8433(that is, the original match is kept in the string).
8434
8435
8436<p>
8437Here are some examples:
8438
8439<pre>
8440     x = string.gsub("hello world", "(%w+)", "%1 %1")
8441     --&gt; x="hello hello world world"
8442
8443     x = string.gsub("hello world", "%w+", "%0 %0", 1)
8444     --&gt; x="hello hello world"
8445
8446     x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
8447     --&gt; x="world hello Lua from"
8448
8449     x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
8450     --&gt; x="home = /home/roberto, user = roberto"
8451
8452     x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
8453           return load(s)()
8454         end)
8455     --&gt; x="4+5 = 9"
8456
8457     local t = {name="lua", version="5.3"}
8458     x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
8459     --&gt; x="lua-5.3.tar.gz"
8460</pre>
8461
8462
8463
8464<p>
8465<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
8466Receives a string and returns its length.
8467The empty string <code>""</code> has length 0.
8468Embedded zeros are counted,
8469so <code>"a\000bc\000"</code> has length 5.
8470
8471
8472
8473
8474<p>
8475<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
8476Receives a string and returns a copy of this string with all
8477uppercase letters changed to lowercase.
8478All other characters are left unchanged.
8479The definition of what an uppercase letter is depends on the current locale.
8480
8481
8482
8483
8484<p>
8485<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
8486Looks for the first <em>match</em> of
8487<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8488If it finds one, then <code>match</code> returns
8489the captures from the pattern;
8490otherwise it returns <b>nil</b>.
8491If <code>pattern</code> specifies no captures,
8492then the whole match is returned.
8493A third, optional numeric argument <code>init</code> specifies
8494where to start the search;
8495its default value is&nbsp;1 and can be negative.
8496
8497
8498
8499
8500<p>
8501<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, &middot;&middot;&middot;)</code></a></h3>
8502
8503
8504<p>
8505Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc.
8506packed (that is, serialized in binary form)
8507according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8508
8509
8510
8511
8512<p>
8513<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3>
8514
8515
8516<p>
8517Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a>
8518with the given format.
8519The format string cannot have the variable-length options
8520'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">&sect;6.4.2</a>).
8521
8522
8523
8524
8525<p>
8526<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3>
8527Returns a string that is the concatenation of <code>n</code> copies of
8528the string <code>s</code> separated by the string <code>sep</code>.
8529The default value for <code>sep</code> is the empty string
8530(that is, no separator).
8531Returns the empty string if <code>n</code> is not positive.
8532
8533
8534<p>
8535(Note that it is very easy to exhaust the memory of your machine
8536with a single call to this function.)
8537
8538
8539
8540
8541<p>
8542<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
8543Returns a string that is the string <code>s</code> reversed.
8544
8545
8546
8547
8548<p>
8549<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
8550Returns the substring of <code>s</code> that
8551starts at <code>i</code>  and continues until <code>j</code>;
8552<code>i</code> and <code>j</code> can be negative.
8553If <code>j</code> is absent, then it is assumed to be equal to -1
8554(which is the same as the string length).
8555In particular,
8556the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
8557with length <code>j</code>,
8558and <code>string.sub(s, -i)</code> (for a positive <code>i</code>)
8559returns a suffix of <code>s</code>
8560with length <code>i</code>.
8561
8562
8563<p>
8564If, after the translation of negative indices,
8565<code>i</code> is less than 1,
8566it is corrected to 1.
8567If <code>j</code> is greater than the string length,
8568it is corrected to that length.
8569If, after these corrections,
8570<code>i</code> is greater than <code>j</code>,
8571the function returns the empty string.
8572
8573
8574
8575
8576<p>
8577<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3>
8578
8579
8580<p>
8581Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>)
8582according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8583An optional <code>pos</code> marks where
8584to start reading in <code>s</code> (default is 1).
8585After the read values,
8586this function also returns the index of the first unread byte in <code>s</code>.
8587
8588
8589
8590
8591<p>
8592<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
8593Receives a string and returns a copy of this string with all
8594lowercase letters changed to uppercase.
8595All other characters are left unchanged.
8596The definition of what a lowercase letter is depends on the current locale.
8597
8598
8599
8600
8601
8602<h3>6.4.1 &ndash; <a name="6.4.1">Patterns</a></h3>
8603
8604<p>
8605Patterns in Lua are described by regular strings,
8606which are interpreted as patterns by the pattern-matching functions
8607<a href="#pdf-string.find"><code>string.find</code></a>,
8608<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>,
8609<a href="#pdf-string.gsub"><code>string.gsub</code></a>,
8610and <a href="#pdf-string.match"><code>string.match</code></a>.
8611This section describes the syntax and the meaning
8612(that is, what they match) of these strings.
8613
8614
8615
8616<h4>Character Class:</h4><p>
8617A <em>character class</em> is used to represent a set of characters.
8618The following combinations are allowed in describing a character class:
8619
8620<ul>
8621
8622<li><b><em>x</em>: </b>
8623(where <em>x</em> is not one of the <em>magic characters</em>
8624<code>^$()%.[]*+-?</code>)
8625represents the character <em>x</em> itself.
8626</li>
8627
8628<li><b><code>.</code>: </b> (a dot) represents all characters.</li>
8629
8630<li><b><code>%a</code>: </b> represents all letters.</li>
8631
8632<li><b><code>%c</code>: </b> represents all control characters.</li>
8633
8634<li><b><code>%d</code>: </b> represents all digits.</li>
8635
8636<li><b><code>%g</code>: </b> represents all printable characters except space.</li>
8637
8638<li><b><code>%l</code>: </b> represents all lowercase letters.</li>
8639
8640<li><b><code>%p</code>: </b> represents all punctuation characters.</li>
8641
8642<li><b><code>%s</code>: </b> represents all space characters.</li>
8643
8644<li><b><code>%u</code>: </b> represents all uppercase letters.</li>
8645
8646<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li>
8647
8648<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li>
8649
8650<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character)
8651represents the character <em>x</em>.
8652This is the standard way to escape the magic characters.
8653Any non-alphanumeric character
8654(including all punctuation characters, even the non-magical)
8655can be preceded by a '<code>%</code>'
8656when used to represent itself in a pattern.
8657</li>
8658
8659<li><b><code>[<em>set</em>]</code>: </b>
8660represents the class which is the union of all
8661characters in <em>set</em>.
8662A range of characters can be specified by
8663separating the end characters of the range,
8664in ascending order, with a '<code>-</code>'.
8665All classes <code>%</code><em>x</em> described above can also be used as
8666components in <em>set</em>.
8667All other characters in <em>set</em> represent themselves.
8668For example, <code>[%w_]</code> (or <code>[_%w]</code>)
8669represents all alphanumeric characters plus the underscore,
8670<code>[0-7]</code> represents the octal digits,
8671and <code>[0-7%l%-]</code> represents the octal digits plus
8672the lowercase letters plus the '<code>-</code>' character.
8673
8674
8675<p>
8676You can put a closing square bracket in a set
8677by positioning it as the first character in the set.
8678You can put a hyphen in a set
8679by positioning it as the first or the last character in the set.
8680(You can also use an escape for both cases.)
8681
8682
8683<p>
8684The interaction between ranges and classes is not defined.
8685Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
8686have no meaning.
8687</li>
8688
8689<li><b><code>[^<em>set</em>]</code>: </b>
8690represents the complement of <em>set</em>,
8691where <em>set</em> is interpreted as above.
8692</li>
8693
8694</ul><p>
8695For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
8696the corresponding uppercase letter represents the complement of the class.
8697For instance, <code>%S</code> represents all non-space characters.
8698
8699
8700<p>
8701The definitions of letter, space, and other character groups
8702depend on the current locale.
8703In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
8704
8705
8706
8707
8708
8709<h4>Pattern Item:</h4><p>
8710A <em>pattern item</em> can be
8711
8712<ul>
8713
8714<li>
8715a single character class,
8716which matches any single character in the class;
8717</li>
8718
8719<li>
8720a single character class followed by '<code>*</code>',
8721which matches zero or more repetitions of characters in the class.
8722These repetition items will always match the longest possible sequence;
8723</li>
8724
8725<li>
8726a single character class followed by '<code>+</code>',
8727which matches one or more repetitions of characters in the class.
8728These repetition items will always match the longest possible sequence;
8729</li>
8730
8731<li>
8732a single character class followed by '<code>-</code>',
8733which also matches zero or more repetitions of characters in the class.
