• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html><body>
2<style>
3
4body, h1, h2, h3, div, span, p, pre, a {
5  margin: 0;
6  padding: 0;
7  border: 0;
8  font-weight: inherit;
9  font-style: inherit;
10  font-size: 100%;
11  font-family: inherit;
12  vertical-align: baseline;
13}
14
15body {
16  font-size: 13px;
17  padding: 1em;
18}
19
20h1 {
21  font-size: 26px;
22  margin-bottom: 1em;
23}
24
25h2 {
26  font-size: 24px;
27  margin-bottom: 1em;
28}
29
30h3 {
31  font-size: 20px;
32  margin-bottom: 1em;
33  margin-top: 1em;
34}
35
36pre, code {
37  line-height: 1.5;
38  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
39}
40
41pre {
42  margin-top: 0.5em;
43}
44
45h1, h2, h3, p {
46  font-family: Arial, sans serif;
47}
48
49h1, h2, h3 {
50  border-bottom: solid #CCC 1px;
51}
52
53.toc_element {
54  margin-top: 0.5em;
55}
56
57.firstline {
58  margin-left: 2 em;
59}
60
61.method  {
62  margin-top: 1em;
63  border: solid 1px #CCC;
64  padding: 1em;
65  background: #EEE;
66}
67
68.details {
69  font-weight: bold;
70  font-size: 14px;
71}
72
73</style>
74
75<h1><a href="vision_v1.html">Google Cloud Vision API</a> . <a href="vision_v1.images.html">images</a></h1>
76<h2>Instance Methods</h2>
77<p class="toc_element">
78  <code><a href="#annotate">annotate(body, x__xgafv=None)</a></code></p>
79<p class="firstline">Run image detection and annotation for a batch of images.</p>
80<h3>Method Details</h3>
81<div class="method">
82    <code class="details" id="annotate">annotate(body, x__xgafv=None)</code>
83  <pre>Run image detection and annotation for a batch of images.
84
85Args:
86  body: object, The request body. (required)
87    The object takes the form of:
88
89{ # Multiple image annotation requests are batched into a single service call.
90    "requests": [ # Individual image annotation requests for this batch.
91      { # Request for performing Google Cloud Vision API tasks over a user-provided
92          # image, with user-requested features.
93        "imageContext": { # Image context and/or feature-specific parameters. # Additional context that may accompany the image.
94          "latLongRect": { # Rectangle determined by min and max `LatLng` pairs. # lat/long rectangle that specifies the location of the image.
95            "minLatLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Min lat/long pair.
96                # of doubles representing degrees latitude and degrees longitude. Unless
97                # specified otherwise, this must conform to the
98                # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
99                # standard</a>. Values must be within normalized ranges.
100                #
101                # Example of normalization code in Python:
102                #
103                #     def NormalizeLongitude(longitude):
104                #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
105                #       q, r = divmod(longitude, 360.0)
106                #       if r > 180.0 or (r == 180.0 and q <= -1.0):
107                #         return r - 360.0
108                #       return r
109                #
110                #     def NormalizeLatLng(latitude, longitude):
111                #       """Wraps decimal degrees latitude and longitude to
112                #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
113                #       r = latitude % 360.0
114                #       if r <= 90.0:
115                #         return r, NormalizeLongitude(longitude)
116                #       elif r >= 270.0:
117                #         return r - 360, NormalizeLongitude(longitude)
118                #       else:
119                #         return 180 - r, NormalizeLongitude(longitude + 180.0)
120                #
121                #     assert 180.0 == NormalizeLongitude(180.0)
122                #     assert -180.0 == NormalizeLongitude(-180.0)
123                #     assert -179.0 == NormalizeLongitude(181.0)
124                #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
125                #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
126                #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
127                #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
128                #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
129                #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
130                #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
131                #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
132                #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
133                #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
134              "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
135              "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
136            },
137            "maxLatLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Max lat/long pair.
138                # of doubles representing degrees latitude and degrees longitude. Unless
139                # specified otherwise, this must conform to the
140                # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
141                # standard</a>. Values must be within normalized ranges.
142                #
143                # Example of normalization code in Python:
144                #
145                #     def NormalizeLongitude(longitude):
146                #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
147                #       q, r = divmod(longitude, 360.0)
148                #       if r > 180.0 or (r == 180.0 and q <= -1.0):
149                #         return r - 360.0
150                #       return r
151                #
152                #     def NormalizeLatLng(latitude, longitude):
153                #       """Wraps decimal degrees latitude and longitude to
154                #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
155                #       r = latitude % 360.0
156                #       if r <= 90.0:
157                #         return r, NormalizeLongitude(longitude)
158                #       elif r >= 270.0:
159                #         return r - 360, NormalizeLongitude(longitude)
160                #       else:
161                #         return 180 - r, NormalizeLongitude(longitude + 180.0)
162                #
163                #     assert 180.0 == NormalizeLongitude(180.0)
164                #     assert -180.0 == NormalizeLongitude(-180.0)
165                #     assert -179.0 == NormalizeLongitude(181.0)
166                #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
167                #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
168                #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
169                #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
170                #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
171                #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
172                #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
173                #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
174                #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
175                #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
176              "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
177              "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
178            },
179          },
180          "languageHints": [ # List of languages to use for TEXT_DETECTION. In most cases, an empty value
181              # yields the best results since it enables automatic language detection. For
182              # languages based on the Latin alphabet, setting `language_hints` is not
183              # needed. In rare cases, when the language of the text in the image is known,
184              # setting a hint will help get better results (although it will be a
185              # significant hindrance if the hint is wrong). Text detection returns an
186              # error if one or more of the specified languages is not one of the
187              # [supported languages](/vision/docs/languages).
188            "A String",
189          ],
190          "cropHintsParams": { # Parameters for crop hints annotation request. # Parameters for crop hints annotation request.
