• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1.. _sortinghowto:
2
3Sorting HOW TO
4**************
5
6:Author: Andrew Dalke and Raymond Hettinger
7:Release: 0.1
8
9
10Python lists have a built-in :meth:`list.sort` method that modifies the list
11in-place.  There is also a :func:`sorted` built-in function that builds a new
12sorted list from an iterable.
13
14In this document, we explore the various techniques for sorting data using Python.
15
16
17Sorting Basics
18==============
19
20A simple ascending sort is very easy: just call the :func:`sorted` function. It
21returns a new sorted list::
22
23    >>> sorted([5, 2, 3, 1, 4])
24    [1, 2, 3, 4, 5]
25
26You can also use the :meth:`list.sort` method. It modifies the list
27in-place (and returns ``None`` to avoid confusion). Usually it's less convenient
28than :func:`sorted` - but if you don't need the original list, it's slightly
29more efficient.
30
31    >>> a = [5, 2, 3, 1, 4]
32    >>> a.sort()
33    >>> a
34    [1, 2, 3, 4, 5]
35
36Another difference is that the :meth:`list.sort` method is only defined for
37lists. In contrast, the :func:`sorted` function accepts any iterable.
38
39    >>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
40    [1, 2, 3, 4, 5]
41
42Key Functions
43=============
44
45Both :meth:`list.sort` and :func:`sorted` have a *key* parameter to specify a
46function to be called on each list element prior to making comparisons.
47
48For example, here's a case-insensitive string comparison:
49
50    >>> sorted("This is a test string from Andrew".split(), key=str.lower)
51    ['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
52
53The value of the *key* parameter should be a function that takes a single argument
54and returns a key to use for sorting purposes. This technique is fast because
55the key function is called exactly once for each input record.
56
57A common pattern is to sort complex objects using some of the object's indices
58as keys. For example:
59
60    >>> student_tuples = [
61    ...     ('john', 'A', 15),
62    ...     ('jane', 'B', 12),
63    ...     ('dave', 'B', 10),
64    ... ]
65    >>> sorted(student_tuples, key=lambda student: student[2])   # sort by age
66    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
67
68The same technique works for objects with named attributes. For example:
69
70    >>> class Student:
71    ...     def __init__(self, name, grade, age):
72    ...         self.name = name
73    ...         self.grade = grade
74    ...         self.age = age
75    ...     def __repr__(self):
76    ...         return repr((self.name, self.grade, self.age))
77
78    >>> student_objects = [
79    ...     Student('john', 'A', 15),
80    ...     Student('jane', 'B', 12),
81    ...     Student('dave', 'B', 10),
82    ... ]
83    >>> sorted(student_objects, key=lambda student: student.age)   # sort by age
84    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
85
86Operator Module Functions
87=========================
88
89The key-function patterns shown above are very common, so Python provides
90convenience functions to make accessor functions easier and faster. The
91:mod:`operator` module has :func:`~operator.itemgetter`,
92:func:`~operator.attrgetter`, and a :func:`~operator.methodcaller` function.
93
94Using those functions, the above examples become simpler and faster:
95
96    >>> from operator import itemgetter, attrgetter
97
98    >>> sorted(student_tuples, key=itemgetter(2))
99    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
100
101    >>> sorted(student_objects, key=attrgetter('age'))
102    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
103
104The operator module functions allow multiple levels of sorting. For example, to
105sort by *grade* then by *age*:
106
107    >>> sorted(student_tuples, key=itemgetter(1,2))
108    [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
109
110    >>> sorted(student_objects, key=attrgetter('grade', 'age'))
111    [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
112
113Ascending and Descending
114========================
115
116Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a
117boolean value. This is used to flag descending sorts. For example, to get the
118student data in reverse *age* order:
119
120    >>> sorted(student_tuples, key=itemgetter(2), reverse=True)
121    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
122
123    >>> sorted(student_objects, key=attrgetter('age'), reverse=True)
124    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
125
126Sort Stability and Complex Sorts
127================================
128
129Sorts are guaranteed to be `stable
130<https://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that
131when multiple records have the same key, their original order is preserved.
132
133    >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
134    >>> sorted(data, key=itemgetter(0))
135    [('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
136
137Notice how the two records for *blue* retain their original order so that
138``('blue', 1)`` is guaranteed to precede ``('blue', 2)``.
139
140This wonderful property lets you build complex sorts in a series of sorting
141steps. For example, to sort the student data by descending *grade* and then
142ascending *age*, do the *age* sort first and then sort again using *grade*:
143
144    >>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key
145    >>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending
146    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
147
148The `Timsort <https://en.wikipedia.org/wiki/Timsort>`_ algorithm used in Python
149does multiple sorts efficiently because it can take advantage of any ordering
150already present in a dataset.
151
152The Old Way Using Decorate-Sort-Undecorate
153==========================================
154
155This idiom is called Decorate-Sort-Undecorate after its three steps:
156
157* First, the initial list is decorated with new values that control the sort order.
