1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29
30 /*
31 * Implements a pass that lowers vector phi nodes to scalar phi nodes when
32 * we don't think it will hurt anything.
33 */
34
35 struct lower_phis_to_scalar_state {
36 void *mem_ctx;
37 void *dead_ctx;
38
39 /* Hash table marking which phi nodes are scalarizable. The key is
40 * pointers to phi instructions and the entry is either NULL for not
41 * scalarizable or non-null for scalarizable.
42 */
43 struct hash_table *phi_table;
44 };
45
46 static bool
47 should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state);
48
49 static bool
is_phi_src_scalarizable(nir_phi_src * src,struct lower_phis_to_scalar_state * state)50 is_phi_src_scalarizable(nir_phi_src *src,
51 struct lower_phis_to_scalar_state *state)
52 {
53 /* Don't know what to do with non-ssa sources */
54 if (!src->src.is_ssa)
55 return false;
56
57 nir_instr *src_instr = src->src.ssa->parent_instr;
58 switch (src_instr->type) {
59 case nir_instr_type_alu: {
60 nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
61
62 /* ALU operations with output_size == 0 should be scalarized. We
63 * will also see a bunch of vecN operations from scalarizing ALU
64 * operations and, since they can easily be copy-propagated, they
65 * are ok too.
66 */
67 return nir_op_infos[src_alu->op].output_size == 0 ||
68 src_alu->op == nir_op_vec2 ||
69 src_alu->op == nir_op_vec3 ||
70 src_alu->op == nir_op_vec4;
71 }
72
73 case nir_instr_type_phi:
74 /* A phi is scalarizable if we're going to lower it */
75 return should_lower_phi(nir_instr_as_phi(src_instr), state);
76
77 case nir_instr_type_load_const:
78 case nir_instr_type_ssa_undef:
79 /* These are trivially scalarizable */
80 return true;
81
82 case nir_instr_type_intrinsic: {
83 nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
84
85 switch (src_intrin->intrinsic) {
86 case nir_intrinsic_load_var:
87 return src_intrin->variables[0]->var->data.mode == nir_var_shader_in ||
88 src_intrin->variables[0]->var->data.mode == nir_var_uniform;
89
90 case nir_intrinsic_interp_var_at_centroid:
91 case nir_intrinsic_interp_var_at_sample:
92 case nir_intrinsic_interp_var_at_offset:
93 case nir_intrinsic_load_uniform:
94 case nir_intrinsic_load_ubo:
95 case nir_intrinsic_load_ssbo:
96 case nir_intrinsic_load_input:
97 return true;
98 default:
99 break;
100 }
101 }
102
103 default:
104 /* We can't scalarize this type of instruction */
105 return false;
106 }
107 }
108
109 /**
110 * Determines if the given phi node should be lowered. The only phi nodes
111 * we will scalarize at the moment are those where all of the sources are
112 * scalarizable.
113 *
114 * The reason for this comes down to coalescing. Since phi sources can't
115 * swizzle, swizzles on phis have to be resolved by inserting a mov right
116 * before the phi. The choice then becomes between movs to pick off
117 * components for a scalar phi or potentially movs to recombine components
118 * for a vector phi. The problem is that the movs generated to pick off
119 * the components are almost uncoalescable. We can't coalesce them in NIR
120 * because we need them to pick off components and we can't coalesce them
121 * in the backend because the source register is a vector and the
122 * destination is a scalar that may be used at other places in the program.
123 * On the other hand, if we have a bunch of scalars going into a vector
124 * phi, the situation is much better. In this case, if the SSA def is
125 * generated in the predecessor block to the corresponding phi source, the
126 * backend code will be an ALU op into a temporary and then a mov into the
127 * given vector component; this move can almost certainly be coalesced
128 * away.
129 */
130 static bool
should_lower_phi(nir_phi_instr * phi,struct lower_phis_to_scalar_state * state)131 should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state)
132 {
133 /* Already scalar */
134 if (phi->dest.ssa.num_components == 1)
135 return false;
136
137 struct hash_entry *entry = _mesa_hash_table_search(state->phi_table, phi);
138 if (entry)
139 return entry->data != NULL;
140
141 /* Insert an entry and mark it as scalarizable for now. That way
142 * we don't recurse forever and a cycle in the dependence graph
143 * won't automatically make us fail to scalarize.
144 */
145 entry = _mesa_hash_table_insert(state->phi_table, phi, (void *)(intptr_t)1);
146
147 bool scalarizable = true;
148
149 nir_foreach_phi_src(src, phi) {
150 scalarizable = is_phi_src_scalarizable(src, state);
151 if (!scalarizable)
152 break;
153 }
154
155 /* The hash table entry for 'phi' may have changed while recursing the
156 * dependence graph, so we need to reset it */
157 entry = _mesa_hash_table_search(state->phi_table, phi);
158 assert(entry);
159
160 entry->data = (void *)(intptr_t)scalarizable;
161
162 return scalarizable;
163 }
164
165 static bool
lower_phis_to_scalar_block(nir_block * block,struct lower_phis_to_scalar_state * state)166 lower_phis_to_scalar_block(nir_block *block,
167 struct lower_phis_to_scalar_state *state)
168 {
169 bool progress = false;
170
171 /* Find the last phi node in the block */
172 nir_phi_instr *last_phi = NULL;
173 nir_foreach_instr(instr, block) {
174 if (instr->type != nir_instr_type_phi)
175 break;
176
177 last_phi = nir_instr_as_phi(instr);
178 }
179
180 /* We have to handle the phi nodes in their own pass due to the way
181 * we're modifying the linked list of instructions.