191            "aspectRatios": [ # Aspect ratios in floats, representing the ratio of the width to the height
192                # of the image. For example, if the desired aspect ratio is 4/3, the
193                # corresponding float value should be 1.33333.  If not specified, the
194                # best possible crop is returned. The number of provided aspect ratios is
195                # limited to a maximum of 16; any aspect ratios provided after the 16th are
196                # ignored.
197              3.14,
198            ],
199          },
200        },
201        "image": { # Client image to perform Google Cloud Vision API tasks over. # The image to be processed.
202          "content": "A String", # Image content, represented as a stream of bytes.
203              # Note: as with all `bytes` fields, protobuffers use a pure binary
204              # representation, whereas JSON representations use base64.
205          "source": { # External image source (Google Cloud Storage image location). # Google Cloud Storage image location. If both `content` and `source`
206              # are provided for an image, `content` takes precedence and is
207              # used to perform the image annotation request.
208            "gcsImageUri": "A String", # NOTE: For new code `image_uri` below is preferred.
209                # Google Cloud Storage image URI, which must be in the following form:
210                # `gs://bucket_name/object_name` (for details, see
211                # [Google Cloud Storage Request
212                # URIs](https://cloud.google.com/storage/docs/reference-uris)).
213                # NOTE: Cloud Storage object versioning is not supported.
214            "imageUri": "A String", # Image URI which supports:
215                # 1) Google Cloud Storage image URI, which must be in the following form:
216                # `gs://bucket_name/object_name` (for details, see
217                # [Google Cloud Storage Request
218                # URIs](https://cloud.google.com/storage/docs/reference-uris)).
219                # NOTE: Cloud Storage object versioning is not supported.
220                # 2) Publicly accessible image HTTP/HTTPS URL.
221                # This is preferred over the legacy `gcs_image_uri` above. When both
222                # `gcs_image_uri` and `image_uri` are specified, `image_uri` takes
223                # precedence.
224          },
225        },
226        "features": [ # Requested features.
227          { # Users describe the type of Google Cloud Vision API tasks to perform over
228              # images by using *Feature*s. Each Feature indicates a type of image
229              # detection task to perform. Features encode the Cloud Vision API
230              # vertical to operate on and the number of top-scoring results to return.
231            "type": "A String", # The feature type.
232            "maxResults": 42, # Maximum number of results of this type.
233          },
234        ],
235      },
236    ],
237  }
238
239  x__xgafv: string, V1 error format.
240    Allowed values
241      1 - v1 error format
242      2 - v2 error format
243
244Returns:
245  An object of the form:
246
247    { # Response to a batch image annotation request.
248    "responses": [ # Individual responses to image annotation requests within the batch.
249      { # Response to an image annotation request.
250        "safeSearchAnnotation": { # Set of features pertaining to the image, computed by computer vision # If present, safe-search annotation has completed successfully.
251            # methods over safe-search verticals (for example, adult, spoof, medical,
252            # violence).
253          "medical": "A String", # Likelihood that this is a medical image.
254          "spoof": "A String", # Spoof likelihood. The likelihood that an modification
255              # was made to the image's canonical version to make it appear
256              # funny or offensive.
257          "violence": "A String", # Violence likelihood.
258          "adult": "A String", # Represents the adult content likelihood for the image.
259        },
260        "textAnnotations": [ # If present, text (OCR) detection has completed successfully.
261          { # Set of detected entity features.
262            "confidence": 3.14, # The accuracy of the entity detection in an image.
263                # For example, for an image in which the "Eiffel Tower" entity is detected,
264                # this field represents the confidence that there is a tower in the query
265                # image. Range [0, 1].
266            "description": "A String", # Entity textual description, expressed in its `locale` language.
267            "locale": "A String", # The language code for the locale in which the entity textual
268                # `description` is expressed.
269            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
270                # image. For example, the relevancy of "tower" is likely higher to an image
271                # containing the detected "Eiffel Tower" than to an image containing a
272                # detected distant towering building, even though the confidence that
273                # there is a tower in each image may be the same. Range [0, 1].
274            "mid": "A String", # Opaque entity ID. Some IDs may be available in
275                # [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
276            "locations": [ # The location information for the detected entity. Multiple
277                # `LocationInfo` elements can be present because one location may
278                # indicate the location of the scene in the image, and another location
279                # may indicate the location of the place where the image was taken.
280                # Location information is usually present for landmarks.
281              { # Detected entity location information.
282                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # lat/long location coordinates.
283                    # of doubles representing degrees latitude and degrees longitude. Unless
284                    # specified otherwise, this must conform to the
285                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
286                    # standard</a>. Values must be within normalized ranges.
287                    #
288                    # Example of normalization code in Python:
289                    #
290                    #     def NormalizeLongitude(longitude):
291                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
292                    #       q, r = divmod(longitude, 360.0)
293                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
294                    #         return r - 360.0
295                    #       return r
296                    #
297                    #     def NormalizeLatLng(latitude, longitude):
298                    #       """Wraps decimal degrees latitude and longitude to
299                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
300                    #       r = latitude % 360.0
301                    #       if r <= 90.0:
302                    #         return r, NormalizeLongitude(longitude)
303                    #       elif r >= 270.0:
304                    #         return r - 360, NormalizeLongitude(longitude)
305                    #       else:
306                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
307                    #
308                    #     assert 180.0 == NormalizeLongitude(180.0)
309                    #     assert -180.0 == NormalizeLongitude(-180.0)
310                    #     assert -179.0 == NormalizeLongitude(181.0)
311                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
312                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
313                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
314                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
315                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
316                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
317                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
318                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
319                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
320                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
321                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
322                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
323                },
324              },
325            ],
326            "score": 3.14, # Overall score of the result. Range [0, 1].
327            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Currently not produced
328                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
329                # are produced for the entire text detected in an image region, followed by
330                # `boundingPoly`s for each word within the detected text.
331              "vertices": [ # The bounding polygon vertices.
332                { # A vertex represents a 2D point in the image.
333                    # NOTE: the vertex coordinates are in the same scale as the original image.
334                  "y": 42, # Y coordinate.
