• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * The copyright in this software is being made available under the 2-clauses
3  * BSD License, included below. This software may be subject to other third
4  * party and contributor rights, including patent rights, and no such rights
5  * are granted under this license.
6  *
7  * Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr>
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opj_includes.h"
33 
34 /**
35  * LUP decomposition
36  */
37 static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,
38                                  OPJ_UINT32 * permutations,
39                                  OPJ_FLOAT32 * p_swap_area,
40                                  OPJ_UINT32 nb_compo);
41 /**
42  * LUP solving
43  */
44 static void opj_lupSolve(OPJ_FLOAT32 * pResult,
45                          OPJ_FLOAT32* pMatrix,
46                          OPJ_FLOAT32* pVector,
47                          OPJ_UINT32* pPermutations,
48                          OPJ_UINT32 nb_compo,
49                          OPJ_FLOAT32 * p_intermediate_data);
50 
51 /**
52  *LUP inversion (call with the result of lupDecompose)
53  */
54 static void opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix,
55                           OPJ_FLOAT32 * pDestMatrix,
56                           OPJ_UINT32 nb_compo,
57                           OPJ_UINT32 * pPermutations,
58                           OPJ_FLOAT32 * p_src_temp,
59                           OPJ_FLOAT32 * p_dest_temp,
60                           OPJ_FLOAT32 * p_swap_area);
61 
62 /*
63 ==========================================================
64    Matric inversion interface
65 ==========================================================
66 */
67 /**
68  * Matrix inversion.
69  */
opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix,OPJ_FLOAT32 * pDestMatrix,OPJ_UINT32 nb_compo)70 OPJ_BOOL opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix,
71                                 OPJ_FLOAT32 * pDestMatrix,
72                                 OPJ_UINT32 nb_compo)
73 {
74     OPJ_BYTE * l_data = 00;
75     OPJ_UINT32 l_permutation_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_UINT32);
76     OPJ_UINT32 l_swap_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
77     OPJ_UINT32 l_total_size = l_permutation_size + 3 * l_swap_size;
78     OPJ_UINT32 * lPermutations = 00;
79     OPJ_FLOAT32 * l_double_data = 00;
80 
81     l_data = (OPJ_BYTE *) opj_malloc(l_total_size);
82     if (l_data == 0) {
83         return OPJ_FALSE;
84     }
85     lPermutations = (OPJ_UINT32 *) l_data;
86     l_double_data = (OPJ_FLOAT32 *)(l_data + l_permutation_size);
87     memset(lPermutations, 0, l_permutation_size);
88 
89     if (! opj_lupDecompose(pSrcMatrix, lPermutations, l_double_data, nb_compo)) {
90         opj_free(l_data);
91         return OPJ_FALSE;
92     }
93 
94     opj_lupInvert(pSrcMatrix, pDestMatrix, nb_compo, lPermutations, l_double_data,
95                   l_double_data + nb_compo, l_double_data + 2 * nb_compo);
96     opj_free(l_data);
97 
98     return OPJ_TRUE;
99 }
100 
101 
102 /*
103 ==========================================================
104    Local functions
105 ==========================================================
106 */
opj_lupDecompose(OPJ_FLOAT32 * matrix,OPJ_UINT32 * permutations,OPJ_FLOAT32 * p_swap_area,OPJ_UINT32 nb_compo)107 static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,
108                                  OPJ_UINT32 * permutations,
109                                  OPJ_FLOAT32 * p_swap_area,