8734Unlike '<code>*</code>',
8735these repetition items will always match the shortest possible sequence;
8736</li>
8737
8738<li>
8739a single character class followed by '<code>?</code>',
8740which matches zero or one occurrence of a character in the class.
8741It always matches one occurrence if possible;
8742</li>
8743
8744<li>
8745<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
8746such item matches a substring equal to the <em>n</em>-th captured string
8747(see below);
8748</li>
8749
8750<li>
8751<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
8752such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
8753and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
8754This means that, if one reads the string from left to right,
8755counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
8756the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
8757For instance, the item <code>%b()</code> matches expressions with
8758balanced parentheses.
8759</li>
8760
8761<li>
8762<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>;
8763such item matches an empty string at any position such that
8764the next character belongs to <em>set</em>
8765and the previous character does not belong to <em>set</em>.
8766The set <em>set</em> is interpreted as previously described.
8767The beginning and the end of the subject are handled as if
8768they were the character '<code>\0</code>'.
8769</li>
8770
8771</ul>
8772
8773
8774
8775
8776<h4>Pattern:</h4><p>
8777A <em>pattern</em> is a sequence of pattern items.
8778A caret '<code>^</code>' at the beginning of a pattern anchors the match at the
8779beginning of the subject string.
8780A '<code>$</code>' at the end of a pattern anchors the match at the
8781end of the subject string.
8782At other positions,
8783'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
8784
8785
8786
8787
8788
8789<h4>Captures:</h4><p>
8790A pattern can contain sub-patterns enclosed in parentheses;
8791they describe <em>captures</em>.
8792When a match succeeds, the substrings of the subject string
8793that match captures are stored (<em>captured</em>) for future use.
8794Captures are numbered according to their left parentheses.
8795For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
8796the part of the string matching <code>"a*(.)%w(%s*)"</code> is
8797stored as the first capture (and therefore has number&nbsp;1);
8798the character matching "<code>.</code>" is captured with number&nbsp;2,
8799and the part matching "<code>%s*</code>" has number&nbsp;3.
8800
8801
8802<p>
8803As a special case, the empty capture <code>()</code> captures
8804the current string position (a number).
8805For instance, if we apply the pattern <code>"()aa()"</code> on the
8806string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.
8807
8808
8809
8810
8811
8812
8813
8814<h3>6.4.2 &ndash; <a name="6.4.2">Format Strings for Pack and Unpack</a></h3>
8815
8816<p>
8817The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>,
8818<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a>
8819is a format string,
8820which describes the layout of the structure being created or read.
8821
8822
8823<p>
8824A format string is a sequence of conversion options.
8825The conversion options are as follows:
8826
8827<ul>
8828<li><b><code>&lt;</code>: </b>sets little endian</li>
8829<li><b><code>&gt;</code>: </b>sets big endian</li>
8830<li><b><code>=</code>: </b>sets native endian</li>
8831<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code>
8832(default is native alignment)</li>
8833<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li>
8834<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li>
8835<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li>
8836<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li>
8837<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li>
8838<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li>
8839<li><b><code>j</code>: </b>a <code>lua_Integer</code></li>
8840<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li>
8841<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li>
8842<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes
8843(default is native size)</li>
8844<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes
8845(default is native size)</li>
8846<li><b><code>f</code>: </b>a <code>float</code> (native size)</li>
8847<li><b><code>d</code>: </b>a <code>double</code> (native size)</li>
8848<li><b><code>n</code>: </b>a <code>lua_Number</code></li>
8849<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li>
8850<li><b><code>z</code>: </b>a zero-terminated string</li>
8851<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length
8852coded as an unsigned integer with <code>n</code> bytes
8853(default is a <code>size_t</code>)</li>
8854<li><b><code>x</code>: </b>one byte of padding</li>
8855<li><b><code>X<em>op</em></code>: </b>an empty item that aligns
8856according to option <code>op</code>
8857(which is otherwise ignored)</li>
8858<li><b>'<code> </code>': </b>(empty space) ignored</li>
8859</ul><p>
8860(A "<code>[<em>n</em>]</code>" means an optional integral numeral.)
8861Except for padding, spaces, and configurations
8862(options "<code>xX &lt;=&gt;!</code>"),
8863each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>)
8864or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8865
8866
8867<p>
8868For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>",
8869<code>n</code> can be any integer between 1 and 16.
8870All integral options check overflows;
8871<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size;
8872<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer.
8873
8874
8875<p>
8876Any format string starts as if prefixed by "<code>!1=</code>",
8877that is,
8878with maximum alignment of 1 (no alignment)
8879and native endianness.
8880
8881
8882<p>
8883Alignment works as follows:
8884For each option,
8885the format gets extra padding until the data starts
8886at an offset that is a multiple of the minimum between the
8887option size and the maximum alignment;
8888this minimum must be a power of 2.
8889Options "<code>c</code>" and "<code>z</code>" are not aligned;
8890option "<code>s</code>" follows the alignment of its starting integer.
8891
8892
8893<p>
8894All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a>
8895(and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8896
8897
8898
8899
8900
8901
8902
8903<h2>6.5 &ndash; <a name="6.5">UTF-8 Support</a></h2>
8904
8905<p>
8906This library provides basic support for UTF-8 encoding.
8907It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>.
8908This library does not provide any support for Unicode other
8909than the handling of the encoding.
8910Any operation that needs the meaning of a character,
8911such as character classification, is outside its scope.
8912
8913
8914<p>
8915Unless stated otherwise,
8916all functions that expect a byte position as a parameter
8917assume that the given position is either the start of a byte sequence
8918or one plus the length of the subject string.
8919As in the string library,
8920negative indices count from the end of the string.
8921
8922
8923<p>
8924<hr><h3><a name="pdf-utf8.char"><code>utf8.char (&middot;&middot;&middot;)</code></a></h3>
8925Receives zero or more integers,
8926converts each one to its corresponding UTF-8 byte sequence
8927and returns a string with the concatenation of all these sequences.
8928
8929
8930
8931
8932<p>
8933<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3>
8934The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>"
8935(see <a href="#6.4.1">&sect;6.4.1</a>),
8936which matches exactly one UTF-8 byte sequence,
8937assuming that the subject is a valid UTF-8 string.
8938
8939
8940
8941
8942<p>
8943<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3>
8944
8945
8946<p>
8947Returns values so that the construction
8948
8949<pre>
8950     for p, c in utf8.codes(s) do <em>body</em> end
8951</pre><p>
8952will iterate over all characters in string <code>s</code>,
8953with <code>p</code> being the position (in bytes) and <code>c</code> the code point
8954of each character.
8955It raises an error if it meets any invalid byte sequence.
8956
8957
8958
8959
8960<p>
8961<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3>
8962Returns the codepoints (as integers) from all characters in <code>s</code>
8963that start between byte position <code>i</code> and <code>j</code> (both included).
8964The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>.
8965It raises an error if it meets any invalid byte sequence.
8966
8967
8968
8969
8970<p>
8971<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3>
8972Returns the number of UTF-8 characters in string <code>s</code>
8973that start between positions <code>i</code> and <code>j</code> (both inclusive).
8974The default for <code>i</code> is 1 and for <code>j</code> is -1.
8975If it finds any invalid byte sequence,
8976returns a false value plus the position of the first invalid byte.
8977
8978
8979
8980
8981<p>
8982<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3>
8983Returns the position (in bytes) where the encoding of the
8984<code>n</code>-th character of <code>s</code>
8985(counting from position <code>i</code>) starts.
8986A negative <code>n</code> gets characters before position <code>i</code>.
8987The default for <code>i</code> is 1 when <code>n</code> is non-negative
8988and <code>#s + 1</code> otherwise,
8989so that <code>utf8.offset(s, -n)</code> gets the offset of the
8990<code>n</code>-th character from the end of the string.
8991If the specified character is neither in the subject
8992nor right after its end,
8993the function returns <b>nil</b>.
8994
8995
8996<p>
8997As a special case,
8998when <code>n</code> is 0 the function returns the start of the encoding
8999of the character that contains the <code>i</code>-th byte of <code>s</code>.
9000
9001
9002<p>
9003This function assumes that <code>s</code> is a valid UTF-8 string.
9004
9005
9006
9007
9008
9009
9010
9011<h2>6.6 &ndash; <a name="6.6">Table Manipulation</a></h2>
9012
9013<p>
9014This library provides generic functions for table manipulation.