335                  "x": 42, # X coordinate.
336                },
337              ],
338            },
339            "properties": [ # Some entities may have optional user-supplied `Property` (name/value)
340                # fields, such a score or string that qualifies the entity.
341              { # A `Property` consists of a user-supplied name/value pair.
342                "uint64Value": "A String", # Value of numeric properties.
343                "name": "A String", # Name of the property.
344                "value": "A String", # Value of the property.
345              },
346            ],
347          },
348        ],
349        "webDetection": { # Relevant information for the image from the Internet. # If present, web detection has completed successfully.
350          "webEntities": [ # Deduced entities from similar images on the Internet.
351            { # Entity deduced from similar images on the Internet.
352              "entityId": "A String", # Opaque entity ID.
353              "score": 3.14, # Overall relevancy score for the entity.
354                  # Not normalized and not comparable across different image queries.
355              "description": "A String", # Canonical description of the entity, in English.
356            },
357          ],
358          "pagesWithMatchingImages": [ # Web pages containing the matching images from the Internet.
359            { # Metadata for web pages.
360              "url": "A String", # The result web page URL.
361              "score": 3.14, # Overall relevancy score for the web page.
362                  # Not normalized and not comparable across different image queries.
363            },
364          ],
365          "visuallySimilarImages": [ # The visually similar image results.
366            { # Metadata for online images.
367              "url": "A String", # The result image URL.
368              "score": 3.14, # Overall relevancy score for the image.
369                  # Not normalized and not comparable across different image queries.
370            },
371          ],
372          "partialMatchingImages": [ # Partial matching images from the Internet.
373              # Those images are similar enough to share some key-point features. For
374              # example an original image will likely have partial matching for its crops.
375            { # Metadata for online images.
376              "url": "A String", # The result image URL.
377              "score": 3.14, # Overall relevancy score for the image.
378                  # Not normalized and not comparable across different image queries.
379            },
380          ],
381          "fullMatchingImages": [ # Fully matching images from the Internet.
382              # Can include resized copies of the query image.
383            { # Metadata for online images.
384              "url": "A String", # The result image URL.
385              "score": 3.14, # Overall relevancy score for the image.
386                  # Not normalized and not comparable across different image queries.
387            },
388          ],
389        },
390        "fullTextAnnotation": { # TextAnnotation contains a structured representation of OCR extracted text. # If present, text (OCR) detection or document (OCR) text detection has
391            # completed successfully.
392            # This annotation provides the structural hierarchy for the OCR detected
393            # text.
394            # The hierarchy of an OCR extracted text structure is like this:
395            #     TextAnnotation -> Page -> Block -> Paragraph -> Word -> Symbol
396            # Each structural component, starting from Page, may further have their own
397            # properties. Properties describe detected languages, breaks etc.. Please
398            # refer to the google.cloud.vision.v1.TextAnnotation.TextProperty message
399            # definition below for more detail.
400          "text": "A String", # UTF-8 text detected on the pages.
401          "pages": [ # List of pages detected by OCR.
402            { # Detected page from OCR.
403              "width": 42, # Page width in pixels.
404              "property": { # Additional information detected on the structural component. # Additional information detected on the page.
405                "detectedBreak": { # Detected start or end of a structural component. # Detected start or end of a text segment.
406                  "isPrefix": True or False, # True if break prepends the element.
407                  "type": "A String", # Detected break type.
408                },
409                "detectedLanguages": [ # A list of detected languages together with confidence.
410                  { # Detected language for a structural component.
411                    "languageCode": "A String", # The BCP-47 language code, such as "en-US" or "sr-Latn". For more
412                        # information, see
413                        # http://www.unicode.org/reports/tr35/#Unicode_locale_identifier.
414                    "confidence": 3.14, # Confidence of detected language. Range [0, 1].
415                  },
416                ],
417              },
418              "blocks": [ # List of blocks of text, images etc on this page.
419                { # Logical element on the page.
420                  "boundingBox": { # A bounding polygon for the detected image annotation. # The bounding box for the block.
421                      # The vertices are in the order of top-left, top-right, bottom-right,
422                      # bottom-left. When a rotation of the bounding box is detected the rotation
423                      # is represented as around the top-left corner as defined when the text is
424                      # read in the 'natural' orientation.
425                      # For example:
426                      #   * when the text is horizontal it might look like:
427                      #      0----1
428                      #      |    |
429                      #      3----2
430                      #   * when it's rotated 180 degrees around the top-left corner it becomes:
431                      #      2----3
432                      #      |    |
433                      #      1----0
434                      #   and the vertice order will still be (0, 1, 2, 3).
435                    "vertices": [ # The bounding polygon vertices.
436                      { # A vertex represents a 2D point in the image.
437                          # NOTE: the vertex coordinates are in the same scale as the original image.
438                        "y": 42, # Y coordinate.
439                        "x": 42, # X coordinate.
440                      },
441                    ],
442                  },
443                  "blockType": "A String", # Detected block type (text, image etc) for this block.
444                  "property": { # Additional information detected on the structural component. # Additional information detected for the block.
445                    "detectedBreak": { # Detected start or end of a structural component. # Detected start or end of a text segment.
446                      "isPrefix": True or False, # True if break prepends the element.
447                      "type": "A String", # Detected break type.
448                    },
449                    "detectedLanguages": [ # A list of detected languages together with confidence.
450                      { # Detected language for a structural component.
451                        "languageCode": "A String", # The BCP-47 language code, such as "en-US" or "sr-Latn". For more
452                            # information, see
453                            # http://www.unicode.org/reports/tr35/#Unicode_locale_identifier.
454                        "confidence": 3.14, # Confidence of detected language. Range [0, 1].
455                      },
456                    ],
457                  },
458                  "paragraphs": [ # List of paragraphs in this block (if this blocks is of type text).
459                    { # Structural unit of text representing a number of words in certain order.
460                      "boundingBox": { # A bounding polygon for the detected image annotation. # The bounding box for the paragraph.
