1 /* $Id: tif_pixarlog.c,v 1.53 2017-05-17 09:53:06 erouault Exp $ */
2
3 /*
4 * Copyright (c) 1996-1997 Sam Leffler
5 * Copyright (c) 1996 Pixar
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Pixar, Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27 #include "tiffiop.h"
28 #ifdef PIXARLOG_SUPPORT
29
30 /*
31 * TIFF Library.
32 * PixarLog Compression Support
33 *
34 * Contributed by Dan McCoy.
35 *
36 * PixarLog film support uses the TIFF library to store companded
37 * 11 bit values into a tiff file, which are compressed using the
38 * zip compressor.
39 *
40 * The codec can take as input and produce as output 32-bit IEEE float values
41 * as well as 16-bit or 8-bit unsigned integer values.
42 *
43 * On writing any of the above are converted into the internal
44 * 11-bit log format. In the case of 8 and 16 bit values, the
45 * input is assumed to be unsigned linear color values that represent
46 * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
47 * be the normal linear color range, in addition over 1 values are
48 * accepted up to a value of about 25.0 to encode "hot" highlights and such.
49 * The encoding is lossless for 8-bit values, slightly lossy for the
50 * other bit depths. The actual color precision should be better
51 * than the human eye can perceive with extra room to allow for
52 * error introduced by further image computation. As with any quantized
53 * color format, it is possible to perform image calculations which
54 * expose the quantization error. This format should certainly be less
55 * susceptible to such errors than standard 8-bit encodings, but more
56 * susceptible than straight 16-bit or 32-bit encodings.
57 *
58 * On reading the internal format is converted to the desired output format.
59 * The program can request which format it desires by setting the internal
60 * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61 * PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
62 * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
63 * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
64 *
65 * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66 * values with the difference that if there are exactly three or four channels
67 * (rgb or rgba) it swaps the channel order (bgr or abgr).
68 *
69 * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70 * packed in 16-bit values. However no tools are supplied for interpreting
71 * these values.
72 *
73 * "hot" (over 1.0) areas written in floating point get clamped to
74 * 1.0 in the integer data types.
75 *
76 * When the file is closed after writing, the bit depth and sample format
77 * are set always to appear as if 8-bit data has been written into it.
78 * That way a naive program unaware of the particulars of the encoding
79 * gets the format it is most likely able to handle.
80 *
81 * The codec does it's own horizontal differencing step on the coded
82 * values so the libraries predictor stuff should be turned off.
83 * The codec also handle byte swapping the encoded values as necessary
84 * since the library does not have the information necessary
85 * to know the bit depth of the raw unencoded buffer.
86 *
87 * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc.
88 * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT
89 * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11
90 */
91
92 #include "tif_predict.h"
93 #include "zlib.h"
94
95 #include <stdio.h>
96 #include <stdlib.h>
97 #include <math.h>
98
99 /* Tables for converting to/from 11 bit coded values */
100
101 #define TSIZE 2048 /* decode table size (11-bit tokens) */
102 #define TSIZEP1 2049 /* Plus one for slop */
103 #define ONE 1250 /* token value of 1.0 exactly */
104 #define RATIO 1.004 /* nominal ratio for log part */
105
106 #define CODE_MASK 0x7ff /* 11 bits. */
107
108 static float Fltsize;
109 static float LogK1, LogK2;
110
111 #define REPEAT(n, op) { int i; i=n; do { i--; op; } while (i>0); }
112
113 static void
horizontalAccumulateF(uint16 * wp,int n,int stride,float * op,float * ToLinearF)114 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
115 float *ToLinearF)
116 {
117 register unsigned int cr, cg, cb, ca, mask;
118 register float t0, t1, t2, t3;
119
120 if (n >= stride) {
121 mask = CODE_MASK;
122 if (stride == 3) {
123 t0 = ToLinearF[cr = (wp[0] & mask)];
124 t1 = ToLinearF[cg = (wp[1] & mask)];
125 t2 = ToLinearF[cb = (wp[2] & mask)];
126 op[0] = t0;
127 op[1] = t1;
128 op[2] = t2;
129 n -= 3;
130 while (n > 0) {
131 wp += 3;
132 op += 3;
133 n -= 3;
134 t0 = ToLinearF[(cr += wp[0]) & mask];
135 t1 = ToLinearF[(cg += wp[1]) & mask];
136 t2 = ToLinearF[(cb += wp[2]) & mask];
137 op[0] = t0;
138 op[1] = t1;
139 op[2] = t2;
140 }
141 } else if (stride == 4) {
142 t0 = ToLinearF[cr = (wp[0] & mask)];
143 t1 = ToLinearF[cg = (wp[1] & mask)];
144 t2 = ToLinearF[cb = (wp[2] & mask)];
145 t3 = ToLinearF[ca = (wp[3] & mask)];
146 op[0] = t0;
147 op[1] = t1;
148 op[2] = t2;
149 op[3] = t3;
150 n -= 4;
151 while (n > 0) {
152 wp += 4;
153 op += 4;
154 n -= 4;
155 t0 = ToLinearF[(cr += wp[0]) & mask];
156 t1 = ToLinearF[(cg += wp[1]) & mask];
157 t2 = ToLinearF[(cb += wp[2]) & mask];
158 t3 = ToLinearF[(ca += wp[3]) & mask];
159 op[0] = t0;
160 op[1] = t1;
161 op[2] = t2;
162 op[3] = t3;
163 }
164 } else {
165 REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
166 n -= stride;
167 while (n > 0) {
168 REPEAT(stride,
169 wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
170 n -= stride;
171 }
172 }
173 }
174 }
175
176 static void
