1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2016 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26
27 #include "lcms2_internal.h"
28
29
30 //----------------------------------------------------------------------------------
31
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
34
35 cmsContext ContextID;
36
37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39 cmsUInt16Number rx[256], ry[256], rz[256];
40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
41
42
43 } Prelin8Data;
44
45
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
48
49 cmsContext ContextID;
50
51 // Number of channels
52 int nInputs;
53 int nOutputs;
54
55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59 const cmsInterpParams* CLUTparams; // (not-owned pointer)
60
61
62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
64
65
66 } Prelin16Data;
67
68
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
72
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75 typedef struct {
76
77 cmsContext ContextID;
78
79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80 cmsS1Fixed14Number Shaper1G[256];
81 cmsS1Fixed14Number Shaper1B[256];
82
83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84 cmsS1Fixed14Number Off[3];
85
86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87 cmsUInt16Number Shaper2G[16385];
88 cmsUInt16Number Shaper2B[16385];
89
90 } MatShaper8Data;
91
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
94
95 cmsContext ContextID;
96
97 int nCurves; // Number of curves
98 int nElements; // Elements in curves
99 cmsUInt16Number** Curves; // Points to a dynamically allocated array
100
101 } Curves16Data;
102
103
104 // Simple optimizations ----------------------------------------------------------------------------------------------------------
105
106
107 // Remove an element in linked chain
108 static
_RemoveElement(cmsStage ** head)109 void _RemoveElement(cmsStage** head)
110 {
111 cmsStage* mpe = *head;
112 cmsStage* next = mpe ->Next;
113 *head = next;
114 cmsStageFree(mpe);
115 }
116
117 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
118 static
_Remove1Op(cmsPipeline * Lut,cmsStageSignature UnaryOp)119 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
120 {
121 cmsStage** pt = &Lut ->Elements;
122 cmsBool AnyOpt = FALSE;
123
124 while (*pt != NULL) {
125
126 if ((*pt) ->Implements == UnaryOp) {
127 _RemoveElement(pt);
128 AnyOpt = TRUE;
129 }
130 else
131 pt = &((*pt) -> Next);
132 }
133
134 return AnyOpt;
135 }
136
137 // Same, but only if two adjacent elements are found
138 static
_Remove2Op(cmsPipeline * Lut,cmsStageSignature Op1,cmsStageSignature Op2)139 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
140 {
141 cmsStage** pt1;
142 cmsStage** pt2;
143 cmsBool AnyOpt = FALSE;
144
145 pt1 = &Lut ->Elements;
146 if (*pt1 == NULL) return AnyOpt;
147
148 while (*pt1 != NULL) {
149
150 pt2 = &((*pt1) -> Next);
151 if (*pt2 == NULL) return AnyOpt;
152
153 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
154 _RemoveElement(pt2);
155 _RemoveElement(pt1);
156 AnyOpt = TRUE;
157 }
158 else
159 pt1 = &((*pt1) -> Next);
160 }
161
162 return AnyOpt;
163 }
164
165
166 static
CloseEnoughFloat(cmsFloat64Number a,cmsFloat64Number b)167 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
168 {
169 return fabs(b - a) < 0.00001f;
170 }
171
172 static
isFloatMatrixIdentity(const cmsMAT3 * a)173 cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
174 {
175 cmsMAT3 Identity;
176 int i, j;
177
178 _cmsMAT3identity(&Identity);
179
180 for (i = 0; i < 3; i++)
181 for (j = 0; j < 3; j++)
182 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
183
184 return TRUE;
185 }
186 // if two adjacent matrices are found, multiply them.
187 static
_MultiplyMatrix(cmsPipeline * Lut)188 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
189 {
190 cmsStage** pt1;
191 cmsStage** pt2;
192 cmsStage* chain;
193 cmsBool AnyOpt = FALSE;
194
195 pt1 = &Lut->Elements;
196 if (*pt1 == NULL) return AnyOpt;
197
198 while (*pt1 != NULL) {
199
200 pt2 = &((*pt1)->Next);
201 if (*pt2 == NULL) return AnyOpt;
202
203 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
204
205 // Get both matrices
206 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
207 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
208 cmsMAT3 res;
209
210 // Input offset and output offset should be zero to use this optimization
211 if (m1->Offset != NULL || m2 ->Offset != NULL ||
212 cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
213 cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
214 return FALSE;
215
216 // Multiply both matrices to get the result
217 _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
218
219 // Get the next in chain afer the matrices
220 chain = (*pt2)->Next;
221
222 // Remove both matrices
223 _RemoveElement(pt2);
224 _RemoveElement(pt1);
225
226 // Now what if the result is a plain identity?
227 if (!isFloatMatrixIdentity(&res)) {
228
229 // We can not get rid of full matrix
230 cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
231 if (Multmat == NULL) return FALSE; // Should never happen
232
233 // Recover the chain
234 Multmat->Next = chain;
235 *pt1 = Multmat;
236 }
237
238 AnyOpt = TRUE;
239 }
240 else
241 pt1 = &((*pt1)->Next);
242 }
243
244 return AnyOpt;
245 }
246
247
248 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
249 // by a v4 to v2 and vice-versa. The elements are then discarded.
250 static
PreOptimize(cmsPipeline * Lut)251 cmsBool PreOptimize(cmsPipeline* Lut)
252 {
253 cmsBool AnyOpt = FALSE, Opt;
254
255 do {
256
257 Opt = FALSE;
258
259 // Remove all identities
260 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
261
262 // Remove XYZ2Lab followed by Lab2XYZ
263 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
264
265 // Remove Lab2XYZ followed by XYZ2Lab
266 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
267
268 // Remove V4 to V2 followed by V2 to V4
269 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
270
271 // Remove V2 to V4 followed by V4 to V2
272 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
273
274 // Remove float pcs Lab conversions
275 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
276
277 // Remove float pcs Lab conversions
278 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
279
280 // Simplify matrix.