461                          # The vertices are in the order of top-left, top-right, bottom-right,
462                          # bottom-left. When a rotation of the bounding box is detected the rotation
463                          # is represented as around the top-left corner as defined when the text is
464                          # read in the 'natural' orientation.
465                          # For example:
466                          #   * when the text is horizontal it might look like:
467                          #      0----1
468                          #      |    |
469                          #      3----2
470                          #   * when it's rotated 180 degrees around the top-left corner it becomes:
471                          #      2----3
472                          #      |    |
473                          #      1----0
474                          #   and the vertice order will still be (0, 1, 2, 3).
475                        "vertices": [ # The bounding polygon vertices.
476                          { # A vertex represents a 2D point in the image.
477                              # NOTE: the vertex coordinates are in the same scale as the original image.
478                            "y": 42, # Y coordinate.
479                            "x": 42, # X coordinate.
480                          },
481                        ],
482                      },
483                      "property": { # Additional information detected on the structural component. # Additional information detected for the paragraph.
484                        "detectedBreak": { # Detected start or end of a structural component. # Detected start or end of a text segment.
485                          "isPrefix": True or False, # True if break prepends the element.
486                          "type": "A String", # Detected break type.
487                        },
488                        "detectedLanguages": [ # A list of detected languages together with confidence.
489                          { # Detected language for a structural component.
490                            "languageCode": "A String", # The BCP-47 language code, such as "en-US" or "sr-Latn". For more
491                                # information, see
492                                # http://www.unicode.org/reports/tr35/#Unicode_locale_identifier.
493                            "confidence": 3.14, # Confidence of detected language. Range [0, 1].
494                          },
495                        ],
496                      },
497                      "words": [ # List of words in this paragraph.
498                        { # A word representation.
499                          "boundingBox": { # A bounding polygon for the detected image annotation. # The bounding box for the word.
500                              # The vertices are in the order of top-left, top-right, bottom-right,
501                              # bottom-left. When a rotation of the bounding box is detected the rotation
502                              # is represented as around the top-left corner as defined when the text is
503                              # read in the 'natural' orientation.
504                              # For example:
505                              #   * when the text is horizontal it might look like:
506                              #      0----1
507                              #      |    |
508                              #      3----2
509                              #   * when it's rotated 180 degrees around the top-left corner it becomes:
510                              #      2----3
511                              #      |    |
512                              #      1----0
513                              #   and the vertice order will still be (0, 1, 2, 3).
514                            "vertices": [ # The bounding polygon vertices.
515                              { # A vertex represents a 2D point in the image.
516                                  # NOTE: the vertex coordinates are in the same scale as the original image.
517                                "y": 42, # Y coordinate.
518                                "x": 42, # X coordinate.
519                              },
520                            ],
521                          },
522                          "symbols": [ # List of symbols in the word.
523                              # The order of the symbols follows the natural reading order.
524                            { # A single symbol representation.
525                              "boundingBox": { # A bounding polygon for the detected image annotation. # The bounding box for the symbol.
526                                  # The vertices are in the order of top-left, top-right, bottom-right,
527                                  # bottom-left. When a rotation of the bounding box is detected the rotation
528                                  # is represented as around the top-left corner as defined when the text is
529                                  # read in the 'natural' orientation.
530                                  # For example:
531                                  #   * when the text is horizontal it might look like:
532                                  #      0----1
533                                  #      |    |
534                                  #      3----2
535                                  #   * when it's rotated 180 degrees around the top-left corner it becomes:
536                                  #      2----3
537                                  #      |    |
538                                  #      1----0
539                                  #   and the vertice order will still be (0, 1, 2, 3).
540                                "vertices": [ # The bounding polygon vertices.
541                                  { # A vertex represents a 2D point in the image.
542                                      # NOTE: the vertex coordinates are in the same scale as the original image.
543                                    "y": 42, # Y coordinate.
544                                    "x": 42, # X coordinate.
545                                  },
546                                ],
547                              },
548                              "text": "A String", # The actual UTF-8 representation of the symbol.
549                              "property": { # Additional information detected on the structural component. # Additional information detected for the symbol.
550                                "detectedBreak": { # Detected start or end of a structural component. # Detected start or end of a text segment.
551                                  "isPrefix": True or False, # True if break prepends the element.
552                                  "type": "A String", # Detected break type.
553                                },
554                                "detectedLanguages": [ # A list of detected languages together with confidence.
555                                  { # Detected language for a structural component.
556                                    "languageCode": "A String", # The BCP-47 language code, such as "en-US" or "sr-Latn". For more
557                                        # information, see
558                                        # http://www.unicode.org/reports/tr35/#Unicode_locale_identifier.
559                                    "confidence": 3.14, # Confidence of detected language. Range [0, 1].
560                                  },
561                                ],
562                              },
563                            },
564                          ],
565                          "property": { # Additional information detected on the structural component. # Additional information detected for the word.
566                            "detectedBreak": { # Detected start or end of a structural component. # Detected start or end of a text segment.
567                              "isPrefix": True or False, # True if break prepends the element.
568                              "type": "A String", # Detected break type.
569                            },
570                            "detectedLanguages": [ # A list of detected languages together with confidence.
571                              { # Detected language for a structural component.
572                                "languageCode": "A String", # The BCP-47 language code, such as "en-US" or "sr-Latn". For more
573                                    # information, see
574                                    # http://www.unicode.org/reports/tr35/#Unicode_locale_identifier.
575                                "confidence": 3.14, # Confidence of detected language. Range [0, 1].
576                              },
577                            ],
578                          },
579                        },
580                      ],
581                    },
582                  ],
583                },
584              ],
585              "height": 42, # Page height in pixels.
586            },
587          ],
588        },
589        "labelAnnotations": [ # If present, label detection has completed successfully.
590          { # Set of detected entity features.
591            "confidence": 3.14, # The accuracy of the entity detection in an image.
592                # For example, for an image in which the "Eiffel Tower" entity is detected,
593                # this field represents the confidence that there is a tower in the query
594                # image. Range [0, 1].
