1 /* 2 * Copyright 2017 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkJSONWriter_DEFINED 9 #define SkJSONWriter_DEFINED 10 11 #include "SkNoncopyable.h" 12 #include "SkStream.h" 13 #include "SkTArray.h" 14 15 /** 16 * Lightweight class for writing properly structured JSON data. No random-access, everything must 17 * be generated in-order. The resulting JSON is written directly to the SkWStream supplied at 18 * construction time. Output is buffered, so writing to disk (via an SkFILEWStream) is ideal. 19 * 20 * There is a basic state machine to ensure that JSON is structured correctly, and to allow for 21 * (optional) pretty formatting. 22 * 23 * This class adheres to the RFC-4627 usage of JSON (not ECMA-404). In other words, all JSON 24 * created with this class must have a top-level object or array. Free-floating values of other 25 * types are not considered valid. 26 * 27 * Note that all error checking is in the form of asserts - invalid usage in a non-debug build 28 * will simply produce invalid JSON. 29 */ 30 class SkJSONWriter : SkNoncopyable { 31 public: 32 enum class Mode { 33 /** 34 * Output the minimal amount of text. No additional whitespace (including newlines) is 35 * generated. The resulting JSON is suitable for fast parsing and machine consumption. 36 */ 37 kFast, 38 39 /** 40 * Output human-readable JSON, with indented objects and arrays, and one value per line. 41 * Slightly slower than kFast, and produces data that is somewhat larger. 42 */ 43 kPretty 44 }; 45 46 /** 47 * Construct a JSON writer that will serialize all the generated JSON to 'stream'. 48 */ 49 SkJSONWriter(SkWStream* stream, Mode mode = Mode::kFast) fBlock(new char[kBlockSize])50 : fBlock(new char[kBlockSize]) 51 , fWrite(fBlock) 52 , fBlockEnd(fBlock + kBlockSize) 53 , fStream(stream) 54 , fMode(mode) 55 , fState(State::kStart) { 56 fScopeStack.push_back(Scope::kNone); 57 fNewlineStack.push_back(true); 58 } 59 ~SkJSONWriter()60 ~SkJSONWriter() { 61 this->flush(); 62 delete[] fBlock; 63 SkASSERT(fScopeStack.count() == 1); 64 SkASSERT(fNewlineStack.count() == 1); 65 } 66 67 /** 68 * Force all buffered output to be flushed to the underlying stream. 69 */ flush()70 void flush() { 71 if (fWrite != fBlock) { 72 fStream->write(fBlock, fWrite - fBlock); 73 fWrite = fBlock; 74 } 75 } 76 77 /** 78 * Append the name (key) portion of an object member. Must be called between beginObject() and 79 * endObject(). If you have both the name and value of an object member, you can simply call 80 * the two argument versions of the other append functions. 81 */ appendName(const char * name)82 void appendName(const char* name) { 83 if (!name) { 84 return; 85 } 86 SkASSERT(Scope::kObject == this->scope()); 87 SkASSERT(State::kObjectBegin == fState || State::kObjectValue == fState); 88 if (State::kObjectValue == fState) { 89 this->write(",", 1); 90 } 91 this->separator(this->multiline()); 92 this->write("\"", 1); 93 this->write(name, strlen(name)); 94 this->write("\":", 2); 95 fState = State::kObjectName; 96 } 97 98 /** 99 * Adds a new object. A name must be supplied when called between beginObject() and 100 * endObject(). Calls to beginObject() must be balanced by corresponding calls to endObject(). 101 * By default, objects are written out with one named value per line (when in kPretty mode). 102 * This can be overridden for a particular object by passing false for multiline, this will 103 * keep the entire object on a single line. This can help with readability in some situations. 104 * In kFast mode, this parameter is ignored. 105 */ 106 void beginObject(const char* name = nullptr, bool multiline = true) { 107 this->appendName(name); 108 this->beginValue(true); 109 this->write("{", 1); 110 fScopeStack.push_back(Scope::kObject); 111 fNewlineStack.push_back(multiline); 112 fState = State::kObjectBegin; 113 } 114 115 /** 116 * Ends an object that was previously started with beginObject(). 