110                                  OPJ_UINT32 nb_compo)
111 {
112     OPJ_UINT32 * tmpPermutations = permutations;
113     OPJ_UINT32 * dstPermutations;
114     OPJ_UINT32 k2 = 0, t;
115     OPJ_FLOAT32 temp;
116     OPJ_UINT32 i, j, k;
117     OPJ_FLOAT32 p;
118     OPJ_UINT32 lLastColum = nb_compo - 1;
119     OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
120     OPJ_FLOAT32 * lTmpMatrix = matrix;
121     OPJ_FLOAT32 * lColumnMatrix, * lDestMatrix;
122     OPJ_UINT32 offset = 1;
123     OPJ_UINT32 lStride = nb_compo - 1;
124 
125     /*initialize permutations */
126     for (i = 0; i < nb_compo; ++i) {
127         *tmpPermutations++ = i;
128     }
129     /* now make a pivot with column switch */
130     tmpPermutations = permutations;
131     for (k = 0; k < lLastColum; ++k) {
132         p = 0.0;
133 
134         /* take the middle element */
135         lColumnMatrix = lTmpMatrix + k;
136 
137         /* make permutation with the biggest value in the column */
138         for (i = k; i < nb_compo; ++i) {
139             temp = ((*lColumnMatrix > 0) ? *lColumnMatrix : -(*lColumnMatrix));
140             if (temp > p) {
141                 p = temp;
142                 k2 = i;
143             }
144             /* next line */
145             lColumnMatrix += nb_compo;
146         }
147 
148         /* a whole rest of 0 -> non singular */
149         if (p == 0.0) {
150             return OPJ_FALSE;
151         }
152 
153         /* should we permute ? */
154         if (k2 != k) {
155             /*exchange of line */
156             /* k2 > k */
157             dstPermutations = tmpPermutations + k2 - k;
158             /* swap indices */
159             t = *tmpPermutations;
160             *tmpPermutations = *dstPermutations;
161             *dstPermutations = t;
162 
163             /* and swap entire line. */
164             lColumnMatrix = lTmpMatrix + (k2 - k) * nb_compo;
165             memcpy(p_swap_area, lColumnMatrix, lSwapSize);
166             memcpy(lColumnMatrix, lTmpMatrix, lSwapSize);
167             memcpy(lTmpMatrix, p_swap_area, lSwapSize);
168         }
169 
170         /* now update data in the rest of the line and line after */
171         lDestMatrix = lTmpMatrix + k;
172         lColumnMatrix = lDestMatrix + nb_compo;
173         /* take the middle element */
174         temp = *(lDestMatrix++);
175 
176         /* now compute up data (i.e. coeff up of the diagonal). */
177         for (i = offset; i < nb_compo; ++i)  {
178             /*lColumnMatrix; */
179             /* divide the lower column elements by the diagonal value */
180 
181             /* matrix[i][k] /= matrix[k][k]; */
182             /* p = matrix[i][k] */
183             p = *lColumnMatrix / temp;
184             *(lColumnMatrix++) = p;
185 
186             for (j = /* k + 1 */ offset; j < nb_compo; ++j) {
187                 /* matrix[i][j] -= matrix[i][k] * matrix[k][j]; */
188                 *(lColumnMatrix++) -= p * (*(lDestMatrix++));
189             }
190             /* come back to the k+1th element */
191             lDestMatrix -= lStride;
192             /* go to kth element of the next line */
193             lColumnMatrix += k;
194         }
195 
196         /* offset is now k+2 */
197         ++offset;
198         /* 1 element less for stride */
199         --lStride;
200         /* next line */
201         lTmpMatrix += nb_compo;
202         /* next permutation element */
203         ++tmpPermutations;
204     }
205     return OPJ_TRUE;
206 }
207 
