• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1from __future__ import division
2# When true division is the default, get rid of this and add it to
3# test_long.py instead.  In the meantime, it's too obscure to try to
4# trick just part of test_long into using future division.
5
6import sys
7import random
8import math
9import unittest
10from test.test_support import run_unittest
11
12# decorator for skipping tests on non-IEEE 754 platforms
13requires_IEEE_754 = unittest.skipUnless(
14    float.__getformat__("double").startswith("IEEE"),
15    "test requires IEEE 754 doubles")
16
17DBL_MAX = sys.float_info.max
18DBL_MAX_EXP = sys.float_info.max_exp
19DBL_MIN_EXP = sys.float_info.min_exp
20DBL_MANT_DIG = sys.float_info.mant_dig
21DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
22
23# pure Python version of correctly-rounded true division
24def truediv(a, b):
25    """Correctly-rounded true division for integers."""
26    negative = a^b < 0
27    a, b = abs(a), abs(b)
28
29    # exceptions:  division by zero, overflow
30    if not b:
31        raise ZeroDivisionError("division by zero")
32    if a >= DBL_MIN_OVERFLOW * b:
33        raise OverflowError("int/int too large to represent as a float")
34
35   # find integer d satisfying 2**(d - 1) <= a/b < 2**d
36    d = a.bit_length() - b.bit_length()
37    if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
38        d += 1
39
40    # compute 2**-exp * a / b for suitable exp
41    exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
42    a, b = a << max(-exp, 0), b << max(exp, 0)
43    q, r = divmod(a, b)
44
45    # round-half-to-even: fractional part is r/b, which is > 0.5 iff
46    # 2*r > b, and == 0.5 iff 2*r == b.
47    if 2*r > b or 2*r == b and q % 2 == 1:
48        q += 1
49
50    result = math.ldexp(float(q), exp)
51    return -result if negative else result
52
53class TrueDivisionTests(unittest.TestCase):
54    def test(self):
55        huge = 1L << 40000
56        mhuge = -huge
57        self.assertEqual(huge / huge, 1.0)
58        self.assertEqual(mhuge / mhuge, 1.0)
59        self.assertEqual(huge / mhuge, -1.0)
60        self.assertEqual(mhuge / huge, -1.0)
61        self.assertEqual(1 / huge, 0.0)
62        self.assertEqual(1L / huge, 0.0)
63        self.assertEqual(1 / mhuge, 0.0)
64        self.assertEqual(1L / mhuge, 0.0)
65        self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
66        self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
67        self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
68        self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
69        self.assertEqual(huge / (huge << 1), 0.5)
70        self.assertEqual((1000000 * huge) / huge, 1000000)
71
72        namespace = {'huge': huge, 'mhuge': mhuge}
73
74        for overflow in ["float(huge)", "float(mhuge)",
75                         "huge / 1", "huge / 2L", "huge / -1", "huge / -2L",
76                         "mhuge / 100", "mhuge / 100L"]:
77            # If the "eval" does not happen in this module,
78            # true division is not enabled
79            with self.assertRaises(OverflowError):
80                eval(overflow, namespace)
81
82        for underflow in ["1 / huge", "2L / huge", "-1 / huge", "-2L / huge",
83                         "100 / mhuge", "100L / mhuge"]:
84            result = eval(underflow, namespace)
85            self.assertEqual(result, 0.0, 'expected underflow to 0 '
86                             'from {!r}'.format(underflow))
87
88        for zero in ["huge / 0", "huge / 0L", "mhuge / 0", "mhuge / 0L"]:
89            with self.assertRaises(ZeroDivisionError):
90                eval(zero, namespace)
91
92    def check_truediv(self, a, b, skip_small=True):
93        """Verify that the result of a/b is correctly rounded, by
94        comparing it with a pure Python implementation of correctly
95        rounded division.  b should be nonzero."""
96
97        a, b = long(a), long(b)
98
99        # skip check for small a and b: in this case, the current
100        # implementation converts the arguments to float directly and
101        # then applies a float division.  This can give doubly-rounded
102        # results on x87-using machines (particularly 32-bit Linux).