horizontalAccumulate12(uint16 * wp,int n,int stride,int16 * op,float * ToLinearF)177 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
178 float *ToLinearF)
179 {
180 register unsigned int cr, cg, cb, ca, mask;
181 register float t0, t1, t2, t3;
182
183 #define SCALE12 2048.0F
184 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
185
186 if (n >= stride) {
187 mask = CODE_MASK;
188 if (stride == 3) {
189 t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
190 t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
191 t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
192 op[0] = CLAMP12(t0);
193 op[1] = CLAMP12(t1);
194 op[2] = CLAMP12(t2);
195 n -= 3;
196 while (n > 0) {
197 wp += 3;
198 op += 3;
199 n -= 3;
200 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
201 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
202 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
203 op[0] = CLAMP12(t0);
204 op[1] = CLAMP12(t1);
205 op[2] = CLAMP12(t2);
206 }
207 } else if (stride == 4) {
208 t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
209 t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
210 t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
211 t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12;
212 op[0] = CLAMP12(t0);
213 op[1] = CLAMP12(t1);
214 op[2] = CLAMP12(t2);
215 op[3] = CLAMP12(t3);
216 n -= 4;
217 while (n > 0) {
218 wp += 4;
219 op += 4;
220 n -= 4;
221 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
222 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
223 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
224 t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
225 op[0] = CLAMP12(t0);
226 op[1] = CLAMP12(t1);
227 op[2] = CLAMP12(t2);
228 op[3] = CLAMP12(t3);
229 }
230 } else {
231 REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
232 *op = CLAMP12(t0); wp++; op++)
233 n -= stride;
234 while (n > 0) {
235 REPEAT(stride,
236 wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
237 *op = CLAMP12(t0); wp++; op++)
238 n -= stride;
239 }
240 }
241 }
242 }
243
244 static void
horizontalAccumulate16(uint16 * wp,int n,int stride,uint16 * op,uint16 * ToLinear16)245 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
246 uint16 *ToLinear16)
247 {
248 register unsigned int cr, cg, cb, ca, mask;
249
250 if (n >= stride) {
251 mask = CODE_MASK;
252 if (stride == 3) {
253 op[0] = ToLinear16[cr = (wp[0] & mask)];
254 op[1] = ToLinear16[cg = (wp[1] & mask)];
255 op[2] = ToLinear16[cb = (wp[2] & mask)];
256 n -= 3;
257 while (n > 0) {
258 wp += 3;
259 op += 3;
260 n -= 3;
261 op[0] = ToLinear16[(cr += wp[0]) & mask];
262 op[1] = ToLinear16[(cg += wp[1]) & mask];
263 op[2] = ToLinear16[(cb += wp[2]) & mask];
264 }
265 } else if (stride == 4) {
266 op[0] = ToLinear16[cr = (wp[0] & mask)];
267 op[1] = ToLinear16[cg = (wp[1] & mask)];
268 op[2] = ToLinear16[cb = (wp[2] & mask)];
269 op[3] = ToLinear16[ca = (wp[3] & mask)];
270 n -= 4;
271 while (n > 0) {
272 wp += 4;
273 op += 4;
274 n -= 4;
275 op[0] = ToLinear16[(cr += wp[0]) & mask];
276 op[1] = ToLinear16[(cg += wp[1]) & mask];
277 op[2] = ToLinear16[(cb += wp[2]) & mask];
278 op[3] = ToLinear16[(ca += wp[3]) & mask];
279 }
280 } else {
281 REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
282 n -= stride;
283 while (n > 0) {
284 REPEAT(stride,
285 wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
286 n -= stride;
287 }
288 }
289 }
290 }
291
292 /*
293 * Returns the log encoded 11-bit values with the horizontal
294 * differencing undone.
295 */
296 static void
horizontalAccumulate11(uint16 * wp,int n,int stride,uint16 * op)297 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
298 {
299 register unsigned int cr, cg, cb, ca, mask;
300
301 if (n >= stride) {
302 mask = CODE_MASK;
303 if (stride == 3) {
304 op[0] = wp[0]; op[1] = wp[1]; op[2] = wp[2];
305 cr = wp[0]; cg = wp[1]; cb = wp[2];
306 n -= 3;
307 while (n > 0) {
308 wp += 3;
309 op += 3;
310 n -= 3;
311 op[0] = (uint16)((cr += wp[0]) & mask);
312 op[1] = (uint16)((cg += wp[1]) & mask);
313 op[2] = (uint16)((cb += wp[2]) & mask);
314 }
315 } else if (stride == 4) {
316 op[0] = wp[0]; op[1] = wp[1];
317 op[2] = wp[2]; op[3] = wp[3];
318 cr = wp[0]; cg = wp[1]; cb = wp[2]; ca = wp[3];
319 n -= 4;
320 while (n > 0) {
321 wp += 4;
322 op += 4;
323 n -= 4;
324 op[0] = (uint16)((cr += wp[0]) & mask);
325 op[1] = (uint16)((cg += wp[1]) & mask);
326 op[2] = (uint16)((cb += wp[2]) & mask);
327 op[3] = (uint16)((ca += wp[3]) & mask);
328 }
329 } else {
330 REPEAT(stride, *op = *wp&mask; wp++; op++)
331 n -= stride;
332 while (n > 0) {
333 REPEAT(stride,
334 wp[stride] += *wp; *op = *wp&mask; wp++; op++)
335 n -= stride;
336 }
337 }
338 }
339 }
340
341 static void
horizontalAccumulate8(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)342 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
343 unsigned char *ToLinear8)
344 {
345 register unsigned int cr, cg, cb, ca, mask;
346
347 if (n >= stride) {
348 mask = CODE_MASK;
349 if (stride == 3) {
350 op[0] = ToLinear8[cr = (wp[0] & mask)];
351 op[1] = ToLinear8[cg = (wp[1] & mask)];
352 op[2] = ToLinear8[cb = (wp[2] & mask)];
353 n -= 3;
354 while (n > 0) {
355 n -= 3;
356 wp += 3;
357 op += 3;
358 op[0] = ToLinear8[(cr += wp[0]) & mask];
359 op[1] = ToLinear8[(cg += wp[1]) & mask];
360 op[2] = ToLinear8[(cb += wp[2]) & mask];
361 }
362 } else if (stride == 4) {
363 op[0] = ToLinear8[cr = (wp[0] & mask)];
364 op[1] = ToLinear8[cg = (wp[1] & mask)];
365 op[2] = ToLinear8[cb = (wp[2] & mask)];
366 op[3] = ToLinear8[ca = (wp[3] & mask)];
367 n -= 4;
368 while (n > 0) {
369 n -= 4;
370 wp += 4;
371 op += 4;
