1 /*
2 * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28
29 #include "mpdecimal.h"
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <limits.h>
34 #include <assert.h>
35 #include "bits.h"
36 #include "constants.h"
37 #include "typearith.h"
38 #include "transpose.h"
39
40
41 #define BUFSIZE 4096
42 #define SIDE 128
43
44
45 /* Bignum: The transpose functions are used for very large transforms
46 in sixstep.c and fourstep.c. */
47
48
49 /* Definition of the matrix transpose */
50 void
std_trans(mpd_uint_t dest[],mpd_uint_t src[],mpd_size_t rows,mpd_size_t cols)51 std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
52 {
53 mpd_size_t idest, isrc;
54 mpd_size_t r, c;
55
56 for (r = 0; r < rows; r++) {
57 isrc = r * cols;
58 idest = r;
59 for (c = 0; c < cols; c++) {
60 dest[idest] = src[isrc];
61 isrc += 1;
62 idest += rows;
63 }
64 }
65 }
66
67 /*
68 * Swap half-rows of 2^n * (2*2^n) matrix.
69 * FORWARD_CYCLE: even/odd permutation of the halfrows.
70 * BACKWARD_CYCLE: reverse the even/odd permutation.
71 */
72 static int
swap_halfrows_pow2(mpd_uint_t * matrix,mpd_size_t rows,mpd_size_t cols,int dir)73 swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
74 {
75 mpd_uint_t buf1[BUFSIZE];
76 mpd_uint_t buf2[BUFSIZE];
77 mpd_uint_t *readbuf, *writebuf, *hp;
78 mpd_size_t *done, dbits;
79 mpd_size_t b = BUFSIZE, stride;
80 mpd_size_t hn, hmax; /* halfrow number */
81 mpd_size_t m, r=0;
82 mpd_size_t offset;
83 mpd_size_t next;
84
85
86 assert(cols == mul_size_t(2, rows));
87
88 if (dir == FORWARD_CYCLE) {
89 r = rows;
90 }
91 else if (dir == BACKWARD_CYCLE) {
92 r = 2;
93 }
94 else {
95 abort(); /* GCOV_NOT_REACHED */
96 }
97
98 m = cols - 1;
99 hmax = rows; /* cycles start at odd halfrows */
100 dbits = 8 * sizeof *done;
101 if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
102 return 0;
103 }
104
105 for (hn = 1; hn <= hmax; hn += 2) {
106
107 if (done[hn/dbits] & mpd_bits[hn%dbits]) {
108 continue;
109 }
110
111 readbuf = buf1; writebuf = buf2;
112
113 for (offset = 0; offset < cols/2; offset += b) {
114
115 stride = (offset + b < cols/2) ? b : cols/2-offset;
116
117 hp = matrix + hn*cols/2;
118 memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
119 pointerswap(&readbuf, &writebuf);
120
121 next = mulmod_size_t(hn, r, m);
122 hp = matrix + next*cols/2;
123
124 while (next != hn) {
125
126 memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
127 memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
128 pointerswap(&readbuf, &writebuf);
129
130 done[next/dbits] |= mpd_bits[next%dbits];
131
132 next = mulmod_size_t(next, r, m);
133 hp = matrix + next*cols/2;
134
135 }
136
137 memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
138
139 done[hn/dbits] |= mpd_bits[hn%dbits];
140 }
141 }
142
143 mpd_free(done);
144 return 1;
145 }
146
147 /* In-place transpose of a square matrix */
148 static inline void
squaretrans(mpd_uint_t * buf,mpd_size_t cols)149 squaretrans(mpd_uint_t *buf, mpd_size_t cols)
150 {
151 mpd_uint_t tmp;
152 mpd_size_t idest, isrc;
153 mpd_size_t r, c;
154
155 for (r = 0; r < cols; r++) {
156 c = r+1;
157 isrc = r*cols + c;
158 idest = c*cols + r;
159 for (c = r+1; c < cols; c++) {
160 tmp = buf[isrc];
161 buf[isrc] = buf[idest];
162 buf[idest] = tmp;
163 isrc += 1;
164 idest += cols;
165 }
166 }
167 }
168
169 /*
170 * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
171 * square blocks with side length 'SIDE'. First, the blocks are transposed,
172 * then a square transposition is done on each individual block.
173 */
174 static void
squaretrans_pow2(mpd_uint_t * matrix,mpd_size_t size)175 squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
176 {
177 mpd_uint_t buf1[SIDE*SIDE];
178 mpd_uint_t buf2[SIDE*SIDE];
179 mpd_uint_t *to, *from;
180 mpd_size_t b = size;
181 mpd_size_t r, c;
182 mpd_size_t i;
183
184 while (b > SIDE) b >>= 1;
185
186 for (r = 0; r < size; r += b) {
187
188 for (c = r; c < size; c += b) {
189
190 from = matrix + r*size + c;
191 to = buf1;
192 for (i = 0; i < b; i++) {
193 memcpy(to, from, b*(sizeof *to));
194 from += size;
195 to += b;
196 }
197 squaretrans(buf1, b);
198
199 if (r == c) {
200 to = matrix + r*size + c;
201 from = buf1;
202 for (i = 0; i < b; i++) {
203 memcpy(to, from, b*(sizeof *to));
204 from += b;
205 to += size;
206 }
207 continue;
208 }
209 else {
210 from = matrix + c*size + r;
211 to = buf2;
212 for (i = 0; i < b; i++) {
213 memcpy(to, from, b*(sizeof *to));
214 from += size;
215 to += b;
216 }
217 squaretrans(buf2, b);
218
219 to = matrix + c*size + r;
220 from = buf1;
221 for (i = 0; i < b; i++) {
222 memcpy(to, from, b*(sizeof *to));
223 from += b;
224 to += size;
225 }
226
227 to = matrix + r*size + c;
228 from = buf2;
229 for (i = 0; i < b; i++) {
230 memcpy(to, from, b*(sizeof *to));
231 from += b;
232 to += size;
233 }
234 }
235 }
236 }
237
238 }
239
240 /*
241 * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
242 * or a (2*2^n) x 2^n matrix.
243 */
244 int
transpose_pow2(mpd_uint_t * matrix,mpd_size_t rows,mpd_size_t cols)245 transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
246 {
247 mpd_size_t size = mul_size_t(rows, cols);
248
249 assert(ispower2(rows));
250 assert(ispower2(cols));
251
252 if (cols == rows) {
253 squaretrans_pow2(matrix, rows);
254 }
255 else if (cols == mul_size_t(2, rows)) {
256 if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
257 return 0;
258 }
259 squaretrans_pow2(matrix, rows);
260 squaretrans_pow2(matrix+(size/2), rows);
261 }
262 else if (rows == mul_size_t(2, cols)) {
263 squaretrans_pow2(matrix, cols);
264 squaretrans_pow2(matrix+(size/2), cols);
265 if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
266 return 0;
267 }
268 }
269 else {
270 abort(); /* GCOV_NOT_REACHED */
271 }
272
273 return 1;
274 }
275
276
277