9015It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
9016
9017
9018<p>
9019Remember that, whenever an operation needs the length of a table,
9020all caveats about the length operator apply (see <a href="#3.4.7">&sect;3.4.7</a>).
9021All functions ignore non-numeric keys
9022in the tables given as arguments.
9023
9024
9025<p>
9026<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3>
9027
9028
9029<p>
9030Given a list where all elements are strings or numbers,
9031returns the string <code>list[i]..sep..list[i+1] &middot;&middot;&middot; sep..list[j]</code>.
9032The default value for <code>sep</code> is the empty string,
9033the default for <code>i</code> is 1,
9034and the default for <code>j</code> is <code>#list</code>.
9035If <code>i</code> is greater than <code>j</code>, returns the empty string.
9036
9037
9038
9039
9040<p>
9041<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3>
9042
9043
9044<p>
9045Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>,
9046shifting up the elements
9047<code>list[pos], list[pos+1], &middot;&middot;&middot;, list[#list]</code>.
9048The default value for <code>pos</code> is <code>#list+1</code>,
9049so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
9050of list <code>t</code>.
9051
9052
9053
9054
9055<p>
9056<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3>
9057
9058
9059<p>
9060Moves elements from table <code>a1</code> to table <code>a2</code>,
9061performing the equivalent to the following
9062multiple assignment:
9063<code>a2[t],&middot;&middot;&middot; = a1[f],&middot;&middot;&middot;,a1[e]</code>.
9064The default for <code>a2</code> is <code>a1</code>.
9065The destination range can overlap with the source range.
9066The number of elements to be moved must fit in a Lua integer.
9067
9068
9069<p>
9070Returns the destination table <code>a2</code>.
9071
9072
9073
9074
9075<p>
9076<hr><h3><a name="pdf-table.pack"><code>table.pack (&middot;&middot;&middot;)</code></a></h3>
9077
9078
9079<p>
9080Returns a new table with all arguments stored into keys 1, 2, etc.
9081and with a field "<code>n</code>" with the total number of arguments.
9082Note that the resulting table may not be a sequence.
9083
9084
9085
9086
9087<p>
9088<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3>
9089
9090
9091<p>
9092Removes from <code>list</code> the element at position <code>pos</code>,
9093returning the value of the removed element.
9094When <code>pos</code> is an integer between 1 and <code>#list</code>,
9095it shifts down the elements
9096<code>list[pos+1], list[pos+2], &middot;&middot;&middot;, list[#list]</code>
9097and erases element <code>list[#list]</code>;
9098The index <code>pos</code> can also be 0 when <code>#list</code> is 0,
9099or <code>#list + 1</code>;
9100in those cases, the function erases the element <code>list[pos]</code>.
9101
9102
9103<p>
9104The default value for <code>pos</code> is <code>#list</code>,
9105so that a call <code>table.remove(l)</code> removes the last element
9106of list <code>l</code>.
9107
9108
9109
9110
9111<p>
9112<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3>
9113
9114
9115<p>
9116Sorts list elements in a given order, <em>in-place</em>,
9117from <code>list[1]</code> to <code>list[#list]</code>.
9118If <code>comp</code> is given,
9119then it must be a function that receives two list elements
9120and returns true when the first element must come
9121before the second in the final order
9122(so that, after the sort,
9123<code>i &lt; j</code> implies <code>not comp(list[j],list[i])</code>).
9124If <code>comp</code> is not given,
9125then the standard Lua operator <code>&lt;</code> is used instead.
9126
9127
9128<p>
9129Note that the <code>comp</code> function must define
9130a strict partial order over the elements in the list;
9131that is, it must be asymmetric and transitive.
9132Otherwise, no valid sort may be possible.
9133
9134
9135<p>
9136The sort algorithm is not stable:
9137elements considered equal by the given order
9138may have their relative positions changed by the sort.
9139
9140
9141
9142
9143<p>
9144<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3>
9145
9146
9147<p>
9148Returns the elements from the given list.
9149This function is equivalent to
9150
9151<pre>
9152     return list[i], list[i+1], &middot;&middot;&middot;, list[j]
9153</pre><p>
9154By default, <code>i</code> is&nbsp;1 and <code>j</code> is <code>#list</code>.
9155
9156
9157
9158
9159
9160
9161
9162<h2>6.7 &ndash; <a name="6.7">Mathematical Functions</a></h2>
9163
9164<p>
9165This library provides basic mathematical functions.
9166It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>.
9167Functions with the annotation "<code>integer/float</code>" give
9168integer results for integer arguments
9169and float results for float (or mixed) arguments.
9170Rounding functions
9171(<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>)
9172return an integer when the result fits in the range of an integer,
9173or a float otherwise.
9174
9175
9176<p>
9177<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
9178
9179
9180<p>
9181Returns the absolute value of <code>x</code>. (integer/float)
9182
9183
9184
9185
9186<p>
9187<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
9188
9189
9190<p>
9191Returns the arc cosine of <code>x</code> (in radians).
9192
9193
9194
9195
9196<p>
9197<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
9198
9199
9200<p>
9201Returns the arc sine of <code>x</code> (in radians).
9202
9203
9204
9205
9206<p>
9207<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3>
9208
9209
9210<p>
9211
9212Returns the arc tangent of <code>y/x</code> (in radians),
9213but uses the signs of both arguments to find the
9214quadrant of the result.
9215(It also handles correctly the case of <code>x</code> being zero.)
9216
9217
9218<p>
9219The default value for <code>x</code> is 1,
9220so that the call <code>math.atan(y)</code>
9221returns the arc tangent of <code>y</code>.
9222
9223
9224
9225
9226<p>
9227<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
9228
9229
9230<p>
9231Returns the smallest integral value larger than or equal to <code>x</code>.
9232
9233
9234
9235
9236<p>
9237<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
9238
9239
9240<p>
9241Returns the cosine of <code>x</code> (assumed to be in radians).
9242
9243
9244
9245
9246<p>
9247<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
9248
9249
9250<p>
9251Converts the angle <code>x</code> from radians to degrees.
9252
9253
9254
9255
9256<p>
9257<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
9258
9259
9260<p>
9261Returns the value <em>e<sup>x</sup></em>
9262(where <code>e</code> is the base of natural logarithms).
9263
9264
9265
9266
9267<p>
9268<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
9269
9270
9271<p>
9272Returns the largest integral value smaller than or equal to <code>x</code>.
9273
9274
9275
9276
9277<p>
9278<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
9279
9280
9281<p>
9282Returns the remainder of the division of <code>x</code> by <code>y</code>
9283that rounds the quotient towards zero. (integer/float)
9284
9285
9286
9287
9288<p>
9289<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
9290
9291
9292<p>
9293The float value <code>HUGE_VAL</code>,
9294a value larger than any other numeric value.
9295
9296
9297
9298
9299<p>
9300<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3>
9301
9302
9303<p>
9304Returns the logarithm of <code>x</code> in the given base.
9305The default for <code>base</code> is <em>e</em>
9306(so that the function returns the natural logarithm of <code>x</code>).
9307
9308
9309
9310
9311<p>
9312<hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>
9313
9314
9315<p>
9316Returns the argument with the maximum value,
9317according to the Lua operator <code>&lt;</code>. (integer/float)
9318
9319
9320
9321
9322<p>
9323<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3>
9324An integer with the maximum value for an integer.
9325
9326
9327
9328
9329<p>
9330<hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>
9331
9332
9333<p>
9334Returns the argument with the minimum value,
9335according to the Lua operator <code>&lt;</code>. (integer/float)
9336
9337
9338
9339
9340<p>
9341<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3>
9342An integer with the minimum value for an integer.
9343
9344
9345
9346
9347<p>
9348<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
9349
9350
9351<p>
9352Returns the integral part of <code>x</code> and the fractional part of <code>x</code>.
9353Its second result is always a float.
9354
9355
9356
9357
9358<p>
9359<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
9360
9361
9362<p>
9363The value of <em>&pi;</em>.
9364
9365
9366
9367
9368<p>
9369<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
9370
9371
9372<p>
9373Converts the angle <code>x</code> from degrees to radians.
9374
9375
9376
9377
9378<p>
9379<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
9380
9381
9382<p>
9383When called without arguments,
9384returns a pseudo-random float with uniform distribution
9385in the range  <em>[0,1)</em>.