281 Opt |= _MultiplyMatrix(Lut);
282
283 if (Opt) AnyOpt = TRUE;
284
285 } while (Opt);
286
287 return AnyOpt;
288 }
289
290 static
Eval16nop1D(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const struct _cms_interp_struc * p)291 void Eval16nop1D(register const cmsUInt16Number Input[],
292 register cmsUInt16Number Output[],
293 register const struct _cms_interp_struc* p)
294 {
295 Output[0] = Input[0];
296
297 cmsUNUSED_PARAMETER(p);
298 }
299
300 static
PrelinEval16(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)301 void PrelinEval16(register const cmsUInt16Number Input[],
302 register cmsUInt16Number Output[],
303 register const void* D)
304 {
305 Prelin16Data* p16 = (Prelin16Data*) D;
306 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
307 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
308 int i;
309
310 for (i=0; i < p16 ->nInputs; i++) {
311
312 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
313 }
314
315 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
316
317 for (i=0; i < p16 ->nOutputs; i++) {
318
319 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
320 }
321 }
322
323
324 static
PrelinOpt16free(cmsContext ContextID,void * ptr)325 void PrelinOpt16free(cmsContext ContextID, void* ptr)
326 {
327 Prelin16Data* p16 = (Prelin16Data*) ptr;
328
329 _cmsFree(ContextID, p16 ->EvalCurveOut16);
330 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
331
332 _cmsFree(ContextID, p16);
333 }
334
335 static
Prelin16dup(cmsContext ContextID,const void * ptr)336 void* Prelin16dup(cmsContext ContextID, const void* ptr)
337 {
338 Prelin16Data* p16 = (Prelin16Data*) ptr;
339 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
340
341 if (Duped == NULL) return NULL;
342
343 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
344 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
345
346 return Duped;
347 }
348
349
350 static
PrelinOpt16alloc(cmsContext ContextID,const cmsInterpParams * ColorMap,int nInputs,cmsToneCurve ** In,int nOutputs,cmsToneCurve ** Out)351 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
352 const cmsInterpParams* ColorMap,
353 int nInputs, cmsToneCurve** In,
354 int nOutputs, cmsToneCurve** Out )
355 {
356 int i;
357 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
358 if (p16 == NULL) return NULL;
359
360 p16 ->nInputs = nInputs;
361 p16 -> nOutputs = nOutputs;
362
363
364 for (i=0; i < nInputs; i++) {
365
366 if (In == NULL) {
367 p16 -> ParamsCurveIn16[i] = NULL;
368 p16 -> EvalCurveIn16[i] = Eval16nop1D;
369
370 }
371 else {
372 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
373 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
374 }
375 }
376
377 p16 ->CLUTparams = ColorMap;
378 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
379
380
381 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
382 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
383
384 for (i=0; i < nOutputs; i++) {
385
386 if (Out == NULL) {
387 p16 ->ParamsCurveOut16[i] = NULL;
388 p16 -> EvalCurveOut16[i] = Eval16nop1D;
389 }
390 else {
391
392 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
393 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
394 }
395 }
396
397 return p16;
398 }
399
400
401
402 // Resampling ---------------------------------------------------------------------------------
403
404 #define PRELINEARIZATION_POINTS 4096
405
406 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
407 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
408 static
XFormSampler16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)409 int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
410 {
411 cmsPipeline* Lut = (cmsPipeline*) Cargo;
412 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
413 cmsUInt32Number i;
414
415 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
416 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
417
418 // From 16 bit to floating point
419 for (i=0; i < Lut ->InputChannels; i++)
420 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
421
422 // Evaluate in floating point
423 cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
424
425 // Back to 16 bits representation
426 for (i=0; i < Lut ->OutputChannels; i++)
427 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
428
429 // Always succeed
430 return TRUE;
431 }
432
433 // Try to see if the curves of a given MPE are linear
434 static
AllCurvesAreLinear(cmsStage * mpe)435 cmsBool AllCurvesAreLinear(cmsStage* mpe)
436 {
437 cmsToneCurve** Curves;
438 cmsUInt32Number i, n;
439
440 Curves = _cmsStageGetPtrToCurveSet(mpe);
441 if (Curves == NULL) return FALSE;
442
443 n = cmsStageOutputChannels(mpe);
444
445 for (i=0; i < n; i++) {
446 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
447 }
448
449 return TRUE;
450 }
451
452 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
453 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
454 static
PatchLUT(cmsStage * CLUT,cmsUInt16Number At[],cmsUInt16Number Value[],int nChannelsOut,int nChannelsIn)455 cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
456 int nChannelsOut, int nChannelsIn)
457 {
458 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
459 cmsInterpParams* p16 = Grid ->Params;
460 cmsFloat64Number px, py, pz, pw;
461 int x0, y0, z0, w0;
462 int i, index;
463
464 if (CLUT -> Type != cmsSigCLutElemType) {
465 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
466 return FALSE;
467 }
468
469 if (nChannelsIn == 4) {
470
471 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
472 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
473 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
474 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
475
476 x0 = (int) floor(px);
477 y0 = (int) floor(py);
478 z0 = (int) floor(pz);
479 w0 = (int) floor(pw);
480
481 if (((px - x0) != 0) ||
482 ((py - y0) != 0) ||
483 ((pz - z0) != 0) ||
484 ((pw - w0) != 0)) return FALSE; // Not on exact node
485
486 index = p16 -> opta[3] * x0 +
487 p16 -> opta[2] * y0 +
488 p16 -> opta[1] * z0 +
489 p16 -> opta[0] * w0;
490 }
491 else
492 if (nChannelsIn == 3) {
493
494 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
495 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
496 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
497
498 x0 = (int) floor(px);
499 y0 = (int) floor(py);
500 z0 = (int) floor(pz);
501
502 if (((px - x0) != 0) ||
503 ((py - y0) != 0) ||
504 ((pz - z0) != 0)) return FALSE; // Not on exact node
505
506 index = p16 -> opta[2] * x0 +
507 p16 -> opta[1] * y0 +
508 p16 -> opta[0] * z0;
509 }
510 else
511 if (nChannelsIn == 1) {
512
513 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
514
515 x0 = (int) floor(px);
516
517 if (((px - x0) != 0)) return FALSE; // Not on exact node
518
519 index = p16 -> opta[0] * x0;
520 }
521 else {
522 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
523 return FALSE;
524 }
525
526 for (i=0; i < nChannelsOut; i++)
527 Grid -> Tab.T[index + i] = Value[i];
528
529 return TRUE;
530 }
531
532 // Auxiliary, to see if two values are equal or very different
533 static
WhitesAreEqual(int n,cmsUInt16Number White1[],cmsUInt16Number White2[])534 cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
535 {
536 int i;
537
538 for (i=0; i < n; i++) {
539
540 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
541 if (White1[i] != White2[i]) return FALSE;
542 }
543 return TRUE;
544 }
545
546
547 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
548 static
FixWhiteMisalignment(cmsPipeline * Lut,cmsColorSpaceSignature EntryColorSpace,cmsColorSpaceSignature ExitColorSpace)549 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
550 {
551 cmsUInt16Number *WhitePointIn, *WhitePointOut;
552 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
553 cmsUInt32Number i, nOuts, nIns;
554 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
555
556 if (!_cmsEndPointsBySpace(EntryColorSpace,
557 &WhitePointIn, NULL, &nIns)) return FALSE;
558
559 if (!_cmsEndPointsBySpace(ExitColorSpace,
560 &WhitePointOut, NULL, &nOuts)) return FALSE;
561
562 // It needs to be fixed?