595            "description": "A String", # Entity textual description, expressed in its `locale` language.
596            "locale": "A String", # The language code for the locale in which the entity textual
597                # `description` is expressed.
598            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
599                # image. For example, the relevancy of "tower" is likely higher to an image
600                # containing the detected "Eiffel Tower" than to an image containing a
601                # detected distant towering building, even though the confidence that
602                # there is a tower in each image may be the same. Range [0, 1].
603            "mid": "A String", # Opaque entity ID. Some IDs may be available in
604                # [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
605            "locations": [ # The location information for the detected entity. Multiple
606                # `LocationInfo` elements can be present because one location may
607                # indicate the location of the scene in the image, and another location
608                # may indicate the location of the place where the image was taken.
609                # Location information is usually present for landmarks.
610              { # Detected entity location information.
611                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # lat/long location coordinates.
612                    # of doubles representing degrees latitude and degrees longitude. Unless
613                    # specified otherwise, this must conform to the
614                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
615                    # standard</a>. Values must be within normalized ranges.
616                    #
617                    # Example of normalization code in Python:
618                    #
619                    #     def NormalizeLongitude(longitude):
620                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
621                    #       q, r = divmod(longitude, 360.0)
622                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
623                    #         return r - 360.0
624                    #       return r
625                    #
626                    #     def NormalizeLatLng(latitude, longitude):
627                    #       """Wraps decimal degrees latitude and longitude to
628                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
629                    #       r = latitude % 360.0
630                    #       if r <= 90.0:
631                    #         return r, NormalizeLongitude(longitude)
632                    #       elif r >= 270.0:
633                    #         return r - 360, NormalizeLongitude(longitude)
634                    #       else:
635                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
636                    #
637                    #     assert 180.0 == NormalizeLongitude(180.0)
638                    #     assert -180.0 == NormalizeLongitude(-180.0)
639                    #     assert -179.0 == NormalizeLongitude(181.0)
640                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
641                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
642                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
643                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
644                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
645                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
646                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
647                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
648                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
649                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
650                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
651                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
652                },
653              },
654            ],
655            "score": 3.14, # Overall score of the result. Range [0, 1].
656            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Currently not produced
657                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
658                # are produced for the entire text detected in an image region, followed by
659                # `boundingPoly`s for each word within the detected text.
660              "vertices": [ # The bounding polygon vertices.
661                { # A vertex represents a 2D point in the image.
662                    # NOTE: the vertex coordinates are in the same scale as the original image.
663                  "y": 42, # Y coordinate.
664                  "x": 42, # X coordinate.
665                },
666              ],
667            },
668            "properties": [ # Some entities may have optional user-supplied `Property` (name/value)
669                # fields, such a score or string that qualifies the entity.
670              { # A `Property` consists of a user-supplied name/value pair.
671                "uint64Value": "A String", # Value of numeric properties.
672                "name": "A String", # Name of the property.
673                "value": "A String", # Value of the property.
674              },
675            ],
676          },
677        ],
678        "imagePropertiesAnnotation": { # Stores image properties, such as dominant colors. # If present, image properties were extracted successfully.
679          "dominantColors": { # Set of dominant colors and their corresponding scores. # If present, dominant colors completed successfully.
680            "colors": [ # RGB color values with their score and pixel fraction.
681              { # Color information consists of RGB channels, score, and the fraction of
682                  # the image that the color occupies in the image.
683                "color": { # Represents a color in the RGBA color space. This representation is designed # RGB components of the color.
684                    # for simplicity of conversion to/from color representations in various
685                    # languages over compactness; for example, the fields of this representation
686                    # can be trivially provided to the constructor of "java.awt.Color" in Java; it
687                    # can also be trivially provided to UIColor's "+colorWithRed:green:blue:alpha"
688                    # method in iOS; and, with just a little work, it can be easily formatted into
689                    # a CSS "rgba()" string in JavaScript, as well. Here are some examples:
690                    #
691                    # Example (Java):
692                    #
693                    #      import com.google.type.Color;
694                    #
695                    #      // ...
696                    #      public static java.awt.Color fromProto(Color protocolor) {
697                    #        float alpha = protocolor.hasAlpha()
698                    #            ? protocolor.getAlpha().getValue()
699                    #            : 1.0;
700                    #
701                    #        return new java.awt.Color(
702                    #            protocolor.getRed(),
703                    #            protocolor.getGreen(),
704                    #            protocolor.getBlue(),
705                    #            alpha);
706                    #      }
707                    #
708                    #      public static Color toProto(java.awt.Color color) {
709                    #        float red = (float) color.getRed();
710                    #        float green = (float) color.getGreen();
711                    #        float blue = (float) color.getBlue();
712                    #        float denominator = 255.0;
713                    #        Color.Builder resultBuilder =
714                    #            Color
715                    #                .newBuilder()
716                    #                .setRed(red / denominator)
717                    #                .setGreen(green / denominator)
718                    #                .setBlue(blue / denominator);
719                    #        int alpha = color.getAlpha();
720                    #        if (alpha != 255) {
721                    #          result.setAlpha(
722                    #              FloatValue
723                    #                  .newBuilder()
724                    #                  .setValue(((float) alpha) / denominator)
725                    #                  .build());
726                    #        }
727                    #        return resultBuilder.build();
728                    #      }
729                    #      // ...
730                    #
731                    # Example (iOS / Obj-C):
732                    #
733                    #      // ...