103        if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
104            return
105
106        try:
107            # use repr so that we can distinguish between -0.0 and 0.0
108            expected = repr(truediv(a, b))
109        except OverflowError:
110            expected = 'overflow'
111        except ZeroDivisionError:
112            expected = 'zerodivision'
113
114        try:
115            got = repr(a / b)
116        except OverflowError:
117            got = 'overflow'
118        except ZeroDivisionError:
119            got = 'zerodivision'
120
121        self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
122                         "expected {}, got {}".format(a, b, expected, got))
123
124    @requires_IEEE_754
125    def test_correctly_rounded_true_division(self):
126        # more stringent tests than those above, checking that the
127        # result of true division of ints is always correctly rounded.
128        # This test should probably be considered CPython-specific.
129
130        # Exercise all the code paths not involving Gb-sized ints.
131        # ... divisions involving zero
132        self.check_truediv(123, 0)
133        self.check_truediv(-456, 0)
134        self.check_truediv(0, 3)
135        self.check_truediv(0, -3)
136        self.check_truediv(0, 0)
137        # ... overflow or underflow by large margin
138        self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
139        self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
140        # ... a much larger or smaller than b
141        self.check_truediv(12345*2**100, 98765)
142        self.check_truediv(12345*2**30, 98765*7**81)
143        # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
144        #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
145        bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
146                 DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
147        for base in bases:
148            for exp in range(base - 15, base + 15):
149                self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
150                self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
151
152        # overflow corner case
153        for m in [1, 2, 7, 17, 12345, 7**100,
154                  -1, -2, -5, -23, -67891, -41**50]:
155            for n in range(-10, 10):
156                self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
157                self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
158
159        # check detection of inexactness in shifting stage
160        for n in range(250):
161            # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
162            # between two representable floats, and would usually be
163            # rounded down under round-half-to-even.  The tiniest of
164            # additions to the numerator should cause it to be rounded
165            # up instead.
166            self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
167                           2**DBL_MANT_DIG*12345)
168
169        # 1/2731 is one of the smallest division cases that's subject
170        # to double rounding on IEEE 754 machines working internally with
171        # 64-bit precision.  On such machines, the next check would fail,
172        # were it not explicitly skipped in check_truediv.
173        self.check_truediv(1, 2731)
174
175        # a particularly bad case for the old algorithm:  gives an
176        # error of close to 3.5 ulps.
177        self.check_truediv(295147931372582273023, 295147932265116303360)
178        for i in range(1000):
179            self.check_truediv(10**(i+1), 10**i)
180            self.check_truediv(10**i, 10**(i+1))
181
182        # test round-half-to-even behaviour, normal result
183        for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
184                  -1, -2, -5, -23, -67891, -41**50]:
185            for n in range(-10, 10):
186                self.check_truediv(2**DBL_MANT_DIG*m + n, m)
187
188        # test round-half-to-even, subnormal result
189        for n in range(-20, 20):
190            self.check_truediv(n, 2**1076)
191
192        # largeish random divisions: a/b where |a| <= |b| <=
193        # 2*|a|; |ans| is between 0.5 and 1.0, so error should
194        # always be bounded by 2**-54 with equality possible only
195        # if the least significant bit of q=ans*2**53 is zero.
196        for M in [10**10, 10**100, 10**1000]:
197            for i in range(1000):
198                a = random.randrange(1, M)
199                b = random.randrange(a, 2*a+1)
200                self.check_truediv(a, b)
201                self.check_truediv(-a, b)
202                self.check_truediv(a, -b)
203                self.check_truediv(-a, -b)
204
205        # and some (genuinely) random tests
206        for _ in range(10000):
207            a_bits = random.randrange(1000)
208            b_bits = random.randrange(1, 1000)
209            x = random.randrange(2**a_bits)
210            y = random.randrange(1, 2**b_bits)
211            self.check_truediv(x, y)
212            self.check_truediv(x, -y)
213            self.check_truediv(-x, y)
214            self.check_truediv(-x, -y)
215
216
217def test_main():
218    run_unittest(TrueDivisionTests)
219
220if __name__ == "__main__":
221    test_main()
222