563 if (Lut ->InputChannels != nIns) return FALSE;
564 if (Lut ->OutputChannels != nOuts) return FALSE;
565
566 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
567
568 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
569
570 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
571 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
572 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
573 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
574 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
575 return FALSE;
576
577 // We need to interpolate white points of both, pre and post curves
578 if (PreLin) {
579
580 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
581
582 for (i=0; i < nIns; i++) {
583 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
584 }
585 }
586 else {
587 for (i=0; i < nIns; i++)
588 WhiteIn[i] = WhitePointIn[i];
589 }
590
591 // If any post-linearization, we need to find how is represented white before the curve, do
592 // a reverse interpolation in this case.
593 if (PostLin) {
594
595 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
596
597 for (i=0; i < nOuts; i++) {
598
599 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
600 if (InversePostLin == NULL) {
601 WhiteOut[i] = WhitePointOut[i];
602
603 } else {
604
605 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
606 cmsFreeToneCurve(InversePostLin);
607 }
608 }
609 }
610 else {
611 for (i=0; i < nOuts; i++)
612 WhiteOut[i] = WhitePointOut[i];
613 }
614
615 // Ok, proceed with patching. May fail and we don't care if it fails
616 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
617
618 return TRUE;
619 }
620
621 // -----------------------------------------------------------------------------------------------------------------------------------------------
622 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
623 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
624 // These curves have to exist in the original LUT in order to be used in the simplified output.
625 // Caller may also use the flags to allow this feature.
626 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
627 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
628 // -----------------------------------------------------------------------------------------------------------------------------------------------
629
630 static
OptimizeByResampling(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)631 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
632 {
633 cmsPipeline* Src = NULL;
634 cmsPipeline* Dest = NULL;
635 cmsStage* mpe;
636 cmsStage* CLUT;
637 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
638 int nGridPoints;
639 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
640 cmsStage *NewPreLin = NULL;
641 cmsStage *NewPostLin = NULL;
642 _cmsStageCLutData* DataCLUT;
643 cmsToneCurve** DataSetIn;
644 cmsToneCurve** DataSetOut;
645 Prelin16Data* p16;
646
647 // This is a loosy optimization! does not apply in floating-point cases
648 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
649
650 ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
651 OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
652 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
653
654 // For empty LUTs, 2 points are enough
655 if (cmsPipelineStageCount(*Lut) == 0)
656 nGridPoints = 2;
657
658 Src = *Lut;
659
660 // Named color pipelines cannot be optimized either
661 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
662 mpe != NULL;
663 mpe = cmsStageNext(mpe)) {
664 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
665 }
666
667 // Allocate an empty LUT
668 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
669 if (!Dest) return FALSE;
670
671 // Prelinearization tables are kept unless indicated by flags
672 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
673
674 // Get a pointer to the prelinearization element
675 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
676
677 // Check if suitable
678 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
679
680 // Maybe this is a linear tram, so we can avoid the whole stuff
681 if (!AllCurvesAreLinear(PreLin)) {
682
683 // All seems ok, proceed.
684 NewPreLin = cmsStageDup(PreLin);
685 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
686 goto Error;
687
688 // Remove prelinearization. Since we have duplicated the curve
689 // in destination LUT, the sampling shoud be applied after this stage.
690 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
691 }
692 }
693 }
694
695 // Allocate the CLUT
696 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
697 if (CLUT == NULL) goto Error;
698
699 // Add the CLUT to the destination LUT
700 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
701 goto Error;
702 }
703
704 // Postlinearization tables are kept unless indicated by flags
705 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
706
707 // Get a pointer to the postlinearization if present
708 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
709
710 // Check if suitable
711 if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
712
713 // Maybe this is a linear tram, so we can avoid the whole stuff
714 if (!AllCurvesAreLinear(PostLin)) {
715
716 // All seems ok, proceed.
717 NewPostLin = cmsStageDup(PostLin);
718 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
719 goto Error;
720
721 // In destination LUT, the sampling shoud be applied after this stage.
722 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
723 }
724 }
725 }
726
727 // Now its time to do the sampling. We have to ignore pre/post linearization
728 // The source LUT whithout pre/post curves is passed as parameter.
729 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
730 Error:
731 // Ops, something went wrong, Restore stages
732 if (KeepPreLin != NULL) {
733 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
734 _cmsAssert(0); // This never happens
735 }
736 }
737 if (KeepPostLin != NULL) {
738 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
739 _cmsAssert(0); // This never happens
740 }
741 }
742 cmsPipelineFree(Dest);
743 return FALSE;
744 }
745
746 // Done.
747
748 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
749 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
750 cmsPipelineFree(Src);
751
752 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
753
754 if (NewPreLin == NULL) DataSetIn = NULL;
755 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
756
757 if (NewPostLin == NULL) DataSetOut = NULL;
758 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
759
760
761 if (DataSetIn == NULL && DataSetOut == NULL) {
762
763 _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
764 }
765 else {
766
767 p16 = PrelinOpt16alloc(Dest ->ContextID,
768 DataCLUT ->Params,
769 Dest ->InputChannels,
770 DataSetIn,
771 Dest ->OutputChannels,
772 DataSetOut);
773
774 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
775 }
776
777
778 // Don't fix white on absolute colorimetric
779 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
780 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
781
782 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
783
784 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
785 }
786
787 *Lut = Dest;
788 return TRUE;
789
790 cmsUNUSED_PARAMETER(Intent);
791 }
792
793
794 // -----------------------------------------------------------------------------------------------------------------------------------------------
795 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
796 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
797 // for RGB transforms. See the paper for more details
798 // -----------------------------------------------------------------------------------------------------------------------------------------------
799
800
801 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
802 // Descending curves are handled as well.