734                    #      static UIColor* fromProto(Color* protocolor) {
735                    #         float red = [protocolor red];
736                    #         float green = [protocolor green];
737                    #         float blue = [protocolor blue];
738                    #         FloatValue* alpha_wrapper = [protocolor alpha];
739                    #         float alpha = 1.0;
740                    #         if (alpha_wrapper != nil) {
741                    #           alpha = [alpha_wrapper value];
742                    #         }
743                    #         return [UIColor colorWithRed:red green:green blue:blue alpha:alpha];
744                    #      }
745                    #
746                    #      static Color* toProto(UIColor* color) {
747                    #          CGFloat red, green, blue, alpha;
748                    #          if (![color getRed:&red green:&green blue:&blue alpha:&alpha]) {
749                    #            return nil;
750                    #          }
751                    #          Color* result = [Color alloc] init];
752                    #          [result setRed:red];
753                    #          [result setGreen:green];
754                    #          [result setBlue:blue];
755                    #          if (alpha <= 0.9999) {
756                    #            [result setAlpha:floatWrapperWithValue(alpha)];
757                    #          }
758                    #          [result autorelease];
759                    #          return result;
760                    #     }
761                    #     // ...
762                    #
763                    #  Example (JavaScript):
764                    #
765                    #     // ...
766                    #
767                    #     var protoToCssColor = function(rgb_color) {
768                    #        var redFrac = rgb_color.red || 0.0;
769                    #        var greenFrac = rgb_color.green || 0.0;
770                    #        var blueFrac = rgb_color.blue || 0.0;
771                    #        var red = Math.floor(redFrac * 255);
772                    #        var green = Math.floor(greenFrac * 255);
773                    #        var blue = Math.floor(blueFrac * 255);
774                    #
775                    #        if (!('alpha' in rgb_color)) {
776                    #           return rgbToCssColor_(red, green, blue);
777                    #        }
778                    #
779                    #        var alphaFrac = rgb_color.alpha.value || 0.0;
780                    #        var rgbParams = [red, green, blue].join(',');
781                    #        return ['rgba(', rgbParams, ',', alphaFrac, ')'].join('');
782                    #     };
783                    #
784                    #     var rgbToCssColor_ = function(red, green, blue) {
785                    #       var rgbNumber = new Number((red << 16) | (green << 8) | blue);
786                    #       var hexString = rgbNumber.toString(16);
787                    #       var missingZeros = 6 - hexString.length;
788                    #       var resultBuilder = ['#'];
789                    #       for (var i = 0; i < missingZeros; i++) {
790                    #          resultBuilder.push('0');
791                    #       }
792                    #       resultBuilder.push(hexString);
793                    #       return resultBuilder.join('');
794                    #     };
795                    #
796                    #     // ...
797                  "blue": 3.14, # The amount of blue in the color as a value in the interval [0, 1].
798                  "alpha": 3.14, # The fraction of this color that should be applied to the pixel. That is,
799                      # the final pixel color is defined by the equation:
800                      #
801                      #   pixel color = alpha * (this color) + (1.0 - alpha) * (background color)
802                      #
803                      # This means that a value of 1.0 corresponds to a solid color, whereas
804                      # a value of 0.0 corresponds to a completely transparent color. This
805                      # uses a wrapper message rather than a simple float scalar so that it is
806                      # possible to distinguish between a default value and the value being unset.
807                      # If omitted, this color object is to be rendered as a solid color
808                      # (as if the alpha value had been explicitly given with a value of 1.0).
809                  "green": 3.14, # The amount of green in the color as a value in the interval [0, 1].
810                  "red": 3.14, # The amount of red in the color as a value in the interval [0, 1].
811                },
812                "pixelFraction": 3.14, # The fraction of pixels the color occupies in the image.
813                    # Value in range [0, 1].
814                "score": 3.14, # Image-specific score for this color. Value in range [0, 1].
815              },
816            ],
817          },
818        },
819        "faceAnnotations": [ # If present, face detection has completed successfully.
820          { # A face annotation object contains the results of face detection.
821            "sorrowLikelihood": "A String", # Sorrow likelihood.
822            "landmarkingConfidence": 3.14, # Face landmarking confidence. Range [0, 1].
823            "underExposedLikelihood": "A String", # Under-exposed likelihood.
824            "detectionConfidence": 3.14, # Detection confidence. Range [0, 1].
825            "joyLikelihood": "A String", # Joy likelihood.
826            "landmarks": [ # Detected face landmarks.
827              { # A face-specific landmark (for example, a face feature).
828                  # Landmark positions may fall outside the bounds of the image
829                  # if the face is near one or more edges of the image.
830                  # Therefore it is NOT guaranteed that `0 <= x < width` or
831                  # `0 <= y < height`.
832                "position": { # A 3D position in the image, used primarily for Face detection landmarks. # Face landmark position.
833                    # A valid Position must have both x and y coordinates.
834                    # The position coordinates are in the same scale as the original image.
835                  "y": 3.14, # Y coordinate.
836                  "x": 3.14, # X coordinate.
837                  "z": 3.14, # Z coordinate (or depth).
838                },
839                "type": "A String", # Face landmark type.
840              },
841            ],
842            "surpriseLikelihood": "A String", # Surprise likelihood.
843            "blurredLikelihood": "A String", # Blurred likelihood.
844            "tiltAngle": 3.14, # Pitch angle, which indicates the upwards/downwards angle that the face is
845                # pointing relative to the image's horizontal plane. Range [-180,180].
846            "angerLikelihood": "A String", # Anger likelihood.
847            "boundingPoly": { # A bounding polygon for the detected image annotation. # The bounding polygon around the face. The coordinates of the bounding box
848                # are in the original image's scale, as returned in `ImageParams`.
849                # The bounding box is computed to "frame" the face in accordance with human
850                # expectations. It is based on the landmarker results.
851                # Note that one or more x and/or y coordinates may not be generated in the
852                # `BoundingPoly` (the polygon will be unbounded) if only a partial face
853                # appears in the image to be annotated.
854              "vertices": [ # The bounding polygon vertices.
855                { # A vertex represents a 2D point in the image.
856                    # NOTE: the vertex coordinates are in the same scale as the original image.
857                  "y": 42, # Y coordinate.
858                  "x": 42, # X coordinate.
859                },
860              ],
861            },
862            "rollAngle": 3.14, # Roll angle, which indicates the amount of clockwise/anti-clockwise rotation
863                # of the face relative to the image vertical about the axis perpendicular to
864                # the face. Range [-180,180].