9386When called with two integers <code>m</code> and <code>n</code>,
9387<code>math.random</code> returns a pseudo-random integer
9388with uniform distribution in the range <em>[m, n]</em>.
9389(The value <em>n-m</em> cannot be negative and must fit in a Lua integer.)
9390The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>.
9391
9392
9393<p>
9394This function is an interface to the underling
9395pseudo-random generator function provided by C.
9396
9397
9398
9399
9400<p>
9401<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
9402
9403
9404<p>
9405Sets <code>x</code> as the "seed"
9406for the pseudo-random generator:
9407equal seeds produce equal sequences of numbers.
9408
9409
9410
9411
9412<p>
9413<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
9414
9415
9416<p>
9417Returns the sine of <code>x</code> (assumed to be in radians).
9418
9419
9420
9421
9422<p>
9423<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
9424
9425
9426<p>
9427Returns the square root of <code>x</code>.
9428(You can also use the expression <code>x^0.5</code> to compute this value.)
9429
9430
9431
9432
9433<p>
9434<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
9435
9436
9437<p>
9438Returns the tangent of <code>x</code> (assumed to be in radians).
9439
9440
9441
9442
9443<p>
9444<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3>
9445
9446
9447<p>
9448If the value <code>x</code> is convertible to an integer,
9449returns that integer.
9450Otherwise, returns <b>nil</b>.
9451
9452
9453
9454
9455<p>
9456<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3>
9457
9458
9459<p>
9460Returns "<code>integer</code>" if <code>x</code> is an integer,
9461"<code>float</code>" if it is a float,
9462or <b>nil</b> if <code>x</code> is not a number.
9463
9464
9465
9466
9467<p>
9468<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3>
9469
9470
9471<p>
9472Returns a boolean,
9473true if and only if integer <code>m</code> is below integer <code>n</code> when
9474they are compared as unsigned integers.
9475
9476
9477
9478
9479
9480
9481
9482<h2>6.8 &ndash; <a name="6.8">Input and Output Facilities</a></h2>
9483
9484<p>
9485The I/O library provides two different styles for file manipulation.
9486The first one uses implicit file handles;
9487that is, there are operations to set a default input file and a
9488default output file,
9489and all input/output operations are over these default files.
9490The second style uses explicit file handles.
9491
9492
9493<p>
9494When using implicit file handles,
9495all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
9496When using explicit file handles,
9497the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle
9498and then all operations are supplied as methods of the file handle.
9499
9500
9501<p>
9502The table <code>io</code> also provides
9503three predefined file handles with their usual meanings from C:
9504<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
9505The I/O library never closes these files.
9506
9507
9508<p>
9509Unless otherwise stated,
9510all I/O functions return <b>nil</b> on failure
9511(plus an error message as a second result and
9512a system-dependent error code as a third result)
9513and some value different from <b>nil</b> on success.
9514In non-POSIX systems,
9515the computation of the error message and error code
9516in case of errors
9517may be not thread safe,
9518because they rely on the global C variable <code>errno</code>.
9519
9520
9521<p>
9522<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
9523
9524
9525<p>
9526Equivalent to <code>file:close()</code>.
9527Without a <code>file</code>, closes the default output file.
9528
9529
9530
9531
9532<p>
9533<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
9534
9535
9536<p>
9537Equivalent to <code>io.output():flush()</code>.
9538
9539
9540
9541
9542<p>
9543<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
9544
9545
9546<p>
9547When called with a file name, it opens the named file (in text mode),
9548and sets its handle as the default input file.
9549When called with a file handle,
9550it simply sets this file handle as the default input file.
9551When called without arguments,
9552it returns the current default input file.
9553
9554
9555<p>
9556In case of errors this function raises the error,
9557instead of returning an error code.
9558
9559
9560
9561
9562<p>
9563<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename, &middot;&middot;&middot;])</code></a></h3>
9564
9565
9566<p>
9567Opens the given file name in read mode
9568and returns an iterator function that
9569works like <code>file:lines(&middot;&middot;&middot;)</code> over the opened file.
9570When the iterator function detects the end of file,
9571it returns no values (to finish the loop) and automatically closes the file.
9572
9573
9574<p>
9575The call <code>io.lines()</code> (with no file name) is equivalent
9576to <code>io.input():lines("*l")</code>;
9577that is, it iterates over the lines of the default input file.
9578In this case, the iterator does not close the file when the loop ends.
9579
9580
9581<p>
9582In case of errors this function raises the error,
9583instead of returning an error code.
9584
9585
9586
9587
9588<p>
9589<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
9590
9591
9592<p>
9593This function opens a file,
9594in the mode specified in the string <code>mode</code>.
9595In case of success,
9596it returns a new file handle.
9597
9598
9599<p>
9600The <code>mode</code> string can be any of the following:
9601
9602<ul>
9603<li><b>"<code>r</code>": </b> read mode (the default);</li>
9604<li><b>"<code>w</code>": </b> write mode;</li>
9605<li><b>"<code>a</code>": </b> append mode;</li>
9606<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li>
9607<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li>
9608<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved,
9609  writing is only allowed at the end of file.</li>
9610</ul><p>
9611The <code>mode</code> string can also have a '<code>b</code>' at the end,
9612which is needed in some systems to open the file in binary mode.
9613
9614
9615
9616
9617<p>
9618<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
9619
9620
9621<p>
9622Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
9623
9624
9625
9626
9627<p>
9628<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
9629
9630
9631<p>
9632This function is system dependent and is not available
9633on all platforms.
9634
9635
9636<p>
9637Starts program <code>prog</code> in a separated process and returns
9638a file handle that you can use to read data from this program
9639(if <code>mode</code> is <code>"r"</code>, the default)
9640or to write data to this program
9641(if <code>mode</code> is <code>"w"</code>).
9642
9643
9644
9645
9646<p>
9647<hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>
9648
9649
9650<p>
9651Equivalent to <code>io.input():read(&middot;&middot;&middot;)</code>.
9652
9653
9654
9655
9656<p>
9657<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
9658
9659
9660<p>
9661In case of success,
9662returns a handle for a temporary file.
9663This file is opened in update mode
9664and it is automatically removed when the program ends.
9665
9666
9667
9668
9669<p>
9670<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
9671
9672
9673<p>
9674Checks whether <code>obj</code> is a valid file handle.
9675Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
9676<code>"closed file"</code> if <code>obj</code> is a closed file handle,
9677or <b>nil</b> if <code>obj</code> is not a file handle.
9678
9679
9680
9681
9682<p>
9683<hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>
9684
9685
9686<p>
9687Equivalent to <code>io.output():write(&middot;&middot;&middot;)</code>.
9688
9689
9690
9691
9692<p>
9693<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
9694
9695
9696<p>
9697Closes <code>file</code>.
9698Note that files are automatically closed when
9699their handles are garbage collected,
9700but that takes an unpredictable amount of time to happen.
9701
9702
9703<p>
9704When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>,
9705<a href="#pdf-file:close"><code>file:close</code></a> returns the same values
9706returned by <a href="#pdf-os.execute"><code>os.execute</code></a>.
9707
9708
9709
9710
9711<p>
9712<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
9713
9714
9715<p>
9716Saves any written data to <code>file</code>.
9717
9718
9719
9720
9721<p>
9722<hr><h3><a name="pdf-file:lines"><code>file:lines (&middot;&middot;&middot;)</code></a></h3>
9723
9724
9725<p>
9726Returns an iterator function that,
9727each time it is called,
9728reads the file according to the given formats.
9729When no format is given,
9730uses "<code>l</code>" as a default.
9731As an example, the construction
9732
9733<pre>
9734     for c in file:lines(1) do <em>body</em> end
9735</pre><p>
9736will iterate over all characters of the file,
9737starting at the current position.
9738Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
9739when the loop ends.
9740
9741
9742<p>
9743In case of errors this function raises the error,
9744instead of returning an error code.
9745
9746
9747
9748
9749<p>
9750<hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>
9751
9752
9753<p>
9754Reads the file <code>file</code>,
9755according to the given formats, which specify what to read.
9756For each format,
9757the function returns a string or a number with the characters read,
9758or <b>nil</b> if it cannot read data with the specified format.
9759(In this latter case,
9760the function does not read subsequent formats.)
9761When called without formats,
9762it uses a default format that reads the next line
9763(see below).
9764
9765
9766<p>
9767The available formats are
9768
9769<ul>
9770
9771<li><b>"<code>n</code>": </b>
9772reads a numeral and returns it as a float or an integer,
9773following the lexical conventions of Lua.