803 static
SlopeLimiting(cmsToneCurve * g)804 void SlopeLimiting(cmsToneCurve* g)
805 {
806 int BeginVal, EndVal;
807 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
808 int AtEnd = g ->nEntries - AtBegin - 1; // And 98%
809 cmsFloat64Number Val, Slope, beta;
810 int i;
811
812 if (cmsIsToneCurveDescending(g)) {
813 BeginVal = 0xffff; EndVal = 0;
814 }
815 else {
816 BeginVal = 0; EndVal = 0xffff;
817 }
818
819 // Compute slope and offset for begin of curve
820 Val = g ->Table16[AtBegin];
821 Slope = (Val - BeginVal) / AtBegin;
822 beta = Val - Slope * AtBegin;
823
824 for (i=0; i < AtBegin; i++)
825 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
826
827 // Compute slope and offset for the end
828 Val = g ->Table16[AtEnd];
829 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
830 beta = Val - Slope * AtEnd;
831
832 for (i = AtEnd; i < (int) g ->nEntries; i++)
833 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
834 }
835
836
837 // Precomputes tables for 8-bit on input devicelink.
838 static
PrelinOpt8alloc(cmsContext ContextID,const cmsInterpParams * p,cmsToneCurve * G[3])839 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
840 {
841 int i;
842 cmsUInt16Number Input[3];
843 cmsS15Fixed16Number v1, v2, v3;
844 Prelin8Data* p8;
845
846 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
847 if (p8 == NULL) return NULL;
848
849 // Since this only works for 8 bit input, values comes always as x * 257,
850 // we can safely take msb byte (x << 8 + x)
851
852 for (i=0; i < 256; i++) {
853
854 if (G != NULL) {
855
856 // Get 16-bit representation
857 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
858 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
859 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
860 }
861 else {
862 Input[0] = FROM_8_TO_16(i);
863 Input[1] = FROM_8_TO_16(i);
864 Input[2] = FROM_8_TO_16(i);
865 }
866
867
868 // Move to 0..1.0 in fixed domain
869 v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
870 v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
871 v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
872
873 // Store the precalculated table of nodes
874 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
875 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
876 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
877
878 // Store the precalculated table of offsets
879 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
880 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
881 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
882 }
883
884 p8 ->ContextID = ContextID;
885 p8 ->p = p;
886
887 return p8;
888 }
889
890 static
Prelin8free(cmsContext ContextID,void * ptr)891 void Prelin8free(cmsContext ContextID, void* ptr)
892 {
893 _cmsFree(ContextID, ptr);
894 }
895
896 static
Prelin8dup(cmsContext ContextID,const void * ptr)897 void* Prelin8dup(cmsContext ContextID, const void* ptr)
898 {
899 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
900 }
901
902
903
904 // A optimized interpolation for 8-bit input.
905 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
906 static
PrelinEval8(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)907 void PrelinEval8(register const cmsUInt16Number Input[],
908 register cmsUInt16Number Output[],
909 register const void* D)
910 {
911
912 cmsUInt8Number r, g, b;
913 cmsS15Fixed16Number rx, ry, rz;
914 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
915 int OutChan;
916 register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
917 Prelin8Data* p8 = (Prelin8Data*) D;
918 register const cmsInterpParams* p = p8 ->p;
919 int TotalOut = p -> nOutputs;
920 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
921
922 r = Input[0] >> 8;
923 g = Input[1] >> 8;
924 b = Input[2] >> 8;
925
926 X0 = X1 = p8->X0[r];
927 Y0 = Y1 = p8->Y0[g];
928 Z0 = Z1 = p8->Z0[b];
929
930 rx = p8 ->rx[r];
931 ry = p8 ->ry[g];
932 rz = p8 ->rz[b];
933
934 X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
935 Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
936 Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
937
938
939 // These are the 6 Tetrahedral
940 for (OutChan=0; OutChan < TotalOut; OutChan++) {
941
942 c0 = DENS(X0, Y0, Z0);
943
944 if (rx >= ry && ry >= rz)
945 {
946 c1 = DENS(X1, Y0, Z0) - c0;
947 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
948 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
949 }
950 else
951 if (rx >= rz && rz >= ry)
952 {
953 c1 = DENS(X1, Y0, Z0) - c0;
954 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
955 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
956 }
957 else
958 if (rz >= rx && rx >= ry)
959 {
960 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
961 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
962 c3 = DENS(X0, Y0, Z1) - c0;
963 }
964 else
965 if (ry >= rx && rx >= rz)
966 {
967 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
968 c2 = DENS(X0, Y1, Z0) - c0;
969 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
970 }
971 else
972 if (ry >= rz && rz >= rx)
973 {
974 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
975 c2 = DENS(X0, Y1, Z0) - c0;
976 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
977 }
978 else
979 if (rz >= ry && ry >= rx)
980 {
981 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
982 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
983 c3 = DENS(X0, Y0, Z1) - c0;
984 }
985 else {
986 c1 = c2 = c3 = 0;
987 }
988
989
990 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
991 Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
992
993 }
994 }
995
996 #undef DENS
997
998
999 // Curves that contain wide empty areas are not optimizeable
1000 static
IsDegenerated(const cmsToneCurve * g)1001 cmsBool IsDegenerated(const cmsToneCurve* g)
1002 {
1003 int i, Zeros = 0, Poles = 0;
1004 int nEntries = g ->nEntries;
1005
1006 for (i=0; i < nEntries; i++) {
1007
1008 if (g ->Table16[i] == 0x0000) Zeros++;
1009 if (g ->Table16[i] == 0xffff) Poles++;
1010 }
1011
1012 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1013 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1014 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1015
1016 return FALSE;
1017 }
1018
1019 // --------------------------------------------------------------------------------------------------------------
1020 // We need xput over here
1021
1022 static
OptimizeByComputingLinearization(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1023 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1024 {
1025 cmsPipeline* OriginalLut;
1026 int nGridPoints;
1027 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1028 cmsUInt32Number t, i;
1029 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1030 cmsBool lIsSuitable, lIsLinear;
1031 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1032 cmsStage* OptimizedCLUTmpe;
1033 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1034 cmsStage* OptimizedPrelinMpe;