372 op[0] = ToLinear8[(cr += wp[0]) & mask];
373 op[1] = ToLinear8[(cg += wp[1]) & mask];
374 op[2] = ToLinear8[(cb += wp[2]) & mask];
375 op[3] = ToLinear8[(ca += wp[3]) & mask];
376 }
377 } else {
378 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
379 n -= stride;
380 while (n > 0) {
381 REPEAT(stride,
382 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
383 n -= stride;
384 }
385 }
386 }
387 }
388
389
390 static void
horizontalAccumulate8abgr(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)391 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
392 unsigned char *ToLinear8)
393 {
394 register unsigned int cr, cg, cb, ca, mask;
395 register unsigned char t0, t1, t2, t3;
396
397 if (n >= stride) {
398 mask = CODE_MASK;
399 if (stride == 3) {
400 op[0] = 0;
401 t1 = ToLinear8[cb = (wp[2] & mask)];
402 t2 = ToLinear8[cg = (wp[1] & mask)];
403 t3 = ToLinear8[cr = (wp[0] & mask)];
404 op[1] = t1;
405 op[2] = t2;
406 op[3] = t3;
407 n -= 3;
408 while (n > 0) {
409 n -= 3;
410 wp += 3;
411 op += 4;
412 op[0] = 0;
413 t1 = ToLinear8[(cb += wp[2]) & mask];
414 t2 = ToLinear8[(cg += wp[1]) & mask];
415 t3 = ToLinear8[(cr += wp[0]) & mask];
416 op[1] = t1;
417 op[2] = t2;
418 op[3] = t3;
419 }
420 } else if (stride == 4) {
421 t0 = ToLinear8[ca = (wp[3] & mask)];
422 t1 = ToLinear8[cb = (wp[2] & mask)];
423 t2 = ToLinear8[cg = (wp[1] & mask)];
424 t3 = ToLinear8[cr = (wp[0] & mask)];
425 op[0] = t0;
426 op[1] = t1;
427 op[2] = t2;
428 op[3] = t3;
429 n -= 4;
430 while (n > 0) {
431 n -= 4;
432 wp += 4;
433 op += 4;
434 t0 = ToLinear8[(ca += wp[3]) & mask];
435 t1 = ToLinear8[(cb += wp[2]) & mask];
436 t2 = ToLinear8[(cg += wp[1]) & mask];
437 t3 = ToLinear8[(cr += wp[0]) & mask];
438 op[0] = t0;
439 op[1] = t1;
440 op[2] = t2;
441 op[3] = t3;
442 }
443 } else {
444 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
445 n -= stride;
446 while (n > 0) {
447 REPEAT(stride,
448 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
449 n -= stride;
450 }
451 }
452 }
453 }
454
455 /*
456 * State block for each open TIFF
457 * file using PixarLog compression/decompression.
458 */
459 typedef struct {
460 TIFFPredictorState predict;
461 z_stream stream;
462 tmsize_t tbuf_size; /* only set/used on reading for now */
463 uint16 *tbuf;
464 uint16 stride;
465 int state;
466 int user_datafmt;
467 int quality;
468 #define PLSTATE_INIT 1
469
470 TIFFVSetMethod vgetparent; /* super-class method */
471 TIFFVSetMethod vsetparent; /* super-class method */
472
473 float *ToLinearF;
474 uint16 *ToLinear16;
475 unsigned char *ToLinear8;
476 uint16 *FromLT2;
477 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
478 uint16 *From8;
479
480 } PixarLogState;
481
482 static int
PixarLogMakeTables(PixarLogState * sp)483 PixarLogMakeTables(PixarLogState *sp)
484 {
485
486 /*
487 * We make several tables here to convert between various external
488 * representations (float, 16-bit, and 8-bit) and the internal
489 * 11-bit companded representation. The 11-bit representation has two
490 * distinct regions. A linear bottom end up through .018316 in steps
491 * of about .000073, and a region of constant ratio up to about 25.
492 * These floating point numbers are stored in the main table ToLinearF.
493 * All other tables are derived from this one. The tables (and the
494 * ratios) are continuous at the internal seam.
495 */
496
497 int nlin, lt2size;
498 int i, j;
499 double b, c, linstep, v;
500 float *ToLinearF;
501 uint16 *ToLinear16;
502 unsigned char *ToLinear8;
503 uint16 *FromLT2;
504 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
505 uint16 *From8;
506
507 c = log(RATIO);
508 nlin = (int)(1./c); /* nlin must be an integer */
509 c = 1./nlin;
510 b = exp(-c*ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
511 linstep = b*c*exp(1.);
512
513 LogK1 = (float)(1./c); /* if (v >= 2) token = k1*log(v*k2) */
514 LogK2 = (float)(1./b);
515 lt2size = (int)(2./linstep) + 1;
516 FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
517 From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
518 From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
519 ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
520 ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
521 ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
522 if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
523 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
524 if (FromLT2) _TIFFfree(FromLT2);
525 if (From14) _TIFFfree(From14);
526 if (From8) _TIFFfree(From8);
527 if (ToLinearF) _TIFFfree(ToLinearF);
528 if (ToLinear16) _TIFFfree(ToLinear16);
529 if (ToLinear8) _TIFFfree(ToLinear8);
530 sp->FromLT2 = NULL;
531 sp->From14 = NULL;
532 sp->From8 = NULL;
533 sp->ToLinearF = NULL;
534 sp->ToLinear16 = NULL;
535 sp->ToLinear8 = NULL;
536 return 0;
537 }
538
539 j = 0;
540
541 for (i = 0; i < nlin; i++) {
542 v = i * linstep;
543 ToLinearF[j++] = (float)v;
544 }
545
546 for (i = nlin; i < TSIZE; i++)
547 ToLinearF[j++] = (float)(b*exp(c*i));
548
549 ToLinearF[2048] = ToLinearF[2047];
550
551 for (i = 0; i < TSIZEP1; i++) {
552 v = ToLinearF[i]*65535.0 + 0.5;
553 ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
554 v = ToLinearF[i]*255.0 + 0.5;
555 ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
556 }
557
558 j = 0;
559 for (i = 0; i < lt2size; i++) {
560 if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
561 j++;
562 FromLT2[i] = (uint16)j;
563 }
564
565 /*
566 * Since we lose info anyway on 16-bit data, we set up a 14-bit
567 * table and shift 16-bit values down two bits on input.
568 * saves a little table space.