9774(The numeral may have leading spaces and a sign.)
9775This format always reads the longest input sequence that
9776is a valid prefix for a numeral;
9777if that prefix does not form a valid numeral
9778(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"),
9779it is discarded and the function returns <b>nil</b>.
9780</li>
9781
9782<li><b>"<code>a</code>": </b>
9783reads the whole file, starting at the current position.
9784On end of file, it returns the empty string.
9785</li>
9786
9787<li><b>"<code>l</code>": </b>
9788reads the next line skipping the end of line,
9789returning <b>nil</b> on end of file.
9790This is the default format.
9791</li>
9792
9793<li><b>"<code>L</code>": </b>
9794reads the next line keeping the end-of-line character (if present),
9795returning <b>nil</b> on end of file.
9796</li>
9797
9798<li><b><em>number</em>: </b>
9799reads a string with up to this number of bytes,
9800returning <b>nil</b> on end of file.
9801If <code>number</code> is zero,
9802it reads nothing and returns an empty string,
9803or <b>nil</b> on end of file.
9804</li>
9805
9806</ul><p>
9807The formats "<code>l</code>" and "<code>L</code>" should be used only for text files.
9808
9809
9810
9811
9812<p>
9813<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3>
9814
9815
9816<p>
9817Sets and gets the file position,
9818measured from the beginning of the file,
9819to the position given by <code>offset</code> plus a base
9820specified by the string <code>whence</code>, as follows:
9821
9822<ul>
9823<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li>
9824<li><b>"<code>cur</code>": </b> base is current position;</li>
9825<li><b>"<code>end</code>": </b> base is end of file;</li>
9826</ul><p>
9827In case of success, <code>seek</code> returns the final file position,
9828measured in bytes from the beginning of the file.
9829If <code>seek</code> fails, it returns <b>nil</b>,
9830plus a string describing the error.
9831
9832
9833<p>
9834The default value for <code>whence</code> is <code>"cur"</code>,
9835and for <code>offset</code> is 0.
9836Therefore, the call <code>file:seek()</code> returns the current
9837file position, without changing it;
9838the call <code>file:seek("set")</code> sets the position to the
9839beginning of the file (and returns 0);
9840and the call <code>file:seek("end")</code> sets the position to the
9841end of the file, and returns its size.
9842
9843
9844
9845
9846<p>
9847<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
9848
9849
9850<p>
9851Sets the buffering mode for an output file.
9852There are three available modes:
9853
9854<ul>
9855
9856<li><b>"<code>no</code>": </b>
9857no buffering; the result of any output operation appears immediately.
9858</li>
9859
9860<li><b>"<code>full</code>": </b>
9861full buffering; output operation is performed only
9862when the buffer is full or when
9863you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>).
9864</li>
9865
9866<li><b>"<code>line</code>": </b>
9867line buffering; output is buffered until a newline is output
9868or there is any input from some special files
9869(such as a terminal device).
9870</li>
9871
9872</ul><p>
9873For the last two cases, <code>size</code>
9874specifies the size of the buffer, in bytes.
9875The default is an appropriate size.
9876
9877
9878
9879
9880<p>
9881<hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>
9882
9883
9884<p>
9885Writes the value of each of its arguments to <code>file</code>.
9886The arguments must be strings or numbers.
9887
9888
9889<p>
9890In case of success, this function returns <code>file</code>.
9891Otherwise it returns <b>nil</b> plus a string describing the error.
9892
9893
9894
9895
9896
9897
9898
9899<h2>6.9 &ndash; <a name="6.9">Operating System Facilities</a></h2>
9900
9901<p>
9902This library is implemented through table <a name="pdf-os"><code>os</code></a>.
9903
9904
9905<p>
9906<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
9907
9908
9909<p>
9910Returns an approximation of the amount in seconds of CPU time
9911used by the program.
9912
9913
9914
9915
9916<p>
9917<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
9918
9919
9920<p>
9921Returns a string or a table containing date and time,
9922formatted according to the given string <code>format</code>.
9923
9924
9925<p>
9926If the <code>time</code> argument is present,
9927this is the time to be formatted
9928(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
9929Otherwise, <code>date</code> formats the current time.
9930
9931
9932<p>
9933If <code>format</code> starts with '<code>!</code>',
9934then the date is formatted in Coordinated Universal Time.
9935After this optional character,
9936if <code>format</code> is the string "<code>*t</code>",
9937then <code>date</code> returns a table with the following fields:
9938<code>year</code>, <code>month</code> (1&ndash;12), <code>day</code> (1&ndash;31),
9939<code>hour</code> (0&ndash;23), <code>min</code> (0&ndash;59), <code>sec</code> (0&ndash;61),
9940<code>wday</code> (weekday, 1&ndash;7, Sunday is&nbsp;1),
9941<code>yday</code> (day of the year, 1&ndash;366),
9942and <code>isdst</code> (daylight saving flag, a boolean).
9943This last field may be absent
9944if the information is not available.
9945
9946
9947<p>
9948If <code>format</code> is not "<code>*t</code>",
9949then <code>date</code> returns the date as a string,
9950formatted according to the same rules as the ISO&nbsp;C function <code>strftime</code>.
9951
9952
9953<p>
9954When called without arguments,
9955<code>date</code> returns a reasonable date and time representation that depends on
9956the host system and on the current locale.
9957(More specifically, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>.)
9958
9959
9960<p>
9961In non-POSIX systems,
9962this function may be not thread safe
9963because of its reliance on C&nbsp;function <code>gmtime</code> and C&nbsp;function <code>localtime</code>.
9964
9965
9966
9967
9968<p>
9969<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
9970
9971
9972<p>
9973Returns the difference, in seconds,
9974from time <code>t1</code> to time <code>t2</code>
9975(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>).
9976In POSIX, Windows, and some other systems,
9977this value is exactly <code>t2</code><em>-</em><code>t1</code>.
9978
9979
9980
9981
9982<p>
9983<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
9984
9985
9986<p>
9987This function is equivalent to the ISO&nbsp;C function <code>system</code>.
9988It passes <code>command</code> to be executed by an operating system shell.
9989Its first result is <b>true</b>
9990if the command terminated successfully,
9991or <b>nil</b> otherwise.
9992After this first result
9993the function returns a string plus a number,
9994as follows:
9995
9996<ul>
9997
9998<li><b>"<code>exit</code>": </b>
9999the command terminated normally;
10000the following number is the exit status of the command.
10001</li>
10002
10003<li><b>"<code>signal</code>": </b>
10004the command was terminated by a signal;
10005the following number is the signal that terminated the command.
10006</li>
10007
10008</ul>
10009
10010<p>
10011When called without a <code>command</code>,
10012<code>os.execute</code> returns a boolean that is true if a shell is available.
10013
10014
10015
10016
10017<p>
10018<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3>
10019
10020
10021<p>
10022Calls the ISO&nbsp;C function <code>exit</code> to terminate the host program.
10023If <code>code</code> is <b>true</b>,
10024the returned status is <code>EXIT_SUCCESS</code>;
10025if <code>code</code> is <b>false</b>,
10026the returned status is <code>EXIT_FAILURE</code>;
10027if <code>code</code> is a number,
10028the returned status is this number.
10029The default value for <code>code</code> is <b>true</b>.
10030
10031
10032<p>
10033If the optional second argument <code>close</code> is true,
10034closes the Lua state before exiting.
10035
10036
10037
10038
10039<p>
10040<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
10041
10042
10043<p>
10044Returns the value of the process environment variable <code>varname</code>,
10045or <b>nil</b> if the variable is not defined.
10046
10047
10048
10049
10050<p>
10051<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
10052
10053
10054<p>
10055Deletes the file (or empty directory, on POSIX systems)
10056with the given name.
10057If this function fails, it returns <b>nil</b>,
10058plus a string describing the error and the error code.
10059Otherwise, it returns true.
10060
10061
10062
10063
10064<p>
10065<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
10066
10067
10068<p>
10069Renames the file or directory named <code>oldname</code> to <code>newname</code>.
10070If this function fails, it returns <b>nil</b>,
10071plus a string describing the error and the error code.
10072Otherwise, it returns true.
10073
10074
10075
10076
10077<p>
10078<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
10079
10080
10081<p>
10082Sets the current locale of the program.