1035 cmsStage* mpe;
1036 cmsToneCurve** OptimizedPrelinCurves;
1037 _cmsStageCLutData* OptimizedPrelinCLUT;
1038
1039
1040 // This is a loosy optimization! does not apply in floating-point cases
1041 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1042
1043 // Only on chunky RGB
1044 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1045 if (T_PLANAR(*InputFormat)) return FALSE;
1046
1047 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1048 if (T_PLANAR(*OutputFormat)) return FALSE;
1049
1050 // On 16 bits, user has to specify the feature
1051 if (!_cmsFormatterIs8bit(*InputFormat)) {
1052 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1053 }
1054
1055 OriginalLut = *Lut;
1056
1057 // Named color pipelines cannot be optimized either
1058 for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1059 mpe != NULL;
1060 mpe = cmsStageNext(mpe)) {
1061 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1062 }
1063
1064 ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
1065 OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
1066 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1067
1068 // Empty gamma containers
1069 memset(Trans, 0, sizeof(Trans));
1070 memset(TransReverse, 0, sizeof(TransReverse));
1071
1072 // If the last stage of the original lut are curves, and those curves are
1073 // degenerated, it is likely the transform is squeezing and clipping
1074 // the output from previous CLUT. We cannot optimize this case
1075 {
1076 cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1077
1078 if (cmsStageType(last) == cmsSigCurveSetElemType) {
1079
1080 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1081 for (i = 0; i < Data->nCurves; i++) {
1082 if (IsDegenerated(Data->TheCurves[i]))
1083 goto Error;
1084 }
1085 }
1086 }
1087
1088 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1089 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1090 if (Trans[t] == NULL) goto Error;
1091 }
1092
1093 // Populate the curves
1094 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1095
1096 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1097
1098 // Feed input with a gray ramp
1099 for (t=0; t < OriginalLut ->InputChannels; t++)
1100 In[t] = v;
1101
1102 // Evaluate the gray value
1103 cmsPipelineEvalFloat(In, Out, OriginalLut);
1104
1105 // Store result in curve
1106 for (t=0; t < OriginalLut ->InputChannels; t++)
1107 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1108 }
1109
1110 // Slope-limit the obtained curves
1111 for (t = 0; t < OriginalLut ->InputChannels; t++)
1112 SlopeLimiting(Trans[t]);
1113
1114 // Check for validity
1115 lIsSuitable = TRUE;
1116 lIsLinear = TRUE;
1117 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1118
1119 // Exclude if already linear
1120 if (!cmsIsToneCurveLinear(Trans[t]))
1121 lIsLinear = FALSE;
1122
1123 // Exclude if non-monotonic
1124 if (!cmsIsToneCurveMonotonic(Trans[t]))
1125 lIsSuitable = FALSE;
1126
1127 if (IsDegenerated(Trans[t]))
1128 lIsSuitable = FALSE;
1129 }
1130
1131 // If it is not suitable, just quit
1132 if (!lIsSuitable) goto Error;
1133
1134 // Invert curves if possible
1135 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1136 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1137 if (TransReverse[t] == NULL) goto Error;
1138 }
1139
1140 // Now inset the reversed curves at the begin of transform
1141 LutPlusCurves = cmsPipelineDup(OriginalLut);
1142 if (LutPlusCurves == NULL) goto Error;
1143
1144 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1145 goto Error;
1146
1147 // Create the result LUT
1148 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1149 if (OptimizedLUT == NULL) goto Error;
1150
1151 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1152
1153 // Create and insert the curves at the beginning
1154 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1155 goto Error;
1156
1157 // Allocate the CLUT for result
1158 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1159
1160 // Add the CLUT to the destination LUT
1161 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1162 goto Error;
1163
1164 // Resample the LUT
1165 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1166
1167 // Free resources
1168 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1169
1170 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1171 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1172 }
1173
1174 cmsPipelineFree(LutPlusCurves);
1175
1176
1177 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1178 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1179
1180 // Set the evaluator if 8-bit
1181 if (_cmsFormatterIs8bit(*InputFormat)) {
1182
1183 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1184 OptimizedPrelinCLUT ->Params,
1185 OptimizedPrelinCurves);
1186 if (p8 == NULL) return FALSE;
1187
1188 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1189
1190 }
1191 else
1192 {
1193 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1194 OptimizedPrelinCLUT ->Params,
1195 3, OptimizedPrelinCurves, 3, NULL);
1196 if (p16 == NULL) return FALSE;
1197
1198 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1199
1200 }
1201
1202 // Don't fix white on absolute colorimetric
1203 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1204 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1205
1206 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1207
1208 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1209
1210 return FALSE;
1211 }
1212 }
1213
1214 // And return the obtained LUT
1215
1216 cmsPipelineFree(OriginalLut);
1217 *Lut = OptimizedLUT;
1218 return TRUE;
1219
1220 Error:
1221
1222 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1223
1224 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1225 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1226 }
1227
1228 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1229 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1230
1231 return FALSE;
1232
1233 cmsUNUSED_PARAMETER(Intent);
1234 }
1235
1236
1237 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1238
1239 static
CurvesFree(cmsContext ContextID,void * ptr)1240 void CurvesFree(cmsContext ContextID, void* ptr)
1241 {
1242 Curves16Data* Data = (Curves16Data*) ptr;
1243 int i;
1244
1245 for (i=0; i < Data -> nCurves; i++) {
1246
1247 _cmsFree(ContextID, Data ->Curves[i]);
1248 }
1249
1250 _cmsFree(ContextID, Data ->Curves);
1251 _cmsFree(ContextID, ptr);
1252 }
1253
1254 static
CurvesDup(cmsContext ContextID,const void * ptr)1255 void* CurvesDup(cmsContext ContextID, const void* ptr)
1256 {
1257 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1258 int i;
1259
1260 if (Data == NULL) return NULL;
1261
1262 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1263
1264 for (i=0; i < Data -> nCurves; i++) {
1265 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1266 }
1267
1268 return (void*) Data;
1269 }
1270
1271 // Precomputes tables for 8-bit on input devicelink.
