• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html><body>
2<style>
3
4body, h1, h2, h3, div, span, p, pre, a {
5  margin: 0;
6  padding: 0;
7  border: 0;
8  font-weight: inherit;
9  font-style: inherit;
10  font-size: 100%;
11  font-family: inherit;
12  vertical-align: baseline;
13}
14
15body {
16  font-size: 13px;
17  padding: 1em;
18}
19
20h1 {
21  font-size: 26px;
22  margin-bottom: 1em;
23}
24
25h2 {
26  font-size: 24px;
27  margin-bottom: 1em;
28}
29
30h3 {
31  font-size: 20px;
32  margin-bottom: 1em;
33  margin-top: 1em;
34}
35
36pre, code {
37  line-height: 1.5;
38  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
39}
40
41pre {
42  margin-top: 0.5em;
43}
44
45h1, h2, h3, p {
46  font-family: Arial, sans serif;
47}
48
49h1, h2, h3 {
50  border-bottom: solid #CCC 1px;
51}
52
53.toc_element {
54  margin-top: 0.5em;
55}
56
57.firstline {
58  margin-left: 2 em;
59}
60
61.method  {
62  margin-top: 1em;
63  border: solid 1px #CCC;
64  padding: 1em;
65  background: #EEE;
66}
67
68.details {
69  font-weight: bold;
70  font-size: 14px;
71}
72
73</style>
74
75<h1><a href="prediction_v1_4.html">Prediction API</a> . <a href="prediction_v1_4.trainedmodels.html">trainedmodels</a></h1>
76<h2>Instance Methods</h2>
77<p class="toc_element">
78  <code><a href="#delete">delete(id)</a></code></p>
79<p class="firstline">Delete a trained model.</p>
80<p class="toc_element">
81  <code><a href="#get">get(id)</a></code></p>
82<p class="firstline">Check training status of your model.</p>
83<p class="toc_element">
84  <code><a href="#insert">insert(body)</a></code></p>
85<p class="firstline">Begin training your model.</p>
86<p class="toc_element">
87  <code><a href="#predict">predict(id, body)</a></code></p>
88<p class="firstline">Submit model id and request a prediction</p>
89<p class="toc_element">
90  <code><a href="#update">update(id, body)</a></code></p>
91<p class="firstline">Add new data to a trained model.</p>
92<h3>Method Details</h3>
93<div class="method">
94    <code class="details" id="delete">delete(id)</code>
95  <pre>Delete a trained model.
96
97Args:
98  id: string, The unique name for the predictive model. (required)
99</pre>
100</div>
101
102<div class="method">
103    <code class="details" id="get">get(id)</code>
104  <pre>Check training status of your model.
105
106Args:
107  id: string, The unique name for the predictive model. (required)
108
109Returns:
110  An object of the form:
111
112    {
113      "kind": "prediction#training", # What kind of resource this is.
114      "storageDataLocation": "A String", # Google storage location of the training data file.
115      "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
116      "dataAnalysis": { # Data Analysis.
117        "warnings": [
118          "A String",
119        ],
120      },
121      "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
122      "modelInfo": { # Model metadata.
123        "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
124          "a_key": 3.14,
125        },
126        "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
127        "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
128          "a_key": {
129            "a_key": 3.14,
130          },
131        },
132        "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
133        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
134        "numberInstances": "A String", # Number of valid data instances used in the trained model.
135        "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
136        "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
137      },
138      "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
139      "id": "A String", # The unique name for the predictive model.
140      "selfLink": "A String", # A URL to re-request this resource.
141      "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
142        { # Class label (string).
143          "a_key": 3.14,
144        },
145      ],
146    }</pre>
147</div>
148
149<div class="method">
150    <code class="details" id="insert">insert(body)</code>
151  <pre>Begin training your model.
152
153Args:
154  body: object, The request body. (required)
155    The object takes the form of:
156
157{
158    "kind": "prediction#training", # What kind of resource this is.
159    "storageDataLocation": "A String", # Google storage location of the training data file.
160    "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
161    "dataAnalysis": { # Data Analysis.