10083<code>locale</code> is a system-dependent string specifying a locale;
10084<code>category</code> is an optional string describing which category to change:
10085<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
10086<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
10087the default category is <code>"all"</code>.
10088The function returns the name of the new locale,
10089or <b>nil</b> if the request cannot be honored.
10090
10091
10092<p>
10093If <code>locale</code> is the empty string,
10094the current locale is set to an implementation-defined native locale.
10095If <code>locale</code> is the string "<code>C</code>",
10096the current locale is set to the standard C locale.
10097
10098
10099<p>
10100When called with <b>nil</b> as the first argument,
10101this function only returns the name of the current locale
10102for the given category.
10103
10104
10105<p>
10106This function may be not thread safe
10107because of its reliance on C&nbsp;function <code>setlocale</code>.
10108
10109
10110
10111
10112<p>
10113<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
10114
10115
10116<p>
10117Returns the current time when called without arguments,
10118or a time representing the local date and time specified by the given table.
10119This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
10120and may have fields
10121<code>hour</code> (default is 12),
10122<code>min</code> (default is 0),
10123<code>sec</code> (default is 0),
10124and <code>isdst</code> (default is <b>nil</b>).
10125Other fields are ignored.
10126For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function.
10127
10128
10129<p>
10130The values in these fields do not need to be inside their valid ranges.
10131For instance, if <code>sec</code> is -10,
10132it means -10 seconds from the time specified by the other fields;
10133if <code>hour</code> is 1000,
10134it means +1000 hours from the time specified by the other fields.
10135
10136
10137<p>
10138The returned value is a number, whose meaning depends on your system.
10139In POSIX, Windows, and some other systems,
10140this number counts the number
10141of seconds since some given start time (the "epoch").
10142In other systems, the meaning is not specified,
10143and the number returned by <code>time</code> can be used only as an argument to
10144<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>.
10145
10146
10147
10148
10149<p>
10150<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
10151
10152
10153<p>
10154Returns a string with a file name that can
10155be used for a temporary file.
10156The file must be explicitly opened before its use
10157and explicitly removed when no longer needed.
10158
10159
10160<p>
10161In POSIX systems,
10162this function also creates a file with that name,
10163to avoid security risks.
10164(Someone else might create the file with wrong permissions
10165in the time between getting the name and creating the file.)
10166You still have to open the file to use it
10167and to remove it (even if you do not use it).
10168
10169
10170<p>
10171When possible,
10172you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
10173which automatically removes the file when the program ends.
10174
10175
10176
10177
10178
10179
10180
10181<h2>6.10 &ndash; <a name="6.10">The Debug Library</a></h2>
10182
10183<p>
10184This library provides
10185the functionality of the debug interface (<a href="#4.9">&sect;4.9</a>) to Lua programs.
10186You should exert care when using this library.
10187Several of its functions
10188violate basic assumptions about Lua code
10189(e.g., that variables local to a function
10190cannot be accessed from outside;
10191that userdata metatables cannot be changed by Lua code;
10192that Lua programs do not crash)
10193and therefore can compromise otherwise secure code.
10194Moreover, some functions in this library may be slow.
10195
10196
10197<p>
10198All functions in this library are provided
10199inside the <a name="pdf-debug"><code>debug</code></a> table.
10200All functions that operate over a thread
10201have an optional first argument which is the
10202thread to operate over.
10203The default is always the current thread.
10204
10205
10206<p>
10207<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
10208
10209
10210<p>
10211Enters an interactive mode with the user,
10212running each string that the user enters.
10213Using simple commands and other debug facilities,
10214the user can inspect global and local variables,
10215change their values, evaluate expressions, and so on.
10216A line containing only the word <code>cont</code> finishes this function,
10217so that the caller continues its execution.
10218
10219
10220<p>
10221Note that commands for <code>debug.debug</code> are not lexically nested
10222within any function and so have no direct access to local variables.
10223
10224
10225
10226
10227<p>
10228<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
10229
10230
10231<p>
10232Returns the current hook settings of the thread, as three values:
10233the current hook function, the current hook mask,
10234and the current hook count
10235(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
10236
10237
10238
10239
10240<p>
10241<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3>
10242
10243
10244<p>
10245Returns a table with information about a function.
10246You can give the function directly
10247or you can give a number as the value of <code>f</code>,
10248which means the function running at level <code>f</code> of the call stack
10249of the given thread:
10250level&nbsp;0 is the current function (<code>getinfo</code> itself);
10251level&nbsp;1 is the function that called <code>getinfo</code>
10252(except for tail calls, which do not count on the stack);
10253and so on.
10254If <code>f</code> is a number larger than the number of active functions,
10255then <code>getinfo</code> returns <b>nil</b>.
10256
10257
10258<p>
10259The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
10260with the string <code>what</code> describing which fields to fill in.
10261The default for <code>what</code> is to get all information available,
10262except the table of valid lines.
10263If present,
10264the option '<code>f</code>'
10265adds a field named <code>func</code> with the function itself.
10266If present,
10267the option '<code>L</code>'
10268adds a field named <code>activelines</code> with the table of
10269valid lines.
10270
10271
10272<p>
10273For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
10274a name for the current function,
10275if a reasonable name can be found,
10276and the expression <code>debug.getinfo(print)</code>
10277returns a table with all available information
10278about the <a href="#pdf-print"><code>print</code></a> function.
10279
10280
10281
10282
10283<p>
10284<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3>
10285
10286
10287<p>
10288This function returns the name and the value of the local variable
10289with index <code>local</code> of the function at level <code>f</code> of the stack.
10290This function accesses not only explicit local variables,
10291but also parameters, temporaries, etc.
10292
10293
10294<p>
10295The first parameter or local variable has index&nbsp;1, and so on,
10296following the order that they are declared in the code,
10297counting only the variables that are active
10298in the current scope of the function.
10299Negative indices refer to vararg arguments;
10300-1 is the first vararg argument.
10301The function returns <b>nil</b> if there is no variable with the given index,
10302and raises an error when called with a level out of range.
10303(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
10304
10305
10306<p>
10307Variable names starting with '<code>(</code>' (open parenthesis)
10308represent variables with no known names
10309(internal variables such as loop control variables,
10310and variables from chunks saved without debug information).
10311
10312
10313<p>
10314The parameter <code>f</code> may also be a function.
10315In that case, <code>getlocal</code> returns only the name of function parameters.
10316
10317
10318
10319
10320<p>
10321<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3>
10322
10323
10324<p>
10325Returns the metatable of the given <code>value</code>
10326or <b>nil</b> if it does not have a metatable.
10327
10328
10329
10330
10331<p>
10332<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
10333
10334
10335<p>
10336Returns the registry table (see <a href="#4.5">&sect;4.5</a>).
10337
10338
10339
10340
10341<p>
10342<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3>
10343
10344
10345<p>
10346This function returns the name and the value of the upvalue
10347with index <code>up</code> of the function <code>f</code>.
10348The function returns <b>nil</b> if there is no upvalue with the given index.
10349
10350
10351<p>
10352Variable names starting with '<code>(</code>' (open parenthesis)
10353represent variables with no known names
10354(variables from chunks saved without debug information).
10355
10356
10357
10358
10359<p>
10360<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3>
10361
10362
10363<p>
10364Returns the Lua value associated to <code>u</code>.
10365If <code>u</code> is not a full userdata,
10366returns <b>nil</b>.
10367
10368
10369
10370
10371<p>
10372<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
10373
10374
10375<p>
10376Sets the given function as a hook.
10377The string <code>mask</code> and the number <code>count</code> describe
10378when the hook will be called.
10379The string mask may have any combination of the following characters,
10380with the given meaning:
10381
10382<ul>
10383<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li>
10384<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li>
10385<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li>
10386</ul><p>
10387Moreover,
10388with a <code>count</code> different from zero,
10389the hook is called also after every <code>count</code> instructions.
10390
10391
10392<p>
10393When called without arguments,
10394<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
10395
10396
10397<p>
10398When the hook is called, its first argument is a string
10399describing the event that has triggered its call:
10400<code>"call"</code> (or <code>"tail call"</code>),
10401<code>"return"</code>,
10402<code>"line"</code>, and <code>"count"</code>.
10403For line events,
10404the hook also gets the new line number as its second parameter.
10405Inside a hook,
10406you can call <code>getinfo</code> with level&nbsp;2 to get more information about
10407the running function
10408(level&nbsp;0 is the <code>getinfo</code> function,
10409and level&nbsp;1 is the hook function).