1272 static
CurvesAlloc(cmsContext ContextID,int nCurves,int nElements,cmsToneCurve ** G)1273 Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
1274 {
1275 int i, j;
1276 Curves16Data* c16;
1277
1278 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1279 if (c16 == NULL) return NULL;
1280
1281 c16 ->nCurves = nCurves;
1282 c16 ->nElements = nElements;
1283
1284 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1285 if (c16 ->Curves == NULL) return NULL;
1286
1287 for (i=0; i < nCurves; i++) {
1288
1289 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1290
1291 if (c16->Curves[i] == NULL) {
1292
1293 for (j=0; j < i; j++) {
1294 _cmsFree(ContextID, c16->Curves[j]);
1295 }
1296 _cmsFree(ContextID, c16->Curves);
1297 _cmsFree(ContextID, c16);
1298 return NULL;
1299 }
1300
1301 if (nElements == 256) {
1302
1303 for (j=0; j < nElements; j++) {
1304
1305 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1306 }
1307 }
1308 else {
1309
1310 for (j=0; j < nElements; j++) {
1311 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1312 }
1313 }
1314 }
1315
1316 return c16;
1317 }
1318
1319 static
FastEvaluateCurves8(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1320 void FastEvaluateCurves8(register const cmsUInt16Number In[],
1321 register cmsUInt16Number Out[],
1322 register const void* D)
1323 {
1324 Curves16Data* Data = (Curves16Data*) D;
1325 cmsUInt8Number x;
1326 int i;
1327
1328 for (i=0; i < Data ->nCurves; i++) {
1329
1330 x = (In[i] >> 8);
1331 Out[i] = Data -> Curves[i][x];
1332 }
1333 }
1334
1335
1336 static
FastEvaluateCurves16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1337 void FastEvaluateCurves16(register const cmsUInt16Number In[],
1338 register cmsUInt16Number Out[],
1339 register const void* D)
1340 {
1341 Curves16Data* Data = (Curves16Data*) D;
1342 int i;
1343
1344 for (i=0; i < Data ->nCurves; i++) {
1345 Out[i] = Data -> Curves[i][In[i]];
1346 }
1347 }
1348
1349
1350 static
FastIdentity16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1351 void FastIdentity16(register const cmsUInt16Number In[],
1352 register cmsUInt16Number Out[],
1353 register const void* D)
1354 {
1355 cmsPipeline* Lut = (cmsPipeline*) D;
1356 cmsUInt32Number i;
1357
1358 for (i=0; i < Lut ->InputChannels; i++) {
1359 Out[i] = In[i];
1360 }
1361 }
1362
1363
1364 // If the target LUT holds only curves, the optimization procedure is to join all those
1365 // curves together. That only works on curves and does not work on matrices.
1366 static
OptimizeByJoiningCurves(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1367 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1368 {
1369 cmsToneCurve** GammaTables = NULL;
1370 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1371 cmsUInt32Number i, j;
1372 cmsPipeline* Src = *Lut;
1373 cmsPipeline* Dest = NULL;
1374 cmsStage* mpe;
1375 cmsStage* ObtainedCurves = NULL;
1376
1377
1378 // This is a loosy optimization! does not apply in floating-point cases
1379 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1380
1381 // Only curves in this LUT?
1382 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1383 mpe != NULL;
1384 mpe = cmsStageNext(mpe)) {
1385 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1386 }
1387
1388 // Allocate an empty LUT
1389 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1390 if (Dest == NULL) return FALSE;
1391
1392 // Create target curves
1393 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1394 if (GammaTables == NULL) goto Error;
1395
1396 for (i=0; i < Src ->InputChannels; i++) {
1397 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1398 if (GammaTables[i] == NULL) goto Error;
1399 }
1400
1401 // Compute 16 bit result by using floating point
1402 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1403
1404 for (j=0; j < Src ->InputChannels; j++)
1405 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1406
1407 cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1408
1409 for (j=0; j < Src ->InputChannels; j++)
1410 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1411 }
1412
1413 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1414 if (ObtainedCurves == NULL) goto Error;
1415
1416 for (i=0; i < Src ->InputChannels; i++) {
1417 cmsFreeToneCurve(GammaTables[i]);
1418 GammaTables[i] = NULL;
1419 }
1420
1421 if (GammaTables != NULL) {
1422 _cmsFree(Src->ContextID, GammaTables);
1423 GammaTables = NULL;
1424 }
1425
1426 // Maybe the curves are linear at the end
1427 if (!AllCurvesAreLinear(ObtainedCurves)) {
1428
1429 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1430 goto Error;
1431
1432 // If the curves are to be applied in 8 bits, we can save memory
1433 if (_cmsFormatterIs8bit(*InputFormat)) {
1434
1435 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1436 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1437
1438 if (c16 == NULL) goto Error;
1439 *dwFlags |= cmsFLAGS_NOCACHE;
1440 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1441
1442 }
1443 else {
1444
1445 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1446 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1447
1448 if (c16 == NULL) goto Error;
1449 *dwFlags |= cmsFLAGS_NOCACHE;
1450 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1451 }
1452 }
1453 else {
1454
1455 // LUT optimizes to nothing. Set the identity LUT
1456 cmsStageFree(ObtainedCurves);
1457
1458 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1459 goto Error;
1460
1461 *dwFlags |= cmsFLAGS_NOCACHE;
1462 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1463 }
1464
1465 // We are done.
1466 cmsPipelineFree(Src);
1467 *Lut = Dest;
1468 return TRUE;
1469
1470 Error:
1471
1472 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1473 if (GammaTables != NULL) {
1474 for (i=0; i < Src ->InputChannels; i++) {
1475 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1476 }
1477
1478 _cmsFree(Src ->ContextID, GammaTables);
1479 }
1480
1481 if (Dest != NULL) cmsPipelineFree(Dest);
1482 return FALSE;
1483
1484 cmsUNUSED_PARAMETER(Intent);
1485 cmsUNUSED_PARAMETER(InputFormat);
1486 cmsUNUSED_PARAMETER(OutputFormat);
1487 cmsUNUSED_PARAMETER(dwFlags);
1488 }
1489
1490 // -------------------------------------------------------------------------------------------------------------------------------------
1491 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1492
1493
1494 static
FreeMatShaper(cmsContext ContextID,void * Data)1495 void FreeMatShaper(cmsContext ContextID, void* Data)
1496 {
1497 if (Data != NULL) _cmsFree(ContextID, Data);
1498 }
1499
1500 static
DupMatShaper(cmsContext ContextID,const void * Data)1501 void* DupMatShaper(cmsContext ContextID, const void* Data)
1502 {
1503 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1504 }
1505
1506
1507 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1508 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1509 // in total about 50K, and the performance boost is huge!