569 */
570 j = 0;
571 for (i = 0; i < 16384; i++) {
572 while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
573 j++;
574 From14[i] = (uint16)j;
575 }
576
577 j = 0;
578 for (i = 0; i < 256; i++) {
579 while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
580 j++;
581 From8[i] = (uint16)j;
582 }
583
584 Fltsize = (float)(lt2size/2);
585
586 sp->ToLinearF = ToLinearF;
587 sp->ToLinear16 = ToLinear16;
588 sp->ToLinear8 = ToLinear8;
589 sp->FromLT2 = FromLT2;
590 sp->From14 = From14;
591 sp->From8 = From8;
592
593 return 1;
594 }
595
596 #define DecoderState(tif) ((PixarLogState*) (tif)->tif_data)
597 #define EncoderState(tif) ((PixarLogState*) (tif)->tif_data)
598
599 static int PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s);
600 static int PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s);
601
602 #define PIXARLOGDATAFMT_UNKNOWN -1
603
604 static int
PixarLogGuessDataFmt(TIFFDirectory * td)605 PixarLogGuessDataFmt(TIFFDirectory *td)
606 {
607 int guess = PIXARLOGDATAFMT_UNKNOWN;
608 int format = td->td_sampleformat;
609
610 /* If the user didn't tell us his datafmt,
611 * take our best guess from the bitspersample.
612 */
613 switch (td->td_bitspersample) {
614 case 32:
615 if (format == SAMPLEFORMAT_IEEEFP)
616 guess = PIXARLOGDATAFMT_FLOAT;
617 break;
618 case 16:
619 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
620 guess = PIXARLOGDATAFMT_16BIT;
621 break;
622 case 12:
623 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
624 guess = PIXARLOGDATAFMT_12BITPICIO;
625 break;
626 case 11:
627 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
628 guess = PIXARLOGDATAFMT_11BITLOG;
629 break;
630 case 8:
631 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
632 guess = PIXARLOGDATAFMT_8BIT;
633 break;
634 }
635
636 return guess;
637 }
638
639 #define TIFF_SIZE_T_MAX ((size_t) ~ ((size_t)0))
640 #define TIFF_TMSIZE_T_MAX (tmsize_t)(TIFF_SIZE_T_MAX >> 1)
641
642 static tmsize_t
multiply_ms(tmsize_t m1,tmsize_t m2)643 multiply_ms(tmsize_t m1, tmsize_t m2)
644 {
645 if( m1 == 0 || m2 > TIFF_TMSIZE_T_MAX / m1 )
646 return 0;
647 return m1 * m2;
648 }
649
650 static tmsize_t
add_ms(tmsize_t m1,tmsize_t m2)651 add_ms(tmsize_t m1, tmsize_t m2)
652 {
653 /* if either input is zero, assume overflow already occurred */
654 if (m1 == 0 || m2 == 0)
655 return 0;
656 else if (m1 > TIFF_TMSIZE_T_MAX - m2)
657 return 0;
658
659 return m1 + m2;
660 }
661
662 static int
PixarLogFixupTags(TIFF * tif)663 PixarLogFixupTags(TIFF* tif)
664 {
665 (void) tif;
666 return (1);
667 }
668
669 static int
PixarLogSetupDecode(TIFF * tif)670 PixarLogSetupDecode(TIFF* tif)
671 {
672 static const char module[] = "PixarLogSetupDecode";
673 TIFFDirectory *td = &tif->tif_dir;
674 PixarLogState* sp = DecoderState(tif);
675 tmsize_t tbuf_size;
676
677 assert(sp != NULL);
678
679 /* This function can possibly be called several times by */
680 /* PredictorSetupDecode() if this function succeeds but */
681 /* PredictorSetup() fails */
682 if( (sp->state & PLSTATE_INIT) != 0 )
683 return 1;
684
685 /* Make sure no byte swapping happens on the data
686 * after decompression. */
687 tif->tif_postdecode = _TIFFNoPostDecode;
688
689 /* for some reason, we can't do this in TIFFInitPixarLog */
690
691 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
692 td->td_samplesperpixel : 1);
693 tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
694 td->td_rowsperstrip), sizeof(uint16));
695 /* add one more stride in case input ends mid-stride */
696 tbuf_size = add_ms(tbuf_size, sizeof(uint16) * sp->stride);
697 if (tbuf_size == 0)
698 return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
699 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
700 if (sp->tbuf == NULL)
701 return (0);
702 sp->tbuf_size = tbuf_size;
703 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
704 sp->user_datafmt = PixarLogGuessDataFmt(td);
705 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
706 _TIFFfree(sp->tbuf);
707 sp->tbuf = NULL;
708 sp->tbuf_size = 0;
709 TIFFErrorExt(tif->tif_clientdata, module,
710 "PixarLog compression can't handle bits depth/data format combination (depth: %d)",
711 td->td_bitspersample);
712 return (0);
713 }
714
715 if (inflateInit(&sp->stream) != Z_OK) {
716 _TIFFfree(sp->tbuf);
717 sp->tbuf = NULL;
718 sp->tbuf_size = 0;
719 TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg ? sp->stream.msg : "(null)");
720 return (0);
721 } else {
722 sp->state |= PLSTATE_INIT;
723 return (1);
724 }
725 }
726
727 /*
728 * Setup state for decoding a strip.