10410
10411
10412
10413
10414<p>
10415<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
10416
10417
10418<p>
10419This function assigns the value <code>value</code> to the local variable
10420with index <code>local</code> of the function at level <code>level</code> of the stack.
10421The function returns <b>nil</b> if there is no local
10422variable with the given index,
10423and raises an error when called with a <code>level</code> out of range.
10424(You can call <code>getinfo</code> to check whether the level is valid.)
10425Otherwise, it returns the name of the local variable.
10426
10427
10428<p>
10429See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about
10430variable indices and names.
10431
10432
10433
10434
10435<p>
10436<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3>
10437
10438
10439<p>
10440Sets the metatable for the given <code>value</code> to the given <code>table</code>
10441(which can be <b>nil</b>).
10442Returns <code>value</code>.
10443
10444
10445
10446
10447<p>
10448<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3>
10449
10450
10451<p>
10452This function assigns the value <code>value</code> to the upvalue
10453with index <code>up</code> of the function <code>f</code>.
10454The function returns <b>nil</b> if there is no upvalue
10455with the given index.
10456Otherwise, it returns the name of the upvalue.
10457
10458
10459
10460
10461<p>
10462<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3>
10463
10464
10465<p>
10466Sets the given <code>value</code> as
10467the Lua value associated to the given <code>udata</code>.
10468<code>udata</code> must be a full userdata.
10469
10470
10471<p>
10472Returns <code>udata</code>.
10473
10474
10475
10476
10477<p>
10478<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3>
10479
10480
10481<p>
10482If <code>message</code> is present but is neither a string nor <b>nil</b>,
10483this function returns <code>message</code> without further processing.
10484Otherwise,
10485it returns a string with a traceback of the call stack.
10486The optional <code>message</code> string is appended
10487at the beginning of the traceback.
10488An optional <code>level</code> number tells at which level
10489to start the traceback
10490(default is 1, the function calling <code>traceback</code>).
10491
10492
10493
10494
10495<p>
10496<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3>
10497
10498
10499<p>
10500Returns a unique identifier (as a light userdata)
10501for the upvalue numbered <code>n</code>
10502from the given function.
10503
10504
10505<p>
10506These unique identifiers allow a program to check whether different
10507closures share upvalues.
10508Lua closures that share an upvalue
10509(that is, that access a same external local variable)
10510will return identical ids for those upvalue indices.
10511
10512
10513
10514
10515<p>
10516<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3>
10517
10518
10519<p>
10520Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code>
10521refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>.
10522
10523
10524
10525
10526
10527
10528
10529<h1>7 &ndash; <a name="7">Lua Standalone</a></h1>
10530
10531<p>
10532Although Lua has been designed as an extension language,
10533to be embedded in a host C&nbsp;program,
10534it is also frequently used as a standalone language.
10535An interpreter for Lua as a standalone language,
10536called simply <code>lua</code>,
10537is provided with the standard distribution.
10538The standalone interpreter includes
10539all standard libraries, including the debug library.
10540Its usage is:
10541
10542<pre>
10543     lua [options] [script [args]]
10544</pre><p>
10545The options are:
10546
10547<ul>
10548<li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li>
10549<li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em> and assigns the
10550  result to global @<em>mod</em>;</li>
10551<li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li>
10552<li><b><code>-v</code>: </b> prints version information;</li>
10553<li><b><code>-E</code>: </b> ignores environment variables;</li>
10554<li><b><code>--</code>: </b> stops handling options;</li>
10555<li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li>
10556</ul><p>
10557After handling its options, <code>lua</code> runs the given <em>script</em>.
10558When called without arguments,
10559<code>lua</code> behaves as <code>lua -v -i</code>
10560when the standard input (<code>stdin</code>) is a terminal,
10561and as <code>lua -</code> otherwise.
10562
10563
10564<p>
10565When called without option <code>-E</code>,
10566the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a>
10567(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined)
10568before running any argument.
10569If the variable content has the format <code>@<em>filename</em></code>,
10570then <code>lua</code> executes the file.
10571Otherwise, <code>lua</code> executes the string itself.
10572
10573
10574<p>
10575When called with option <code>-E</code>,
10576besides ignoring <code>LUA_INIT</code>,
10577Lua also ignores
10578the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>,
10579setting the values of
10580<a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a>
10581with the default paths defined in <code>luaconf.h</code>.
10582
10583
10584<p>
10585All options are handled in order, except <code>-i</code> and <code>-E</code>.
10586For instance, an invocation like
10587
10588<pre>
10589     $ lua -e'a=1' -e 'print(a)' script.lua
10590</pre><p>
10591will first set <code>a</code> to 1, then print the value of <code>a</code>,
10592and finally run the file <code>script.lua</code> with no arguments.
10593(Here <code>$</code> is the shell prompt. Your prompt may be different.)
10594
10595
10596<p>
10597Before running any code,
10598<code>lua</code> collects all command-line arguments
10599in a global table called <code>arg</code>.
10600The script name goes to index 0,
10601the first argument after the script name goes to index 1,
10602and so on.
10603Any arguments before the script name
10604(that is, the interpreter name plus its options)
10605go to negative indices.
10606For instance, in the call
10607
10608<pre>
10609     $ lua -la b.lua t1 t2
10610</pre><p>
10611the table is like this:
10612
10613<pre>
10614     arg = { [-2] = "lua", [-1] = "-la",
10615             [0] = "b.lua",
10616             [1] = "t1", [2] = "t2" }
10617</pre><p>
10618If there is no script in the call,
10619the interpreter name goes to index 0,
10620followed by the other arguments.
10621For instance, the call
10622
10623<pre>
10624     $ lua -e "print(arg[1])"
10625</pre><p>
10626will print "<code>-e</code>".
10627If there is a script,
10628the script is called with arguments
10629<code>arg[1]</code>, &middot;&middot;&middot;, <code>arg[#arg]</code>.
10630(Like all chunks in Lua,
10631the script is compiled as a vararg function.)
10632
10633
10634<p>
10635In interactive mode,
10636Lua repeatedly prompts and waits for a line.
10637After reading a line,
10638Lua first try to interpret the line as an expression.
10639If it succeeds, it prints its value.
10640Otherwise, it interprets the line as a statement.
10641If you write an incomplete statement,
10642the interpreter waits for its completion
10643by issuing a different prompt.
10644
10645
10646<p>
10647If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string,
10648then its value is used as the prompt.
10649Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string,
10650its value is used as the secondary prompt
10651(issued during incomplete statements).
10652
10653
10654<p>
10655In case of unprotected errors in the script,
10656the interpreter reports the error to the standard error stream.
10657If the error object is not a string but
10658has a metamethod <code>__tostring</code>,
10659the interpreter calls this metamethod to produce the final message.
10660Otherwise, the interpreter converts the error object to a string
10661and adds a stack traceback to it.
10662
10663
10664<p>
10665When finishing normally,
10666the interpreter closes its main Lua state
10667(see <a href="#lua_close"><code>lua_close</code></a>).
10668The script can avoid this step by
10669calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate.
10670
10671
10672<p>
10673To allow the use of Lua as a
10674script interpreter in Unix systems,
10675the standalone interpreter skips
10676the first line of a chunk if it starts with <code>#</code>.
10677Therefore, Lua scripts can be made into executable programs
10678by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
10679as in
10680
10681<pre>
10682     #!/usr/local/bin/lua
10683</pre><p>
10684(Of course,
10685the location of the Lua interpreter may be different in your machine.
10686If <code>lua</code> is in your <code>PATH</code>,
10687then
10688
10689<pre>
10690     #!/usr/bin/env lua
10691</pre><p>
10692is a more portable solution.)
10693
10694
10695
10696<h1>8 &ndash; <a name="8">Incompatibilities with the Previous Version</a></h1>
10697
10698<p>
10699Here we list the incompatibilities that you may find when moving a program
10700from Lua&nbsp;5.2 to Lua&nbsp;5.3.
10701You can avoid some incompatibilities by compiling Lua with
10702appropriate options (see file <code>luaconf.h</code>).
10703However,
10704all these compatibility options will be removed in the future.
10705
10706
10707<p>
10708Lua versions can always change the C API in ways that
10709do not imply source-code changes in a program,
10710such as the numeric values for constants
10711or the implementation of functions as macros.
10712Therefore,
10713you should not assume that binaries are compatible between
10714different Lua versions.