1510 static
MatShaperEval16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1511 void MatShaperEval16(register const cmsUInt16Number In[],
1512 register cmsUInt16Number Out[],
1513 register const void* D)
1514 {
1515 MatShaper8Data* p = (MatShaper8Data*) D;
1516 cmsS1Fixed14Number l1, l2, l3, r, g, b;
1517 cmsUInt32Number ri, gi, bi;
1518
1519 // In this case (and only in this case!) we can use this simplification since
1520 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1521 ri = In[0] & 0xFF;
1522 gi = In[1] & 0xFF;
1523 bi = In[2] & 0xFF;
1524
1525 // Across first shaper, which also converts to 1.14 fixed point
1526 r = p->Shaper1R[ri];
1527 g = p->Shaper1G[gi];
1528 b = p->Shaper1B[bi];
1529
1530 // Evaluate the matrix in 1.14 fixed point
1531 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1532 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1533 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1534
1535 // Now we have to clip to 0..1.0 range
1536 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
1537 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
1538 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
1539
1540 // And across second shaper,
1541 Out[0] = p->Shaper2R[ri];
1542 Out[1] = p->Shaper2G[gi];
1543 Out[2] = p->Shaper2B[bi];
1544
1545 }
1546
1547 // This table converts from 8 bits to 1.14 after applying the curve
1548 static
FillFirstShaper(cmsS1Fixed14Number * Table,cmsToneCurve * Curve)1549 cmsBool FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1550 {
1551 int i;
1552 cmsFloat32Number R, y;
1553
1554 for (i=0; i < 256; i++) {
1555
1556 R = (cmsFloat32Number) (i / 255.0);
1557 y = cmsEvalToneCurveFloat(Curve, R);
1558 if (isinf(y))
1559 return FALSE;
1560
1561 Table[i] = DOUBLE_TO_1FIXED14(y);
1562 }
1563 return TRUE;
1564 }
1565
1566 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1567 static
FillSecondShaper(cmsUInt16Number * Table,cmsToneCurve * Curve,cmsBool Is8BitsOutput)1568 cmsBool FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1569 {
1570 int i;
1571 cmsFloat32Number R, Val;
1572
1573 for (i=0; i < 16385; i++) {
1574
1575 R = (cmsFloat32Number) (i / 16384.0);
1576 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1577 if (isinf(Val))
1578 return FALSE;
1579
1580 if (Is8BitsOutput) {
1581
1582 // If 8 bits output, we can optimize further by computing the / 257 part.
1583 // first we compute the resulting byte and then we store the byte times
1584 // 257. This quantization allows to round very quick by doing a >> 8, but
1585 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1586 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1587 cmsUInt8Number b = FROM_16_TO_8(w);
1588
1589 Table[i] = FROM_8_TO_16(b);
1590 }
1591 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1592 }
1593 return TRUE;
1594 }
1595
1596 // Compute the matrix-shaper structure
1597 static
SetMatShaper(cmsPipeline * Dest,cmsToneCurve * Curve1[3],cmsMAT3 * Mat,cmsVEC3 * Off,cmsToneCurve * Curve2[3],cmsUInt32Number * OutputFormat)1598 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1599 {
1600 MatShaper8Data* p;
1601 int i, j;
1602 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1603
1604 // Allocate a big chuck of memory to store precomputed tables
1605 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1606 if (p == NULL) return FALSE;
1607
1608 p -> ContextID = Dest -> ContextID;
1609
1610 // Precompute tables
1611 if (!FillFirstShaper(p ->Shaper1R, Curve1[0]))
1612 goto Error;
1613 if (!FillFirstShaper(p ->Shaper1G, Curve1[1]))
1614 goto Error;
1615 if (!FillFirstShaper(p ->Shaper1B, Curve1[2]))
1616 goto Error;
1617
1618 if (!FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits))
1619 goto Error;
1620 if (!FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits))
1621 goto Error;
1622 if (!FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits))
1623 goto Error;
1624
1625 // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
1626 for (i=0; i < 3; i++) {
1627 for (j=0; j < 3; j++) {
1628 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1629 }
1630 }
1631
1632 for (i=0; i < 3; i++) {
1633
1634 if (Off == NULL) {
1635 p ->Off[i] = 0;
1636 }
1637 else {
1638 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1639 }
1640 }
1641
1642 // Mark as optimized for faster formatter
1643 if (Is8Bits)
1644 *OutputFormat |= OPTIMIZED_SH(1);
1645
1646 // Fill function pointers
1647 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1648 return TRUE;
1649 Error:
1650 _cmsFree(Dest->ContextID, p);
1651 return FALSE;
1652 }
1653
1654 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1655 static
OptimizeMatrixShaper(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1656 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1657 {
1658 cmsStage* Curve1, *Curve2;
1659 cmsStage* Matrix1, *Matrix2;
1660 cmsMAT3 res;
1661 cmsBool IdentityMat;
1662 cmsPipeline* Dest, *Src;
1663 cmsFloat64Number* Offset;
1664
1665 // Only works on RGB to RGB
1666 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1667
1668 // Only works on 8 bit input
1669 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1670
1671 // Seems suitable, proceed
1672 Src = *Lut;
1673
1674 // Check for:
1675 //
1676 // shaper-matrix-matrix-shaper
1677 // shaper-matrix-shaper
1678 //
1679 // Both of those constructs are possible (first because abs. colorimetric).
1680 // additionally, In the first case, the input matrix offset should be zero.