162      "warnings": [
163        "A String",
164      ],
165    },
166    "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
167    "modelInfo": { # Model metadata.
168      "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
169        "a_key": 3.14,
170      },
171      "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
172      "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
173        "a_key": {
174          "a_key": 3.14,
175        },
176      },
177      "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
178      "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
179      "numberInstances": "A String", # Number of valid data instances used in the trained model.
180      "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
181      "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
182    },
183    "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
184    "id": "A String", # The unique name for the predictive model.
185    "selfLink": "A String", # A URL to re-request this resource.
186    "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
187      { # Class label (string).
188        "a_key": 3.14,
189      },
190    ],
191  }
192
193
194Returns:
195  An object of the form:
196
197    {
198      "kind": "prediction#training", # What kind of resource this is.
199      "storageDataLocation": "A String", # Google storage location of the training data file.
200      "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
201      "dataAnalysis": { # Data Analysis.
202        "warnings": [
203          "A String",
204        ],
205      },
206      "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
207      "modelInfo": { # Model metadata.
208        "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
209          "a_key": 3.14,
210        },
211        "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
212        "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
213          "a_key": {
214            "a_key": 3.14,
215          },
216        },
217        "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
218        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
219        "numberInstances": "A String", # Number of valid data instances used in the trained model.
220        "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
221        "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
222      },
223      "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
224      "id": "A String", # The unique name for the predictive model.
225      "selfLink": "A String", # A URL to re-request this resource.
226      "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
227        { # Class label (string).
228          "a_key": 3.14,
229        },
230      ],
231    }</pre>
232</div>
233
234<div class="method">
235    <code class="details" id="predict">predict(id, body)</code>
236  <pre>Submit model id and request a prediction
237
238Args:
239  id: string, The unique name for the predictive model. (required)
240  body: object, The request body. (required)
241    The object takes the form of:
242
243{
244    "input": { # Input to the model for a prediction
245      "csvInstance": [ # A list of input features, these can be strings or doubles.
246        "",
247      ],
248    },
249  }
250
251
252Returns:
253  An object of the form:
254
255    {
256    "kind": "prediction#output", # What kind of resource this is.
257    "outputLabel": "A String", # The most likely class label [Categorical models only].
258    "id": "A String", # The unique name for the predictive model.
259    "outputMulti": [ # A list of class labels with their estimated probabilities [Categorical models only].
260      {
261        "score": 3.14, # The probability of the class label.
262        "label": "A String", # The class label.
263      },
264    ],
265    "outputValue": 3.14, # The estimated regression value [Regression models only].
266    "selfLink": "A String", # A URL to re-request this resource.
267  }</pre>
268</div>
269
270<div class="method">
271    <code class="details" id="update">update(id, body)</code>
272  <pre>Add new data to a trained model.
273
274Args:
275  id: string, The unique name for the predictive model. (required)
276  body: object, The request body. (required)
277    The object takes the form of:
278
279{
280    "output": "A String", # The generic output value - could be regression value or class label
281    "csvInstance": [ # The input features for this instance
282      "",
283    ],
284    "label": "A String", # The class label of this instance
285  }
286
287
288Returns:
289  An object of the form:
290
291    {
292      "kind": "prediction#training", # What kind of resource this is.
293      "storageDataLocation": "A String", # Google storage location of the training data file.
294      "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
295      "dataAnalysis": { # Data Analysis.
296        "warnings": [
297          "A String",
298        ],
299      },
300      "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
301      "modelInfo": { # Model metadata.
302        "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
303          "a_key": 3.14,
304        },
305        "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
306        "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
307          "a_key": {
308            "a_key": 3.14,
309          },
310        },
311        "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
312        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
313        "numberInstances": "A String", # Number of valid data instances used in the trained model.
314        "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
315        "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
316      },
317      "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
318      "id": "A String", # The unique name for the predictive model.
319      "selfLink": "A String", # A URL to re-request this resource.
320      "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
321        { # Class label (string).
322          "a_key": 3.14,
323        },
324      ],
325    }</pre>
326</div>
327
328</body></html>