729 */
730 static int
PixarLogPreDecode(TIFF * tif,uint16 s)731 PixarLogPreDecode(TIFF* tif, uint16 s)
732 {
733 static const char module[] = "PixarLogPreDecode";
734 PixarLogState* sp = DecoderState(tif);
735
736 (void) s;
737 assert(sp != NULL);
738 sp->stream.next_in = tif->tif_rawdata;
739 assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
740 we need to simplify this code to reflect a ZLib that is likely updated
741 to deal with 8byte memory sizes, though this code will respond
742 appropriately even before we simplify it */
743 sp->stream.avail_in = (uInt) tif->tif_rawcc;
744 if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc)
745 {
746 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
747 return (0);
748 }
749 return (inflateReset(&sp->stream) == Z_OK);
750 }
751
752 static int
PixarLogDecode(TIFF * tif,uint8 * op,tmsize_t occ,uint16 s)753 PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
754 {
755 static const char module[] = "PixarLogDecode";
756 TIFFDirectory *td = &tif->tif_dir;
757 PixarLogState* sp = DecoderState(tif);
758 tmsize_t i;
759 tmsize_t nsamples;
760 int llen;
761 uint16 *up;
762
763 switch (sp->user_datafmt) {
764 case PIXARLOGDATAFMT_FLOAT:
765 nsamples = occ / sizeof(float); /* XXX float == 32 bits */
766 break;
767 case PIXARLOGDATAFMT_16BIT:
768 case PIXARLOGDATAFMT_12BITPICIO:
769 case PIXARLOGDATAFMT_11BITLOG:
770 nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
771 break;
772 case PIXARLOGDATAFMT_8BIT:
773 case PIXARLOGDATAFMT_8BITABGR:
774 nsamples = occ;
775 break;
776 default:
777 TIFFErrorExt(tif->tif_clientdata, module,
778 "%d bit input not supported in PixarLog",
779 td->td_bitspersample);
780 return 0;
781 }
782
783 llen = sp->stride * td->td_imagewidth;
784
785 (void) s;
786 assert(sp != NULL);
787
788 sp->stream.next_in = tif->tif_rawcp;
789 sp->stream.avail_in = (uInt) tif->tif_rawcc;
790
791 sp->stream.next_out = (unsigned char *) sp->tbuf;
792 assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
793 we need to simplify this code to reflect a ZLib that is likely updated
794 to deal with 8byte memory sizes, though this code will respond
795 appropriately even before we simplify it */
796 sp->stream.avail_out = (uInt) (nsamples * sizeof(uint16));
797 if (sp->stream.avail_out != nsamples * sizeof(uint16))
798 {
799 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
800 return (0);
801 }
802 /* Check that we will not fill more than what was allocated */
803 if ((tmsize_t)sp->stream.avail_out > sp->tbuf_size)
804 {
805 TIFFErrorExt(tif->tif_clientdata, module, "sp->stream.avail_out > sp->tbuf_size");
806 return (0);
807 }
808 do {
809 int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
810 if (state == Z_STREAM_END) {
811 break; /* XXX */
812 }
813 if (state == Z_DATA_ERROR) {
814 TIFFErrorExt(tif->tif_clientdata, module,
815 "Decoding error at scanline %lu, %s",
816 (unsigned long) tif->tif_row, sp->stream.msg ? sp->stream.msg : "(null)");
817 if (inflateSync(&sp->stream) != Z_OK)
818 return (0);
819 continue;
820 }
821 if (state != Z_OK) {
822 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
823 sp->stream.msg ? sp->stream.msg : "(null)");
824 return (0);
825 }
826 } while (sp->stream.avail_out > 0);
827
828 /* hopefully, we got all the bytes we needed */
829 if (sp->stream.avail_out != 0) {
830 TIFFErrorExt(tif->tif_clientdata, module,
831 "Not enough data at scanline %lu (short " TIFF_UINT64_FORMAT " bytes)",
832 (unsigned long) tif->tif_row, (TIFF_UINT64_T) sp->stream.avail_out);
833 return (0);
834 }
835
836 tif->tif_rawcp = sp->stream.next_in;
837 tif->tif_rawcc = sp->stream.avail_in;
838
839 up = sp->tbuf;
840 /* Swap bytes in the data if from a different endian machine. */
841 if (tif->tif_flags & TIFF_SWAB)
842 TIFFSwabArrayOfShort(up, nsamples);
843
844 /*
845 * if llen is not an exact multiple of nsamples, the decode operation
846 * may overflow the output buffer, so truncate it enough to prevent
847 * that but still salvage as much data as possible.
848 */
849 if (nsamples % llen) {
850 TIFFWarningExt(tif->tif_clientdata, module,
851 "stride %lu is not a multiple of sample count, "
852 "%lu, data truncated.", (unsigned long) llen, (unsigned long) nsamples);
853 nsamples -= nsamples % llen;
854 }
855
856 for (i = 0; i < nsamples; i += llen, up += llen) {
857 switch (sp->user_datafmt) {
858 case PIXARLOGDATAFMT_FLOAT:
859 horizontalAccumulateF(up, llen, sp->stride,
860 (float *)op, sp->ToLinearF);
861 op += llen * sizeof(float);
862 break;
863 case PIXARLOGDATAFMT_16BIT:
864 horizontalAccumulate16(up, llen, sp->stride,
865 (uint16 *)op, sp->ToLinear16);
866 op += llen * sizeof(uint16);
867 break;
868 case PIXARLOGDATAFMT_12BITPICIO:
869 horizontalAccumulate12(up, llen, sp->stride,
870 (int16 *)op, sp->ToLinearF);
871 op += llen * sizeof(int16);
872 break;
873 case PIXARLOGDATAFMT_11BITLOG:
874 horizontalAccumulate11(up, llen, sp->stride,
875 (uint16 *)op);
876 op += llen * sizeof(uint16);
877 break;
878 case PIXARLOGDATAFMT_8BIT:
879 horizontalAccumulate8(up, llen, sp->stride,
880 (unsigned char *)op, sp->ToLinear8);
881 op += llen * sizeof(unsigned char);
882 break;
883 case PIXARLOGDATAFMT_8BITABGR:
884 horizontalAccumulate8abgr(up, llen, sp->stride,
885 (unsigned char *)op, sp->ToLinear8);
886 op += llen * sizeof(unsigned char);
887 break;
888 default:
889 TIFFErrorExt(tif->tif_clientdata, module,
890 "Unsupported bits/sample: %d",
891 td->td_bitspersample);
892 return (0);
893 }
894 }
895
896 return (1);
897 }
898
899 static int
PixarLogSetupEncode(TIFF * tif)900 PixarLogSetupEncode(TIFF* tif)
901 {
902 static const char module[] = "PixarLogSetupEncode";
903 TIFFDirectory *td = &tif->tif_dir;
904 PixarLogState* sp = EncoderState(tif);
905 tmsize_t tbuf_size;
906
907 assert(sp != NULL);
908
909 /* for some reason, we can't do this in TIFFInitPixarLog */
910
911 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
912 td->td_samplesperpixel : 1);
913 tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
914 td->td_rowsperstrip), sizeof(uint16));
915 if (tbuf_size == 0)
916 return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
917 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
918 if (sp->tbuf == NULL)
919 return (0);
920 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
921 sp->user_datafmt = PixarLogGuessDataFmt(td);
922 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
923 TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
924 return (0);
925 }
926
927 if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
928 TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg ? sp->stream.msg : "(null)");
929 return (0);
930 } else {
931 sp->state |= PLSTATE_INIT;
932 return (1);
933 }
934 }
935
936 /*
937 * Reset encoding state at the start of a strip.