865            "panAngle": 3.14, # Yaw angle, which indicates the leftward/rightward angle that the face is
866                # pointing relative to the vertical plane perpendicular to the image. Range
867                # [-180,180].
868            "headwearLikelihood": "A String", # Headwear likelihood.
869            "fdBoundingPoly": { # A bounding polygon for the detected image annotation. # The `fd_bounding_poly` bounding polygon is tighter than the
870                # `boundingPoly`, and encloses only the skin part of the face. Typically, it
871                # is used to eliminate the face from any image analysis that detects the
872                # "amount of skin" visible in an image. It is not based on the
873                # landmarker results, only on the initial face detection, hence
874                # the <code>fd</code> (face detection) prefix.
875              "vertices": [ # The bounding polygon vertices.
876                { # A vertex represents a 2D point in the image.
877                    # NOTE: the vertex coordinates are in the same scale as the original image.
878                  "y": 42, # Y coordinate.
879                  "x": 42, # X coordinate.
880                },
881              ],
882            },
883          },
884        ],
885        "logoAnnotations": [ # If present, logo detection has completed successfully.
886          { # Set of detected entity features.
887            "confidence": 3.14, # The accuracy of the entity detection in an image.
888                # For example, for an image in which the "Eiffel Tower" entity is detected,
889                # this field represents the confidence that there is a tower in the query
890                # image. Range [0, 1].
891            "description": "A String", # Entity textual description, expressed in its `locale` language.
892            "locale": "A String", # The language code for the locale in which the entity textual
893                # `description` is expressed.
894            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
895                # image. For example, the relevancy of "tower" is likely higher to an image
896                # containing the detected "Eiffel Tower" than to an image containing a
897                # detected distant towering building, even though the confidence that
898                # there is a tower in each image may be the same. Range [0, 1].
899            "mid": "A String", # Opaque entity ID. Some IDs may be available in
900                # [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
901            "locations": [ # The location information for the detected entity. Multiple
902                # `LocationInfo` elements can be present because one location may
903                # indicate the location of the scene in the image, and another location
904                # may indicate the location of the place where the image was taken.
905                # Location information is usually present for landmarks.
906              { # Detected entity location information.
907                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # lat/long location coordinates.
908                    # of doubles representing degrees latitude and degrees longitude. Unless
909                    # specified otherwise, this must conform to the
910                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
911                    # standard</a>. Values must be within normalized ranges.
912                    #
913                    # Example of normalization code in Python:
914                    #
915                    #     def NormalizeLongitude(longitude):
916                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
917                    #       q, r = divmod(longitude, 360.0)
918                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
919                    #         return r - 360.0
920                    #       return r
921                    #
922                    #     def NormalizeLatLng(latitude, longitude):
923                    #       """Wraps decimal degrees latitude and longitude to
924                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
925                    #       r = latitude % 360.0
926                    #       if r <= 90.0:
927                    #         return r, NormalizeLongitude(longitude)
928                    #       elif r >= 270.0:
929                    #         return r - 360, NormalizeLongitude(longitude)
930                    #       else:
931                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
932                    #
933                    #     assert 180.0 == NormalizeLongitude(180.0)
934                    #     assert -180.0 == NormalizeLongitude(-180.0)
935                    #     assert -179.0 == NormalizeLongitude(181.0)
936                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
937                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
938                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
939                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
940                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
941                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
942                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
943                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
944                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
945                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
946                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
947                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
948                },
949              },
950            ],
951            "score": 3.14, # Overall score of the result. Range [0, 1].
952            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Currently not produced
953                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
954                # are produced for the entire text detected in an image region, followed by
955                # `boundingPoly`s for each word within the detected text.
956              "vertices": [ # The bounding polygon vertices.
957                { # A vertex represents a 2D point in the image.
958                    # NOTE: the vertex coordinates are in the same scale as the original image.
959                  "y": 42, # Y coordinate.
960                  "x": 42, # X coordinate.
961                },
962              ],
963            },
964            "properties": [ # Some entities may have optional user-supplied `Property` (name/value)
965                # fields, such a score or string that qualifies the entity.
966              { # A `Property` consists of a user-supplied name/value pair.
967                "uint64Value": "A String", # Value of numeric properties.
968                "name": "A String", # Name of the property.
969                "value": "A String", # Value of the property.
970              },
971            ],
972          },
973        ],
974        "landmarkAnnotations": [ # If present, landmark detection has completed successfully.
975          { # Set of detected entity features.
976            "confidence": 3.14, # The accuracy of the entity detection in an image.
977                # For example, for an image in which the "Eiffel Tower" entity is detected,
978                # this field represents the confidence that there is a tower in the query
979                # image. Range [0, 1].
980            "description": "A String", # Entity textual description, expressed in its `locale` language.
981            "locale": "A String", # The language code for the locale in which the entity textual
982                # `description` is expressed.
983            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
984                # image. For example, the relevancy of "tower" is likely higher to an image
985                # containing the detected "Eiffel Tower" than to an image containing a
986                # detected distant towering building, even though the confidence that
987                # there is a tower in each image may be the same. Range [0, 1].
988            "mid": "A String", # Opaque entity ID. Some IDs may be available in
989                # [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
990            "locations": [ # The location information for the detected entity. Multiple
991                # `LocationInfo` elements can be present because one location may
992                # indicate the location of the scene in the image, and another location
993                # may indicate the location of the place where the image was taken.
994                # Location information is usually present for landmarks.
995              { # Detected entity location information.
996                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # lat/long location coordinates.
997                    # of doubles representing degrees latitude and degrees longitude. Unless
998                    # specified otherwise, this must conform to the
999                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
1000                    # standard</a>. Values must be within normalized ranges.