182 */
183 nir_foreach_instr_safe(instr, block) {
184 if (instr->type != nir_instr_type_phi)
185 break;
186
187 nir_phi_instr *phi = nir_instr_as_phi(instr);
188
189 if (!should_lower_phi(phi, state))
190 continue;
191
192 unsigned bit_size = phi->dest.ssa.bit_size;
193
194 /* Create a vecN operation to combine the results. Most of these
195 * will be redundant, but copy propagation should clean them up for
196 * us. No need to add the complexity here.
197 */
198 nir_op vec_op;
199 switch (phi->dest.ssa.num_components) {
200 case 2: vec_op = nir_op_vec2; break;
201 case 3: vec_op = nir_op_vec3; break;
202 case 4: vec_op = nir_op_vec4; break;
203 default: unreachable("Invalid number of components");
204 }
205
206 nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, vec_op);
207 nir_ssa_dest_init(&vec->instr, &vec->dest.dest,
208 phi->dest.ssa.num_components,
209 bit_size, NULL);
210 vec->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
211
212 for (unsigned i = 0; i < phi->dest.ssa.num_components; i++) {
213 nir_phi_instr *new_phi = nir_phi_instr_create(state->mem_ctx);
214 nir_ssa_dest_init(&new_phi->instr, &new_phi->dest, 1,
215 phi->dest.ssa.bit_size, NULL);
216
217 vec->src[i].src = nir_src_for_ssa(&new_phi->dest.ssa);
218
219 nir_foreach_phi_src(src, phi) {
220 /* We need to insert a mov to grab the i'th component of src */
221 nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
222 nir_op_imov);
223 nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, bit_size, NULL);
224 mov->dest.write_mask = 1;
225 nir_src_copy(&mov->src[0].src, &src->src, state->mem_ctx);
226 mov->src[0].swizzle[0] = i;
227
228 /* Insert at the end of the predecessor but before the jump */
229 nir_instr *pred_last_instr = nir_block_last_instr(src->pred);
230 if (pred_last_instr && pred_last_instr->type == nir_instr_type_jump)
231 nir_instr_insert_before(pred_last_instr, &mov->instr);
232 else
233 nir_instr_insert_after_block(src->pred, &mov->instr);
234
235 nir_phi_src *new_src = ralloc(new_phi, nir_phi_src);
236 new_src->pred = src->pred;
237 new_src->src = nir_src_for_ssa(&mov->dest.dest.ssa);
238
239 exec_list_push_tail(&new_phi->srcs, &new_src->node);
240 }
241
242 nir_instr_insert_before(&phi->instr, &new_phi->instr);
243 }
244
245 nir_instr_insert_after(&last_phi->instr, &vec->instr);
246
247 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
248 nir_src_for_ssa(&vec->dest.dest.ssa));
249
250 ralloc_steal(state->dead_ctx, phi);
251 nir_instr_remove(&phi->instr);
252
253 progress = true;
254
255 /* We're using the safe iterator and inserting all the newly
256 * scalarized phi nodes before their non-scalarized version so that's
257 * ok. However, we are also inserting vec operations after all of
258 * the last phi node so once we get here, we can't trust even the
259 * safe iterator to stop properly. We have to break manually.
260 */
261 if (instr == &last_phi->instr)
262 break;
263 }
264
265 return progress;
266 }
267
268 static bool
lower_phis_to_scalar_impl(nir_function_impl * impl)269 lower_phis_to_scalar_impl(nir_function_impl *impl)
270 {
271 struct lower_phis_to_scalar_state state;
272 bool progress = false;
273
274 state.mem_ctx = ralloc_parent(impl);
275 state.dead_ctx = ralloc_context(NULL);
276 state.phi_table = _mesa_hash_table_create(state.dead_ctx, _mesa_hash_pointer,
277 _mesa_key_pointer_equal);
278
279 nir_foreach_block(block, impl) {
280 progress = lower_phis_to_scalar_block(block, &state) || progress;
281 }
282
283 nir_metadata_preserve(impl, nir_metadata_block_index |
284 nir_metadata_dominance);
285
286 ralloc_free(state.dead_ctx);
287 return progress;
288 }
289
290 /** A pass that lowers vector phi nodes to scalar
291 *
292 * This pass loops through the blocks and lowers looks for vector phi nodes
293 * it can lower to scalar phi nodes. Not all phi nodes are lowered. For
294 * instance, if one of the sources is a non-scalarizable vector, then we
295 * don't bother lowering because that would generate hard-to-coalesce movs.
296 */
297 bool
nir_lower_phis_to_scalar(nir_shader * shader)298 nir_lower_phis_to_scalar(nir_shader *shader)
299 {
300 bool progress = false;
301
302 nir_foreach_function(function, shader) {
303 if (function->impl)
304 progress = lower_phis_to_scalar_impl(function->impl) || progress;
305 }
306
307 return progress;
308 }
309