938 */
939 static int
PixarLogPreEncode(TIFF * tif,uint16 s)940 PixarLogPreEncode(TIFF* tif, uint16 s)
941 {
942 static const char module[] = "PixarLogPreEncode";
943 PixarLogState *sp = EncoderState(tif);
944
945 (void) s;
946 assert(sp != NULL);
947 sp->stream.next_out = tif->tif_rawdata;
948 assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
949 we need to simplify this code to reflect a ZLib that is likely updated
950 to deal with 8byte memory sizes, though this code will respond
951 appropriately even before we simplify it */
952 sp->stream.avail_out = (uInt)tif->tif_rawdatasize;
953 if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
954 {
955 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
956 return (0);
957 }
958 return (deflateReset(&sp->stream) == Z_OK);
959 }
960
961 static void
horizontalDifferenceF(float * ip,int n,int stride,uint16 * wp,uint16 * FromLT2)962 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
963 {
964 int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
965 float fltsize = Fltsize;
966
967 #define CLAMP(v) ( (v<(float)0.) ? 0 \
968 : (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \
969 : (v>(float)24.2) ? 2047 \
970 : LogK1*log(v*LogK2) + 0.5 )
971
972 mask = CODE_MASK;
973 if (n >= stride) {
974 if (stride == 3) {
975 r2 = wp[0] = (uint16) CLAMP(ip[0]);
976 g2 = wp[1] = (uint16) CLAMP(ip[1]);
977 b2 = wp[2] = (uint16) CLAMP(ip[2]);
978 n -= 3;
979 while (n > 0) {
980 n -= 3;
981 wp += 3;
982 ip += 3;
983 r1 = (int32) CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
984 g1 = (int32) CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
985 b1 = (int32) CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
986 }
987 } else if (stride == 4) {
988 r2 = wp[0] = (uint16) CLAMP(ip[0]);
989 g2 = wp[1] = (uint16) CLAMP(ip[1]);
990 b2 = wp[2] = (uint16) CLAMP(ip[2]);
991 a2 = wp[3] = (uint16) CLAMP(ip[3]);
992 n -= 4;
993 while (n > 0) {
994 n -= 4;
995 wp += 4;
996 ip += 4;
997 r1 = (int32) CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
998 g1 = (int32) CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
999 b1 = (int32) CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
1000 a1 = (int32) CLAMP(ip[3]); wp[3] = (uint16)((a1-a2) & mask); a2 = a1;
1001 }
1002 } else {
1003 REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp++; ip++)
1004 n -= stride;
1005 while (n > 0) {
1006 REPEAT(stride,
1007 wp[0] = (uint16)(((int32)CLAMP(ip[0])-(int32)CLAMP(ip[-stride])) & mask);
1008 wp++; ip++)
1009 n -= stride;
1010 }
1011 }
1012 }
1013 }
1014
1015 static void
horizontalDifference16(unsigned short * ip,int n,int stride,unsigned short * wp,uint16 * From14)1016 horizontalDifference16(unsigned short *ip, int n, int stride,
1017 unsigned short *wp, uint16 *From14)
1018 {
1019 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1020
1021 /* assumption is unsigned pixel values */
1022 #undef CLAMP
1023 #define CLAMP(v) From14[(v) >> 2]
1024
1025 mask = CODE_MASK;
1026 if (n >= stride) {
1027 if (stride == 3) {
1028 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1029 b2 = wp[2] = CLAMP(ip[2]);
1030 n -= 3;
1031 while (n > 0) {
1032 n -= 3;
1033 wp += 3;
1034 ip += 3;
1035 r1 = CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
1036 g1 = CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
1037 b1 = CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
1038 }
1039 } else if (stride == 4) {
1040 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1041 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1042 n -= 4;
1043 while (n > 0) {
1044 n -= 4;
1045 wp += 4;
1046 ip += 4;
1047 r1 = CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
1048 g1 = CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
1049 b1 = CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
1050 a1 = CLAMP(ip[3]); wp[3] = (uint16)((a1-a2) & mask); a2 = a1;
1051 }
1052 } else {
1053 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
1054 n -= stride;
1055 while (n > 0) {
1056 REPEAT(stride,
1057 wp[0] = (uint16)((CLAMP(ip[0])-CLAMP(ip[-stride])) & mask);
1058 wp++; ip++)
1059 n -= stride;
1060 }
1061 }
1062 }
1063 }
1064
1065
1066 static void
horizontalDifference8(unsigned char * ip,int n,int stride,unsigned short * wp,uint16 * From8)1067 horizontalDifference8(unsigned char *ip, int n, int stride,
1068 unsigned short *wp, uint16 *From8)
1069 {
1070 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1071
1072 #undef CLAMP
1073 #define CLAMP(v) (From8[(v)])
1074
1075 mask = CODE_MASK;
1076 if (n >= stride) {
1077 if (stride == 3) {
1078 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1079 b2 = wp[2] = CLAMP(ip[2]);
1080 n -= 3;
1081 while (n > 0) {
1082 n -= 3;
1083 r1 = CLAMP(ip[3]); wp[3] = (uint16)((r1-r2) & mask); r2 = r1;
1084 g1 = CLAMP(ip[4]); wp[4] = (uint16)((g1-g2) & mask); g2 = g1;
1085 b1 = CLAMP(ip[5]); wp[5] = (uint16)((b1-b2) & mask); b2 = b1;
1086 wp += 3;
1087 ip += 3;
1088 }
1089 } else if (stride == 4) {
1090 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1091 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1092 n -= 4;
1093 while (n > 0) {
1094 n -= 4;
1095 r1 = CLAMP(ip[4]); wp[4] = (uint16)((r1-r2) & mask); r2 = r1;
1096 g1 = CLAMP(ip[5]); wp[5] = (uint16)((g1-g2) & mask); g2 = g1;
1097 b1 = CLAMP(ip[6]); wp[6] = (uint16)((b1-b2) & mask); b2 = b1;
1098 a1 = CLAMP(ip[7]); wp[7] = (uint16)((a1-a2) & mask); a2 = a1;
1099 wp += 4;
1100 ip += 4;
1101 }
1102 } else {
1103 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
1104 n -= stride;
1105 while (n > 0) {
1106 REPEAT(stride,
1107 wp[0] = (uint16)((CLAMP(ip[0])-CLAMP(ip[-stride])) & mask);
1108 wp++; ip++)
1109 n -= stride;
1110 }
1111 }
1112 }
1113 }
1114
1115 /*
1116 * Encode a chunk of pixels.