158
159* Second, the decorated list is sorted.
160
161* Finally, the decorations are removed, creating a list that contains only the
162  initial values in the new order.
163
164For example, to sort the student data by *grade* using the DSU approach:
165
166    >>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
167    >>> decorated.sort()
168    >>> [student for grade, i, student in decorated]               # undecorate
169    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
170
171This idiom works because tuples are compared lexicographically; the first items
172are compared; if they are the same then the second items are compared, and so
173on.
174
175It is not strictly necessary in all cases to include the index *i* in the
176decorated list, but including it gives two benefits:
177
178* The sort is stable -- if two items have the same key, their order will be
179  preserved in the sorted list.
180
181* The original items do not have to be comparable because the ordering of the
182  decorated tuples will be determined by at most the first two items. So for
183  example the original list could contain complex numbers which cannot be sorted
184  directly.
185
186Another name for this idiom is
187`Schwartzian transform <https://en.wikipedia.org/wiki/Schwartzian_transform>`_\,
188after Randal L. Schwartz, who popularized it among Perl programmers.
189
190Now that Python sorting provides key-functions, this technique is not often needed.
191
192
193The Old Way Using the *cmp* Parameter
194=====================================
195
196Many constructs given in this HOWTO assume Python 2.4 or later. Before that,
197there was no :func:`sorted` builtin and :meth:`list.sort` took no keyword
198arguments. Instead, all of the Py2.x versions supported a *cmp* parameter to
199handle user specified comparison functions.
200
201In Py3.0, the *cmp* parameter was removed entirely (as part of a larger effort to
202simplify and unify the language, eliminating the conflict between rich
203comparisons and the :meth:`__cmp__` magic method).
204
205In Py2.x, sort allowed an optional function which can be called for doing the
206comparisons. That function should take two arguments to be compared and then
207return a negative value for less-than, return zero if they are equal, or return
208a positive value for greater-than. For example, we can do:
209
210    >>> def numeric_compare(x, y):
211    ...     return x - y
212    >>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) # doctest: +SKIP
213    [1, 2, 3, 4, 5]
214
215Or you can reverse the order of comparison with:
216
217    >>> def reverse_numeric(x, y):
218    ...     return y - x
219    >>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) # doctest: +SKIP
220    [5, 4, 3, 2, 1]
221
222When porting code from Python 2.x to 3.x, the situation can arise when you have
223the user supplying a comparison function and you need to convert that to a key
224function. The following wrapper makes that easy to do::
225
226    def cmp_to_key(mycmp):
227        'Convert a cmp= function into a key= function'
228        class K:
229            def __init__(self, obj, *args):
230                self.obj = obj
231            def __lt__(self, other):
232                return mycmp(self.obj, other.obj) < 0
233            def __gt__(self, other):
234                return mycmp(self.obj, other.obj) > 0
235            def __eq__(self, other):
236                return mycmp(self.obj, other.obj) == 0
237            def __le__(self, other):
238                return mycmp(self.obj, other.obj) <= 0
239            def __ge__(self, other):
240                return mycmp(self.obj, other.obj) >= 0
241            def __ne__(self, other):
242                return mycmp(self.obj, other.obj) != 0
243        return K
244
245To convert to a key function, just wrap the old comparison function:
246
247.. testsetup::
248
249    from functools import cmp_to_key
250
251.. doctest::
252
253    >>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
254    [5, 4, 3, 2, 1]
255
256In Python 3.2, the :func:`functools.cmp_to_key` function was added to the
257:mod:`functools` module in the standard library.
258
259Odd and Ends
260============
261
262* For locale aware sorting, use :func:`locale.strxfrm` for a key function or
263  :func:`locale.strcoll` for a comparison function.
264
265* The *reverse* parameter still maintains sort stability (so that records with
266  equal keys retain the original order). Interestingly, that effect can be
267  simulated without the parameter by using the builtin :func:`reversed` function
268  twice:
269
270    >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
271    >>> standard_way = sorted(data, key=itemgetter(0), reverse=True)
272    >>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0))))
273    >>> assert standard_way == double_reversed
274    >>> standard_way
275    [('red', 1), ('red', 2), ('blue', 1), ('blue', 2)]
276
277* The sort routines are guaranteed to use :meth:`__lt__` when making comparisons
278  between two objects. So, it is easy to add a standard sort order to a class by
279  defining an :meth:`__lt__` method::
280
281    >>> Student.__lt__ = lambda self, other: self.age < other.age
282    >>> sorted(student_objects)
283    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
284
285* Key functions need not depend directly on the objects being sorted. A key
286  function can also access external resources. For instance, if the student grades
287  are stored in a dictionary, they can be used to sort a separate list of student
288  names:
289
290    >>> students = ['dave', 'john', 'jane']
291    >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
292    >>> sorted(students, key=newgrades.__getitem__)
293    ['jane', 'dave', 'john']
294