1001                    #
1002                    # Example of normalization code in Python:
1003                    #
1004                    #     def NormalizeLongitude(longitude):
1005                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
1006                    #       q, r = divmod(longitude, 360.0)
1007                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
1008                    #         return r - 360.0
1009                    #       return r
1010                    #
1011                    #     def NormalizeLatLng(latitude, longitude):
1012                    #       """Wraps decimal degrees latitude and longitude to
1013                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
1014                    #       r = latitude % 360.0
1015                    #       if r <= 90.0:
1016                    #         return r, NormalizeLongitude(longitude)
1017                    #       elif r >= 270.0:
1018                    #         return r - 360, NormalizeLongitude(longitude)
1019                    #       else:
1020                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
1021                    #
1022                    #     assert 180.0 == NormalizeLongitude(180.0)
1023                    #     assert -180.0 == NormalizeLongitude(-180.0)
1024                    #     assert -179.0 == NormalizeLongitude(181.0)
1025                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
1026                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
1027                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
1028                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
1029                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
1030                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
1031                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
1032                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
1033                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
1034                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
1035                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
1036                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
1037                },
1038              },
1039            ],
1040            "score": 3.14, # Overall score of the result. Range [0, 1].
1041            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Currently not produced
1042                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
1043                # are produced for the entire text detected in an image region, followed by
1044                # `boundingPoly`s for each word within the detected text.
1045              "vertices": [ # The bounding polygon vertices.
1046                { # A vertex represents a 2D point in the image.
1047                    # NOTE: the vertex coordinates are in the same scale as the original image.
1048                  "y": 42, # Y coordinate.
1049                  "x": 42, # X coordinate.
1050                },
1051              ],
1052            },
1053            "properties": [ # Some entities may have optional user-supplied `Property` (name/value)
1054                # fields, such a score or string that qualifies the entity.
1055              { # A `Property` consists of a user-supplied name/value pair.
1056                "uint64Value": "A String", # Value of numeric properties.
1057                "name": "A String", # Name of the property.
1058                "value": "A String", # Value of the property.
1059              },
1060            ],
1061          },
1062        ],
1063        "error": { # The `Status` type defines a logical error model that is suitable for different # If set, represents the error message for the operation.
1064            # Note that filled-in image annotations are guaranteed to be
1065            # correct, even when `error` is set.
1066            # programming environments, including REST APIs and RPC APIs. It is used by
1067            # [gRPC](https://github.com/grpc). The error model is designed to be:
1068            #
1069            # - Simple to use and understand for most users
1070            # - Flexible enough to meet unexpected needs
1071            #
1072            # # Overview
1073            #
1074            # The `Status` message contains three pieces of data: error code, error message,
1075            # and error details. The error code should be an enum value of
1076            # google.rpc.Code, but it may accept additional error codes if needed.  The
1077            # error message should be a developer-facing English message that helps
1078            # developers *understand* and *resolve* the error. If a localized user-facing
1079            # error message is needed, put the localized message in the error details or
1080            # localize it in the client. The optional error details may contain arbitrary
1081            # information about the error. There is a predefined set of error detail types
1082            # in the package `google.rpc` that can be used for common error conditions.
1083            #
1084            # # Language mapping
1085            #
1086            # The `Status` message is the logical representation of the error model, but it
1087            # is not necessarily the actual wire format. When the `Status` message is
1088            # exposed in different client libraries and different wire protocols, it can be
1089            # mapped differently. For example, it will likely be mapped to some exceptions
1090            # in Java, but more likely mapped to some error codes in C.
1091            #
1092            # # Other uses
1093            #
1094            # The error model and the `Status` message can be used in a variety of
1095            # environments, either with or without APIs, to provide a
1096            # consistent developer experience across different environments.
1097            #
1098            # Example uses of this error model include:
1099            #
1100            # - Partial errors. If a service needs to return partial errors to the client,
1101            #     it may embed the `Status` in the normal response to indicate the partial
1102            #     errors.
1103            #
1104            # - Workflow errors. A typical workflow has multiple steps. Each step may
1105            #     have a `Status` message for error reporting.
1106            #
1107            # - Batch operations. If a client uses batch request and batch response, the
1108            #     `Status` message should be used directly inside batch response, one for
1109            #     each error sub-response.
1110            #
1111            # - Asynchronous operations. If an API call embeds asynchronous operation
1112            #     results in its response, the status of those operations should be
1113            #     represented directly using the `Status` message.
1114            #
1115            # - Logging. If some API errors are stored in logs, the message `Status` could
1116            #     be used directly after any stripping needed for security/privacy reasons.
1117          "message": "A String", # A developer-facing error message, which should be in English. Any
1118              # user-facing error message should be localized and sent in the
1119              # google.rpc.Status.details field, or localized by the client.
1120          "code": 42, # The status code, which should be an enum value of google.rpc.Code.
1121          "details": [ # A list of messages that carry the error details.  There will be a
1122              # common set of message types for APIs to use.
1123            {
1124              "a_key": "", # Properties of the object. Contains field @type with type URL.
1125            },
1126          ],
1127        },
1128        "cropHintsAnnotation": { # Set of crop hints that are used to generate new crops when serving images. # If present, crop hints have completed successfully.
1129          "cropHints": [ # Crop hint results.
1130            { # Single crop hint that is used to generate a new crop when serving an image.
1131              "confidence": 3.14, # Confidence of this being a salient region.  Range [0, 1].
1132              "boundingPoly": { # A bounding polygon for the detected image annotation. # The bounding polygon for the crop region. The coordinates of the bounding
1133                  # box are in the original image's scale, as returned in `ImageParams`.
1134                "vertices": [ # The bounding polygon vertices.
1135                  { # A vertex represents a 2D point in the image.
1136                      # NOTE: the vertex coordinates are in the same scale as the original image.
1137                    "y": 42, # Y coordinate.
1138                    "x": 42, # X coordinate.
1139                  },
1140                ],
1141              },
1142              "importanceFraction": 3.14, # Fraction of importance of this salient region with respect to the original
1143                  # image.
1144            },
1145          ],
1146        },
1147      },
1148    ],
1149  }</pre>
1150</div>
1151
1152</body></html>