1117 */
1118 static int
PixarLogEncode(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)1119 PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
1120 {
1121 static const char module[] = "PixarLogEncode";
1122 TIFFDirectory *td = &tif->tif_dir;
1123 PixarLogState *sp = EncoderState(tif);
1124 tmsize_t i;
1125 tmsize_t n;
1126 int llen;
1127 unsigned short * up;
1128
1129 (void) s;
1130
1131 switch (sp->user_datafmt) {
1132 case PIXARLOGDATAFMT_FLOAT:
1133 n = cc / sizeof(float); /* XXX float == 32 bits */
1134 break;
1135 case PIXARLOGDATAFMT_16BIT:
1136 case PIXARLOGDATAFMT_12BITPICIO:
1137 case PIXARLOGDATAFMT_11BITLOG:
1138 n = cc / sizeof(uint16); /* XXX uint16 == 16 bits */
1139 break;
1140 case PIXARLOGDATAFMT_8BIT:
1141 case PIXARLOGDATAFMT_8BITABGR:
1142 n = cc;
1143 break;
1144 default:
1145 TIFFErrorExt(tif->tif_clientdata, module,
1146 "%d bit input not supported in PixarLog",
1147 td->td_bitspersample);
1148 return 0;
1149 }
1150
1151 llen = sp->stride * td->td_imagewidth;
1152 /* Check against the number of elements (of size uint16) of sp->tbuf */
1153 if( n > (tmsize_t)(td->td_rowsperstrip * llen) )
1154 {
1155 TIFFErrorExt(tif->tif_clientdata, module,
1156 "Too many input bytes provided");
1157 return 0;
1158 }
1159
1160 for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1161 switch (sp->user_datafmt) {
1162 case PIXARLOGDATAFMT_FLOAT:
1163 horizontalDifferenceF((float *)bp, llen,
1164 sp->stride, up, sp->FromLT2);
1165 bp += llen * sizeof(float);
1166 break;
1167 case PIXARLOGDATAFMT_16BIT:
1168 horizontalDifference16((uint16 *)bp, llen,
1169 sp->stride, up, sp->From14);
1170 bp += llen * sizeof(uint16);
1171 break;
1172 case PIXARLOGDATAFMT_8BIT:
1173 horizontalDifference8((unsigned char *)bp, llen,
1174 sp->stride, up, sp->From8);
1175 bp += llen * sizeof(unsigned char);
1176 break;
1177 default:
1178 TIFFErrorExt(tif->tif_clientdata, module,
1179 "%d bit input not supported in PixarLog",
1180 td->td_bitspersample);
1181 return 0;
1182 }
1183 }
1184
1185 sp->stream.next_in = (unsigned char *) sp->tbuf;
1186 assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
1187 we need to simplify this code to reflect a ZLib that is likely updated
1188 to deal with 8byte memory sizes, though this code will respond
1189 appropriately even before we simplify it */
1190 sp->stream.avail_in = (uInt) (n * sizeof(uint16));
1191 if ((sp->stream.avail_in / sizeof(uint16)) != (uInt) n)
1192 {
1193 TIFFErrorExt(tif->tif_clientdata, module,
1194 "ZLib cannot deal with buffers this size");
1195 return (0);
1196 }
1197
1198 do {
1199 if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1200 TIFFErrorExt(tif->tif_clientdata, module, "Encoder error: %s",
1201 sp->stream.msg ? sp->stream.msg : "(null)");
1202 return (0);
1203 }
1204 if (sp->stream.avail_out == 0) {
1205 tif->tif_rawcc = tif->tif_rawdatasize;
1206 TIFFFlushData1(tif);
1207 sp->stream.next_out = tif->tif_rawdata;
1208 sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1209 }
1210 } while (sp->stream.avail_in > 0);
1211 return (1);
1212 }
1213
1214 /*
1215 * Finish off an encoded strip by flushing the last
1216 * string and tacking on an End Of Information code.
1217 */
1218
1219 static int
PixarLogPostEncode(TIFF * tif)1220 PixarLogPostEncode(TIFF* tif)
1221 {
1222 static const char module[] = "PixarLogPostEncode";
1223 PixarLogState *sp = EncoderState(tif);
1224 int state;
1225
1226 sp->stream.avail_in = 0;
1227
1228 do {
1229 state = deflate(&sp->stream, Z_FINISH);
1230 switch (state) {
1231 case Z_STREAM_END:
1232 case Z_OK:
1233 if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) {
1234 tif->tif_rawcc =
1235 tif->tif_rawdatasize - sp->stream.avail_out;
1236 TIFFFlushData1(tif);
1237 sp->stream.next_out = tif->tif_rawdata;
1238 sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1239 }
1240 break;
1241 default:
1242 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1243 sp->stream.msg ? sp->stream.msg : "(null)");
1244 return (0);
1245 }
1246 } while (state != Z_STREAM_END);
1247 return (1);
1248 }
1249
1250 static void
PixarLogClose(TIFF * tif)1251 PixarLogClose(TIFF* tif)
1252 {
1253 PixarLogState* sp = (PixarLogState*) tif->tif_data;
1254 TIFFDirectory *td = &tif->tif_dir;
1255
1256 assert(sp != 0);
1257 /* In a really sneaky (and really incorrect, and untruthful, and
1258 * troublesome, and error-prone) maneuver that completely goes against
1259 * the spirit of TIFF, and breaks TIFF, on close, we covertly
1260 * modify both bitspersample and sampleformat in the directory to
1261 * indicate 8-bit linear. This way, the decode "just works" even for
1262 * readers that don't know about PixarLog, or how to set
1263 * the PIXARLOGDATFMT pseudo-tag.
1264 */
1265
1266 if (sp->state&PLSTATE_INIT) {
1267 /* We test the state to avoid an issue such as in
1268 * http://bugzilla.maptools.org/show_bug.cgi?id=2604
1269 * What appends in that case is that the bitspersample is 1 and
1270 * a TransferFunction is set. The size of the TransferFunction
1271 * depends on 1<<bitspersample. So if we increase it, an access
1272 * out of the buffer will happen at directory flushing.
1273 * Another option would be to clear those targs.