opj_lupSolve(OPJ_FLOAT32 * pResult,OPJ_FLOAT32 * pMatrix,OPJ_FLOAT32 * pVector,OPJ_UINT32 * pPermutations,OPJ_UINT32 nb_compo,OPJ_FLOAT32 * p_intermediate_data)208 static void opj_lupSolve(OPJ_FLOAT32 * pResult,
209                          OPJ_FLOAT32 * pMatrix,
210                          OPJ_FLOAT32 * pVector,
211                          OPJ_UINT32* pPermutations,
212                          OPJ_UINT32 nb_compo, OPJ_FLOAT32 * p_intermediate_data)
213 {
214     OPJ_INT32 k;
215     OPJ_UINT32 i, j;
216     OPJ_FLOAT32 sum;
217     OPJ_FLOAT32 u;
218     OPJ_UINT32 lStride = nb_compo + 1;
219     OPJ_FLOAT32 * lCurrentPtr;
220     OPJ_FLOAT32 * lIntermediatePtr;
221     OPJ_FLOAT32 * lDestPtr;
222     OPJ_FLOAT32 * lTmpMatrix;
223     OPJ_FLOAT32 * lLineMatrix = pMatrix;
224     OPJ_FLOAT32 * lBeginPtr = pResult + nb_compo - 1;
225     OPJ_FLOAT32 * lGeneratedData;
226     OPJ_UINT32 * lCurrentPermutationPtr = pPermutations;
227 
228 
229     lIntermediatePtr = p_intermediate_data;
230     lGeneratedData = p_intermediate_data + nb_compo - 1;
231 
232     for (i = 0; i < nb_compo; ++i) {
233         sum = 0.0;
234         lCurrentPtr = p_intermediate_data;
235         lTmpMatrix = lLineMatrix;
236         for (j = 1; j <= i; ++j) {
237             /* sum += matrix[i][j-1] * y[j-1]; */
238             sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++));
239         }
240         /*y[i] = pVector[pPermutations[i]] - sum; */
241         *(lIntermediatePtr++) = pVector[*(lCurrentPermutationPtr++)] - sum;
242         lLineMatrix += nb_compo;
243     }
244 
245     /* we take the last point of the matrix */
246     lLineMatrix = pMatrix + nb_compo * nb_compo - 1;
247 
248     /* and we take after the last point of the destination vector */
249     lDestPtr = pResult + nb_compo;
250 
251 
252     assert(nb_compo != 0);
253     for (k = (OPJ_INT32)nb_compo - 1; k != -1 ; --k) {
254         sum = 0.0;
255         lTmpMatrix = lLineMatrix;
256         u = *(lTmpMatrix++);
257         lCurrentPtr = lDestPtr--;
258         for (j = (OPJ_UINT32)(k + 1); j < nb_compo; ++j) {
259             /* sum += matrix[k][j] * x[j] */
260             sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++));
261         }
262         /*x[k] = (y[k] - sum) / u; */
263         *(lBeginPtr--) = (*(lGeneratedData--) - sum) / u;
264         lLineMatrix -= lStride;
265     }
266 }
267 
268 
opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix,OPJ_FLOAT32 * pDestMatrix,OPJ_UINT32 nb_compo,OPJ_UINT32 * pPermutations,OPJ_FLOAT32 * p_src_temp,OPJ_FLOAT32 * p_dest_temp,OPJ_FLOAT32 * p_swap_area)269 static void opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix,
270                           OPJ_FLOAT32 * pDestMatrix,
271                           OPJ_UINT32 nb_compo,
272                           OPJ_UINT32 * pPermutations,
273                           OPJ_FLOAT32 * p_src_temp,
274                           OPJ_FLOAT32 * p_dest_temp,
275                           OPJ_FLOAT32 * p_swap_area)
276 {
277     OPJ_UINT32 j, i;
278     OPJ_FLOAT32 * lCurrentPtr;
279     OPJ_FLOAT32 * lLineMatrix = pDestMatrix;
280     OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
281 
282     for (j = 0; j < nb_compo; ++j) {
283         lCurrentPtr = lLineMatrix++;
284         memset(p_src_temp, 0, lSwapSize);
285         p_src_temp[j] = 1.0;
286         opj_lupSolve(p_dest_temp, pSrcMatrix, p_src_temp, pPermutations, nb_compo,
287                      p_swap_area);
288 
289         for (i = 0; i < nb_compo; ++i) {
290             *(lCurrentPtr) = p_dest_temp[i];
291             lCurrentPtr += nb_compo;
292         }
293     }
294 }
295 
296