117 */ endObject()118 void endObject() { 119 SkASSERT(Scope::kObject == this->scope()); 120 SkASSERT(State::kObjectBegin == fState || State::kObjectValue == fState); 121 bool emptyObject = State::kObjectBegin == fState; 122 bool wasMultiline = this->multiline(); 123 this->popScope(); 124 if (!emptyObject) { 125 this->separator(wasMultiline); 126 } 127 this->write("}", 1); 128 } 129 130 /** 131 * Adds a new array. A name must be supplied when called between beginObject() and 132 * endObject(). Calls to beginArray() must be balanced by corresponding calls to endArray(). 133 * By default, arrays are written out with one value per line (when in kPretty mode). 134 * This can be overridden for a particular array by passing false for multiline, this will 135 * keep the entire array on a single line. This can help with readability in some situations. 136 * In kFast mode, this parameter is ignored. 137 */ 138 void beginArray(const char* name = nullptr, bool multiline = true) { 139 this->appendName(name); 140 this->beginValue(true); 141 this->write("[", 1); 142 fScopeStack.push_back(Scope::kArray); 143 fNewlineStack.push_back(multiline); 144 fState = State::kArrayBegin; 145 } 146 147 /** 148 * Ends an array that was previous started with beginArray(). 149 */ endArray()150 void endArray() { 151 SkASSERT(Scope::kArray == this->scope()); 152 SkASSERT(State::kArrayBegin == fState || State::kArrayValue == fState); 153 bool emptyArray = State::kArrayBegin == fState; 154 bool wasMultiline = this->multiline(); 155 this->popScope(); 156 if (!emptyArray) { 157 this->separator(wasMultiline); 158 } 159 this->write("]", 1); 160 } 161 162 /** 163 * Functions for adding values of various types. The single argument versions add un-named 164 * values, so must be called either 165 * - Between beginArray() and endArray() -or- 166 * - Between beginObject() and endObject(), after calling appendName() 167 */ appendString(const char * value)168 void appendString(const char* value) { 169 this->beginValue(); 170 this->write("\"", 1); 171 if (value) { 172 while (*value) { 173 switch (*value) { 174 case '"': this->write("\\\"", 2); break; 175 case '\\': this->write("\\\\", 2); break; 176 case '\b': this->write("\\b", 2); break; 177 case '\f': this->write("\\f", 2); break; 178 case '\n': this->write("\\n", 2); break; 179 case '\r': this->write("\\r", 2); break; 180 case '\t': this->write("\\t", 2); break; 181 default: this->write(value, 1); break; 182 } 183 value++; 184 } 185 } 186 this->write("\"", 1); 187 } 188 appendPointer(const void * value)189 void appendPointer(const void* value) { this->beginValue(); this->appendf("\"%p\"", value); } appendBool(bool value)190 void appendBool(bool value) { 191 this->beginValue(); 192 if (value) { 193 this->write("true", 4); 194 } else { 195 this->write("false", 5); 196 } 197 } appendS32(int32_t value)198 void appendS32(int32_t value) { this->beginValue(); this->appendf("%d", value); } 199 void appendS64(int64_t value); appendU32(uint32_t value)200 void appendU32(uint32_t value) { this->beginValue(); this->appendf("%u", value); } 201 void appendU64(uint64_t value); appendFloat(float value)202 void appendFloat(float value) { this->beginValue(); this->appendf("%g", value); } appendDouble(double value)203 void appendDouble(double value) { this->beginValue(); this->appendf("%g", value); } appendFloatDigits(float value,int digits)204 void appendFloatDigits(float value, int digits) { 205 this->beginValue(); 206 this->appendf("%.*g", digits, value); 207 } appendDoubleDigits(double value,int digits)208 void appendDoubleDigits(double value, int digits) { 209 this->beginValue(); 210 this->appendf("%.*g", digits, value); 211 } appendHexU32(uint32_t value)212 void appendHexU32(uint32_t value) { this->beginValue(); this->appendf("\"0x%x\"", value); } 213 void appendHexU64(uint64_t value); 214 215 #define DEFINE_NAMED_APPEND(function, type) \ 216 void function(const char* name, type value) { this->appendName(name); this->function(value); } 217 218 /** 219 * Functions for adding named values of various types. These add a name field, so must be 220 * called between beginObject() and endObject(). 