1681
1682 IdentityMat = FALSE;
1683 if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1684 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1685 &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1686
1687 // Get both matrices
1688 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1689 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1690
1691 // Input offset should be zero
1692 if (Data1->Offset != NULL) return FALSE;
1693
1694 // Multiply both matrices to get the result
1695 _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1696
1697 // Only 2nd matrix has offset, or it is zero
1698 Offset = Data2->Offset;
1699
1700 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1701 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1702
1703 // We can get rid of full matrix
1704 IdentityMat = TRUE;
1705 }
1706
1707 }
1708 else {
1709
1710 if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1711 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1712 &Curve1, &Matrix1, &Curve2)) {
1713
1714 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1715
1716 // Copy the matrix to our result
1717 memcpy(&res, Data->Double, sizeof(res));
1718
1719 // Preserve the Odffset (may be NULL as a zero offset)
1720 Offset = Data->Offset;
1721
1722 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1723
1724 // We can get rid of full matrix
1725 IdentityMat = TRUE;
1726 }
1727 }
1728 else
1729 return FALSE; // Not optimizeable this time
1730
1731 }
1732
1733 // Allocate an empty LUT
1734 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1735 if (!Dest) return FALSE;
1736
1737 // Assamble the new LUT
1738 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1739 goto Error;
1740
1741 if (!IdentityMat) {
1742
1743 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1744 goto Error;
1745 }
1746
1747 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1748 goto Error;
1749
1750 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1751 if (IdentityMat) {
1752
1753 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1754 }
1755 else {
1756 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1757 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1758
1759 // In this particular optimization, cache does not help as it takes more time to deal with
1760 // the cache that with the pixel handling
1761 *dwFlags |= cmsFLAGS_NOCACHE;
1762
1763 // Setup the optimizarion routines
1764 if (!SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat))
1765 goto Error;
1766 }
1767
1768 cmsPipelineFree(Src);
1769 *Lut = Dest;
1770 return TRUE;
1771 Error:
1772 // Leave Src unchanged
1773 cmsPipelineFree(Dest);
1774 return FALSE;
1775 }
1776
1777
1778 // -------------------------------------------------------------------------------------------------------------------------------------
1779 // Optimization plug-ins
1780
1781 // List of optimizations
1782 typedef struct _cmsOptimizationCollection_st {
1783
1784 _cmsOPToptimizeFn OptimizePtr;
1785
1786 struct _cmsOptimizationCollection_st *Next;
1787
1788 } _cmsOptimizationCollection;
1789
1790
1791 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1792 static _cmsOptimizationCollection DefaultOptimization[] = {
1793
1794 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1795 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1796 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1797 { OptimizeByResampling, NULL }
1798 };
1799
1800 // The linked list head
1801 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1802
1803
1804 // Duplicates the zone of memory used by the plug-in in the new context
1805 static
DupPluginOptimizationList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1806 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1807 const struct _cmsContext_struct* src)
1808 {
1809 _cmsOptimizationPluginChunkType newHead = { NULL };
1810 _cmsOptimizationCollection* entry;
1811 _cmsOptimizationCollection* Anterior = NULL;
1812 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1813
1814 _cmsAssert(ctx != NULL);
1815 _cmsAssert(head != NULL);
1816
1817 // Walk the list copying all nodes
1818 for (entry = head->OptimizationCollection;
1819 entry != NULL;
1820 entry = entry ->Next) {
1821
1822 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1823
1824 if (newEntry == NULL)
1825 return;
1826
1827 // We want to keep the linked list order, so this is a little bit tricky
1828 newEntry -> Next = NULL;
1829 if (Anterior)
1830 Anterior -> Next = newEntry;
1831
1832 Anterior = newEntry;
1833
1834 if (newHead.OptimizationCollection == NULL)
1835 newHead.OptimizationCollection = newEntry;
1836 }
1837
1838 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1839 }
1840
_cmsAllocOptimizationPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1841 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1842 const struct _cmsContext_struct* src)
1843 {
1844 if (src != NULL) {
1845
1846 // Copy all linked list
1847 DupPluginOptimizationList(ctx, src);
1848 }
1849 else {
1850 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1851 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1852 }
1853 }
1854
1855
1856 // Register new ways to optimize
_cmsRegisterOptimizationPlugin(cmsContext ContextID,cmsPluginBase * Data)1857 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1858 {
1859 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1860 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1861 _cmsOptimizationCollection* fl;
1862
1863 if (Data == NULL) {
1864
1865 ctx->OptimizationCollection = NULL;
1866 return TRUE;
1867 }
1868
1869 // Optimizer callback is required
1870 if (Plugin ->OptimizePtr == NULL) return FALSE;
1871
1872 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1873 if (fl == NULL) return FALSE;
1874
1875 // Copy the parameters
1876 fl ->OptimizePtr = Plugin ->OptimizePtr;
1877
1878 // Keep linked list
1879 fl ->Next = ctx->OptimizationCollection;
1880
1881 // Set the head
1882 ctx ->OptimizationCollection = fl;
1883
1884 // All is ok
1885 return TRUE;
1886 }
1887
1888 // The entry point for LUT optimization
_cmsOptimizePipeline(cmsContext ContextID,cmsPipeline ** PtrLut,int Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1889 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1890 cmsPipeline** PtrLut,
1891 int Intent,
1892 cmsUInt32Number* InputFormat,
1893 cmsUInt32Number* OutputFormat,
1894 cmsUInt32Number* dwFlags)
1895 {
1896 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1897 _cmsOptimizationCollection* Opts;
1898 cmsBool AnySuccess = FALSE;
1899
1900 // A CLUT is being asked, so force this specific optimization
1901 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1902
1903 PreOptimize(*PtrLut);
1904 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1905 }
1906
1907 // Anything to optimize?
1908 if ((*PtrLut) ->Elements == NULL) {
1909 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1910 return TRUE;
1911 }
1912
1913 // Try to get rid of identities and trivial conversions.
1914 AnySuccess = PreOptimize(*PtrLut);
1915
1916 // After removal do we end with an identity?
1917 if ((*PtrLut) ->Elements == NULL) {
1918 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1919 return TRUE;
1920 }
1921
1922 // Do not optimize, keep all precision
1923 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1924 return FALSE;
1925
1926 // Try plug-in optimizations
1927 for (Opts = ctx->OptimizationCollection;
1928 Opts != NULL;
1929 Opts = Opts ->Next) {
1930
1931 // If one schema succeeded, we are done
1932 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1933
1934 return TRUE; // Optimized!
1935 }
1936 }
1937
1938 // Try built-in optimizations
1939 for (Opts = DefaultOptimization;
1940 Opts != NULL;
1941 Opts = Opts ->Next) {
1942
1943 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1944
1945 return TRUE;
1946 }
1947 }
1948
1949 // Only simple optimizations succeeded
1950 return AnySuccess;
1951 }
1952
1953
1954
1955