10715Always recompile clients of the Lua API when
10716using a new version.
10717
10718
10719<p>
10720Similarly, Lua versions can always change the internal representation
10721of precompiled chunks;
10722precompiled chunks are not compatible between different Lua versions.
10723
10724
10725<p>
10726The standard paths in the official distribution may
10727change between versions.
10728
10729
10730
10731<h2>8.1 &ndash; <a name="8.1">Changes in the Language</a></h2>
10732<ul>
10733
10734<li>
10735The main difference between Lua&nbsp;5.2 and Lua&nbsp;5.3 is the
10736introduction of an integer subtype for numbers.
10737Although this change should not affect "normal" computations,
10738some computations
10739(mainly those that involve some kind of overflow)
10740can give different results.
10741
10742
10743<p>
10744You can fix these differences by forcing a number to be a float
10745(in Lua&nbsp;5.2 all numbers were float),
10746in particular writing constants with an ending <code>.0</code>
10747or using <code>x = x + 0.0</code> to convert a variable.
10748(This recommendation is only for a quick fix
10749for an occasional incompatibility;
10750it is not a general guideline for good programming.
10751For good programming,
10752use floats where you need floats
10753and integers where you need integers.)
10754</li>
10755
10756<li>
10757The conversion of a float to a string now adds a <code>.0</code> suffix
10758to the result if it looks like an integer.
10759(For instance, the float 2.0 will be printed as <code>2.0</code>,
10760not as <code>2</code>.)
10761You should always use an explicit format
10762when you need a specific format for numbers.
10763
10764
10765<p>
10766(Formally this is not an incompatibility,
10767because Lua does not specify how numbers are formatted as strings,
10768but some programs assumed a specific format.)
10769</li>
10770
10771<li>
10772The generational mode for the garbage collector was removed.
10773(It was an experimental feature in Lua&nbsp;5.2.)
10774</li>
10775
10776</ul>
10777
10778
10779
10780
10781<h2>8.2 &ndash; <a name="8.2">Changes in the Libraries</a></h2>
10782<ul>
10783
10784<li>
10785The <code>bit32</code> library has been deprecated.
10786It is easy to require a compatible external library or,
10787better yet, to replace its functions with appropriate bitwise operations.
10788(Keep in mind that <code>bit32</code> operates on 32-bit integers,
10789while the bitwise operators in Lua&nbsp;5.3 operate on Lua integers,
10790which by default have 64&nbsp;bits.)
10791</li>
10792
10793<li>
10794The Table library now respects metamethods
10795for setting and getting elements.
10796</li>
10797
10798<li>
10799The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and
10800its <code>__ipairs</code> metamethod has been deprecated.
10801</li>
10802
10803<li>
10804Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore.
10805For compatibility, Lua will continue to accept (and ignore) this character.
10806</li>
10807
10808<li>
10809The following functions were deprecated in the mathematical library:
10810<code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>,
10811<code>frexp</code>, and <code>ldexp</code>.
10812You can replace <code>math.pow(x,y)</code> with <code>x^y</code>;
10813you can replace <code>math.atan2</code> with <code>math.atan</code>,
10814which now accepts one or two arguments;
10815you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>.
10816For the other operations,
10817you can either use an external library or
10818implement them in Lua.
10819</li>
10820
10821<li>
10822The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a>
10823changed the way it handles versioned names.
10824Now, the version should come after the module name
10825(as is usual in most other tools).
10826For compatibility, that searcher still tries the old format
10827if it cannot find an open function according to the new style.
10828(Lua&nbsp;5.2 already worked that way,
10829but it did not document the change.)
10830</li>
10831
10832<li>
10833The call <code>collectgarbage("count")</code> now returns only one result.
10834(You can compute that second result from the fractional part
10835of the first result.)
10836</li>
10837
10838</ul>
10839
10840
10841
10842
10843<h2>8.3 &ndash; <a name="8.3">Changes in the API</a></h2>
10844
10845
10846<ul>
10847
10848<li>
10849Continuation functions now receive as arguments what they needed
10850to get through <code>lua_getctx</code>,
10851so <code>lua_getctx</code> has been removed.
10852Adapt your code accordingly.
10853</li>
10854
10855<li>
10856Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>.
10857Use 0 as the value of this parameter to get the old behavior.
10858</li>
10859
10860<li>
10861Functions to inject/project unsigned integers
10862(<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>,
10863<code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>)
10864were deprecated.
10865Use their signed equivalents with a type cast.
10866</li>
10867
10868<li>
10869Macros to project non-default integer types
10870(<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>)
10871were deprecated.
10872Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast
10873(or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code).
10874</li>
10875
10876</ul>
10877
10878
10879
10880
10881<h1>9 &ndash; <a name="9">The Complete Syntax of Lua</a></h1>
10882
10883<p>
10884Here is the complete syntax of Lua in extended BNF.
10885As usual in extended BNF,
10886{A} means 0 or more As,
10887and [A] means an optional A.
10888(For operator precedences, see <a href="#3.4.8">&sect;3.4.8</a>;
10889for a description of the terminals
10890Name, Numeral,
10891and LiteralString, see <a href="#3.1">&sect;3.1</a>.)
10892
10893
10894
10895
10896<pre>
10897
10898	chunk ::= block
10899
10900	block ::= {stat} [retstat]
10901
10902	stat ::=  &lsquo;<b>;</b>&rsquo; |
10903		 varlist &lsquo;<b>=</b>&rsquo; explist |
10904		 functioncall |
10905		 label |
10906		 <b>break</b> |
10907		 <b>goto</b> Name |
10908		 <b>do</b> block <b>end</b> |
10909		 <b>while</b> exp <b>do</b> block <b>end</b> |
10910		 <b>repeat</b> block <b>until</b> exp |
10911		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> |
10912		 <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b> |
10913		 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> |
10914		 <b>function</b> funcname funcbody |
10915		 <b>local</b> <b>function</b> Name funcbody |
10916		 <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
10917
10918	retstat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
10919
10920	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
10921
10922	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
10923
10924	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
10925
10926	var ::=  Name | prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; | prefixexp &lsquo;<b>.</b>&rsquo; Name
10927
10928	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
10929
10930	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
10931
10932	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | &lsquo;<b>...</b>&rsquo; | functiondef |
10933		 prefixexp | tableconstructor | exp binop exp | unop exp
10934
10935	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
10936
10937	functioncall ::=  prefixexp args | prefixexp &lsquo;<b>:</b>&rsquo; Name args
10938
10939	args ::=  &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo; | tableconstructor | LiteralString
10940
10941	functiondef ::= <b>function</b> funcbody
10942
10943	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
10944
10945	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
10946
10947	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
10948
10949	fieldlist ::= field {fieldsep field} [fieldsep]
10950
10951	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
10952
10953	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
10954
10955	binop ::=  &lsquo;<b>+</b>&rsquo; | &lsquo;<b>-</b>&rsquo; | &lsquo;<b>*</b>&rsquo; | &lsquo;<b>/</b>&rsquo; | &lsquo;<b>//</b>&rsquo; | &lsquo;<b>^</b>&rsquo; | &lsquo;<b>%</b>&rsquo; |
10956		 &lsquo;<b>&amp;</b>&rsquo; | &lsquo;<b>~</b>&rsquo; | &lsquo;<b>|</b>&rsquo; | &lsquo;<b>&gt;&gt;</b>&rsquo; | &lsquo;<b>&lt;&lt;</b>&rsquo; | &lsquo;<b>..</b>&rsquo; |
10957		 &lsquo;<b>&lt;</b>&rsquo; | &lsquo;<b>&lt;=</b>&rsquo; | &lsquo;<b>&gt;</b>&rsquo; | &lsquo;<b>&gt;=</b>&rsquo; | &lsquo;<b>==</b>&rsquo; | &lsquo;<b>~=</b>&rsquo; |
10958		 <b>and</b> | <b>or</b>
10959
10960	unop ::= &lsquo;<b>-</b>&rsquo; | <b>not</b> | &lsquo;<b>#</b>&rsquo; | &lsquo;<b>~</b>&rsquo;
10961
10962</pre>
10963
10964<p>
10965
10966
10967
10968
10969
10970
10971
10972
10973<P CLASS="footer">
10974Last update:
10975Tue Jun 26 13:16:37 -03 2018
10976</P>
10977<!--
10978Last change: revised for Lua 5.3.5
10979-->
10980
10981</body></html>
10982
10983