1274 */
1275 td->td_bitspersample = 8;
1276 td->td_sampleformat = SAMPLEFORMAT_UINT;
1277 }
1278 }
1279
1280 static void
PixarLogCleanup(TIFF * tif)1281 PixarLogCleanup(TIFF* tif)
1282 {
1283 PixarLogState* sp = (PixarLogState*) tif->tif_data;
1284
1285 assert(sp != 0);
1286
1287 (void)TIFFPredictorCleanup(tif);
1288
1289 tif->tif_tagmethods.vgetfield = sp->vgetparent;
1290 tif->tif_tagmethods.vsetfield = sp->vsetparent;
1291
1292 if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1293 if (sp->From14) _TIFFfree(sp->From14);
1294 if (sp->From8) _TIFFfree(sp->From8);
1295 if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1296 if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1297 if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1298 if (sp->state&PLSTATE_INIT) {
1299 if (tif->tif_mode == O_RDONLY)
1300 inflateEnd(&sp->stream);
1301 else
1302 deflateEnd(&sp->stream);
1303 }
1304 if (sp->tbuf)
1305 _TIFFfree(sp->tbuf);
1306 _TIFFfree(sp);
1307 tif->tif_data = NULL;
1308
1309 _TIFFSetDefaultCompressionState(tif);
1310 }
1311
1312 static int
PixarLogVSetField(TIFF * tif,uint32 tag,va_list ap)1313 PixarLogVSetField(TIFF* tif, uint32 tag, va_list ap)
1314 {
1315 static const char module[] = "PixarLogVSetField";
1316 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1317 int result;
1318
1319 switch (tag) {
1320 case TIFFTAG_PIXARLOGQUALITY:
1321 sp->quality = (int) va_arg(ap, int);
1322 if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1323 if (deflateParams(&sp->stream,
1324 sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1325 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1326 sp->stream.msg ? sp->stream.msg : "(null)");
1327 return (0);
1328 }
1329 }
1330 return (1);
1331 case TIFFTAG_PIXARLOGDATAFMT:
1332 sp->user_datafmt = (int) va_arg(ap, int);
1333 /* Tweak the TIFF header so that the rest of libtiff knows what
1334 * size of data will be passed between app and library, and
1335 * assume that the app knows what it is doing and is not
1336 * confused by these header manipulations...
1337 */
1338 switch (sp->user_datafmt) {
1339 case PIXARLOGDATAFMT_8BIT:
1340 case PIXARLOGDATAFMT_8BITABGR:
1341 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1342 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1343 break;
1344 case PIXARLOGDATAFMT_11BITLOG:
1345 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1346 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1347 break;
1348 case PIXARLOGDATAFMT_12BITPICIO:
1349 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1350 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1351 break;
1352 case PIXARLOGDATAFMT_16BIT:
1353 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1354 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1355 break;
1356 case PIXARLOGDATAFMT_FLOAT:
1357 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1358 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1359 break;
1360 }
1361 /*
1362 * Must recalculate sizes should bits/sample change.
1363 */
1364 tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1);
1365 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1366 result = 1; /* NB: pseudo tag */
1367 break;
1368 default:
1369 result = (*sp->vsetparent)(tif, tag, ap);
1370 }
1371 return (result);
1372 }
1373
1374 static int
PixarLogVGetField(TIFF * tif,uint32 tag,va_list ap)1375 PixarLogVGetField(TIFF* tif, uint32 tag, va_list ap)
1376 {
1377 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1378
1379 switch (tag) {
1380 case TIFFTAG_PIXARLOGQUALITY:
1381 *va_arg(ap, int*) = sp->quality;
1382 break;
1383 case TIFFTAG_PIXARLOGDATAFMT:
1384 *va_arg(ap, int*) = sp->user_datafmt;
1385 break;
1386 default:
1387 return (*sp->vgetparent)(tif, tag, ap);
1388 }
1389 return (1);
1390 }
1391
1392 static const TIFFField pixarlogFields[] = {
1393 {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL},
1394 {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}
1395 };
1396
1397 int
TIFFInitPixarLog(TIFF * tif,int scheme)1398 TIFFInitPixarLog(TIFF* tif, int scheme)
1399 {
1400 static const char module[] = "TIFFInitPixarLog";
1401
1402 PixarLogState* sp;
1403
1404 assert(scheme == COMPRESSION_PIXARLOG);
1405
1406 /*
1407 * Merge codec-specific tag information.
1408 */
1409 if (!_TIFFMergeFields(tif, pixarlogFields,
1410 TIFFArrayCount(pixarlogFields))) {
1411 TIFFErrorExt(tif->tif_clientdata, module,
1412 "Merging PixarLog codec-specific tags failed");
1413 return 0;
1414 }
1415
1416 /*
1417 * Allocate state block so tag methods have storage to record values.
1418 */
1419 tif->tif_data = (uint8*) _TIFFmalloc(sizeof (PixarLogState));
1420 if (tif->tif_data == NULL)
1421 goto bad;
1422 sp = (PixarLogState*) tif->tif_data;
1423 _TIFFmemset(sp, 0, sizeof (*sp));
1424 sp->stream.data_type = Z_BINARY;
1425 sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1426
1427 /*
1428 * Install codec methods.
1429 */
1430 tif->tif_fixuptags = PixarLogFixupTags;
1431 tif->tif_setupdecode = PixarLogSetupDecode;
1432 tif->tif_predecode = PixarLogPreDecode;
1433 tif->tif_decoderow = PixarLogDecode;
1434 tif->tif_decodestrip = PixarLogDecode;
1435 tif->tif_decodetile = PixarLogDecode;
1436 tif->tif_setupencode = PixarLogSetupEncode;
1437 tif->tif_preencode = PixarLogPreEncode;
1438 tif->tif_postencode = PixarLogPostEncode;
1439 tif->tif_encoderow = PixarLogEncode;
1440 tif->tif_encodestrip = PixarLogEncode;
1441 tif->tif_encodetile = PixarLogEncode;
1442 tif->tif_close = PixarLogClose;
1443 tif->tif_cleanup = PixarLogCleanup;
1444
1445 /* Override SetField so we can handle our private pseudo-tag */
1446 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1447 tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
1448 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1449 tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
1450
1451 /* Default values for codec-specific fields */
1452 sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1453 sp->state = 0;
1454
1455 /* we don't wish to use the predictor,
1456 * the default is none, which predictor value 1
1457 */
1458 (void) TIFFPredictorInit(tif);
1459
1460 /*
1461 * build the companding tables
1462 */
1463 PixarLogMakeTables(sp);
1464
1465 return (1);
1466 bad:
1467 TIFFErrorExt(tif->tif_clientdata, module,
1468 "No space for PixarLog state block");
1469 return (0);
1470 }
1471 #endif /* PIXARLOG_SUPPORT */
1472
1473 /* vim: set ts=8 sts=8 sw=8 noet: */
1474 /*
1475 * Local Variables:
1476 * mode: c
1477 * c-basic-offset: 8
1478 * fill-column: 78
1479 * End:
1480 */
1481