221 */ DEFINE_NAMED_APPEND(appendString,const char *)222 DEFINE_NAMED_APPEND(appendString, const char *) 223 DEFINE_NAMED_APPEND(appendPointer, const void *) 224 DEFINE_NAMED_APPEND(appendBool, bool) 225 DEFINE_NAMED_APPEND(appendS32, int32_t) 226 DEFINE_NAMED_APPEND(appendS64, int64_t) 227 DEFINE_NAMED_APPEND(appendU32, uint32_t) 228 DEFINE_NAMED_APPEND(appendU64, uint64_t) 229 DEFINE_NAMED_APPEND(appendFloat, float) 230 DEFINE_NAMED_APPEND(appendDouble, double) 231 DEFINE_NAMED_APPEND(appendHexU32, uint32_t) 232 DEFINE_NAMED_APPEND(appendHexU64, uint64_t) 233 234 #undef DEFINE_NAMED_APPEND 235 236 void appendFloatDigits(const char* name, float value, int digits) { 237 this->appendName(name); 238 this->appendFloatDigits(value, digits); 239 } appendDoubleDigits(const char * name,double value,int digits)240 void appendDoubleDigits(const char* name, double value, int digits) { 241 this->appendName(name); 242 this->appendDoubleDigits(value, digits); 243 } 244 245 private: 246 enum { 247 // Using a 32k scratch block gives big performance wins, but we diminishing returns going 248 // any larger. Even with a 1MB block, time to write a large (~300 MB) JSON file only drops 249 // another ~10%. 250 kBlockSize = 32 * 1024, 251 }; 252 253 enum class Scope { 254 kNone, 255 kObject, 256 kArray 257 }; 258 259 enum class State { 260 kStart, 261 kEnd, 262 kObjectBegin, 263 kObjectName, 264 kObjectValue, 265 kArrayBegin, 266 kArrayValue, 267 }; 268 269 void appendf(const char* fmt, ...); 270 271 void beginValue(bool structure = false) { 272 SkASSERT(State::kObjectName == fState || 273 State::kArrayBegin == fState || 274 State::kArrayValue == fState || 275 (structure && State::kStart == fState)); 276 if (State::kArrayValue == fState) { 277 this->write(",", 1); 278 } 279 if (Scope::kArray == this->scope()) { 280 this->separator(this->multiline()); 281 } else if (Scope::kObject == this->scope() && Mode::kPretty == fMode) { 282 this->write(" ", 1); 283 } 284 // We haven't added the value yet, but all (non-structure) callers emit something 285 // immediately, so transition state, to simplify the calling code. 286 if (!structure) { 287 fState = Scope::kArray == this->scope() ? State::kArrayValue : State::kObjectValue; 288 } 289 } 290 separator(bool multiline)291 void separator(bool multiline) { 292 if (Mode::kPretty == fMode) { 293 if (multiline) { 294 this->write("\n", 1); 295 for (int i = 0; i < fScopeStack.count() - 1; ++i) { 296 this->write(" ", 3); 297 } 298 } else { 299 this->write(" ", 1); 300 } 301 } 302 } 303 write(const char * buf,size_t length)304 void write(const char* buf, size_t length) { 305 if (static_cast<size_t>(fBlockEnd - fWrite) < length) { 306 // Don't worry about splitting writes that overflow our block. 307 this->flush(); 308 } 309 if (length > kBlockSize) { 310 // Send particularly large writes straight through to the stream (unbuffered). 311 fStream->write(buf, length); 312 } else { 313 memcpy(fWrite, buf, length); 314 fWrite += length; 315 } 316 } 317 scope()318 Scope scope() const { 319 SkASSERT(!fScopeStack.empty()); 320 return fScopeStack.back(); 321 } 322 multiline()323 bool multiline() const { 324 SkASSERT(!fNewlineStack.empty()); 325 return fNewlineStack.back(); 326 } 327 popScope()328 void popScope() { 329 fScopeStack.pop_back(); 330 fNewlineStack.pop_back(); 331 switch (this->scope()) { 332 case Scope::kNone: 333 fState = State::kEnd; 334 break; 335 case Scope::kObject: 336 fState = State::kObjectValue; 337 break; 338 case Scope::kArray: 339 fState = State::kArrayValue; 340 break; 341 default: 342 SkDEBUGFAIL("Invalid scope"); 343 break; 344 } 345 } 346 347 char* fBlock; 348 char* fWrite; 349 char* fBlockEnd; 350 351 SkWStream* fStream; 352 Mode fMode; 353 State fState; 354 SkSTArray<16, Scope, true> fScopeStack; 355 SkSTArray<16, bool, true> fNewlineStack; 356 }; 357 358 #endif 359