1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkPolyUtils.h"
9
10 #include <limits>
11
12 #include "SkNx.h"
13 #include "SkPointPriv.h"
14 #include "SkTArray.h"
15 #include "SkTemplates.h"
16 #include "SkTDPQueue.h"
17 #include "SkTInternalLList.h"
18
19 //////////////////////////////////////////////////////////////////////////////////
20 // Helper data structures and functions
21
22 struct OffsetSegment {
23 SkPoint fP0;
24 SkVector fV;
25 };
26
27 constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
28
29 // Computes perpDot for point p compared to segment defined by origin p0 and vector v.
30 // A positive value means the point is to the left of the segment,
31 // negative is to the right, 0 is collinear.
compute_side(const SkPoint & p0,const SkVector & v,const SkPoint & p)32 static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
33 SkVector w = p - p0;
34 SkScalar perpDot = v.cross(w);
35 if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
36 return ((perpDot > 0) ? 1 : -1);
37 }
38
39 return 0;
40 }
41
42 // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
SkGetPolygonWinding(const SkPoint * polygonVerts,int polygonSize)43 int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
44 if (polygonSize < 3) {
45 return 0;
46 }
47
48 // compute area and use sign to determine winding
49 SkScalar quadArea = 0;
50 SkVector v0 = polygonVerts[1] - polygonVerts[0];
51 for (int curr = 2; curr < polygonSize; ++curr) {
52 SkVector v1 = polygonVerts[curr] - polygonVerts[0];
53 quadArea += v0.cross(v1);
54 v0 = v1;
55 }
56 if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
57 return 0;
58 }
59 // 1 == ccw, -1 == cw
60 return (quadArea > 0) ? 1 : -1;
61 }
62
63 // Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
compute_offset_vector(const SkPoint & p0,const SkPoint & p1,SkScalar offset,int side,SkPoint * vector)64 bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
65 SkPoint* vector) {
66 SkASSERT(side == -1 || side == 1);
67 // if distances are equal, can just outset by the perpendicular
68 SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
69 if (!perp.setLength(offset*side)) {
70 return false;
71 }
72 *vector = perp;
73 return true;
74 }
75
76 // check interval to see if intersection is in segment
outside_interval(SkScalar numer,SkScalar denom,bool denomPositive)77 static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
78 return (denomPositive && (numer < 0 || numer > denom)) ||
79 (!denomPositive && (numer > 0 || numer < denom));
80 }
81
82 // Compute the intersection 'p' between segments s0 and s1, if any.
83 // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
84 // Returns false if there is no intersection.
compute_intersection(const OffsetSegment & s0,const OffsetSegment & s1,SkPoint * p,SkScalar * s,SkScalar * t)85 static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
86 SkPoint* p, SkScalar* s, SkScalar* t) {
87 const SkVector& v0 = s0.fV;
88 const SkVector& v1 = s1.fV;
89 SkVector w = s1.fP0 - s0.fP0;
90 SkScalar denom = v0.cross(v1);
91 bool denomPositive = (denom > 0);
92 SkScalar sNumer, tNumer;
93 if (SkScalarNearlyZero(denom, kCrossTolerance)) {
94 // segments are parallel, but not collinear
95 if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
96 !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
97 return false;
98 }
99
100 // Check for zero-length segments
101 if (!SkPointPriv::CanNormalize(v0.fX, v0.fY)) {
102 // Both are zero-length
103 if (!SkPointPriv::CanNormalize(v1.fX, v1.fY)) {
104 // Check if they're the same point
105 if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
106 *p = s0.fP0;
107 *s = 0;
108 *t = 0;
109 return true;
110 } else {
111 return false;
112 }
113 }
114 // Otherwise project segment0's origin onto segment1
115 tNumer = v1.dot(-w);
116 denom = v1.dot(v1);
117 if (outside_interval(tNumer, denom, true)) {
118 return false;
119 }
120 sNumer = 0;
121 } else {
122 // Project segment1's endpoints onto segment0
123 sNumer = v0.dot(w);
124 denom = v0.dot(v0);
125 tNumer = 0;
126 if (outside_interval(sNumer, denom, true)) {
127 // The first endpoint doesn't lie on segment0
128 // If segment1 is degenerate, then there's no collision
129 if (!SkPointPriv::CanNormalize(v1.fX, v1.fY)) {
130 return false;
131 }
132
133 // Otherwise try the other one
134 SkScalar oldSNumer = sNumer;
135 sNumer = v0.dot(w + v1);
136 tNumer = denom;
137 if (outside_interval(sNumer, denom, true)) {
138 // it's possible that segment1's interval surrounds segment0
139 // this is false if params have the same signs, and in that case no collision
140 if (sNumer*oldSNumer > 0) {
141 return false;
142 }
143 // otherwise project segment0's endpoint onto segment1 instead
144 sNumer = 0;
145 tNumer = v1.dot(-w);
146 denom = v1.dot(v1);
147 }
148 }
149 }
150 } else {
151 sNumer = w.cross(v1);
152 if (outside_interval(sNumer, denom, denomPositive)) {
153 return false;
154 }
155 tNumer = w.cross(v0);
156 if (outside_interval(tNumer, denom, denomPositive)) {
157 return false;
158 }
159 }
160
161 SkScalar localS = sNumer/denom;
162 SkScalar localT = tNumer/denom;
163
164 *p = s0.fP0 + v0*localS;
165 *s = localS;
166 *t = localT;
167
168 return true;
169 }
170
SkIsConvexPolygon(const SkPoint * polygonVerts,int polygonSize)171 bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
172 if (polygonSize < 3) {
173 return false;
174 }
175
176 SkScalar lastArea = 0;
177 SkScalar lastPerpDot = 0;
178
179 int prevIndex = polygonSize - 1;
180 int currIndex = 0;
181 int nextIndex = 1;
182 SkPoint origin = polygonVerts[0];
183 SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
184 SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
185 SkVector w0 = polygonVerts[currIndex] - origin;
186 SkVector w1 = polygonVerts[nextIndex] - origin;
187 for (int i = 0; i < polygonSize; ++i) {
188 if (!polygonVerts[i].isFinite()) {
189 return false;
190 }
191
192 // Check that winding direction is always the same (otherwise we have a reflex vertex)
193 SkScalar perpDot = v0.cross(v1);
194 if (lastPerpDot*perpDot < 0) {
195 return false;
196 }
197 if (0 != perpDot) {
198 lastPerpDot = perpDot;
199 }
200
201 // If the signed area ever flips it's concave
202 // TODO: see if we can verify convexity only with signed area
203 SkScalar quadArea = w0.cross(w1);
204 if (quadArea*lastArea < 0) {
205 return false;
206 }
207 if (0 != quadArea) {
208 lastArea = quadArea;
209 }
210
211 prevIndex = currIndex;
212 currIndex = nextIndex;
213 nextIndex = (currIndex + 1) % polygonSize;
214 v0 = v1;
215 v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
216 w0 = w1;
217 w1 = polygonVerts[nextIndex] - origin;
218 }
219
220 return true;
221 }
222
223 struct OffsetEdge {
224 OffsetEdge* fPrev;
225 OffsetEdge* fNext;
226 OffsetSegment fOffset;
227 SkPoint fIntersection;
228 SkScalar fTValue;
229 uint16_t fIndex;
230 uint16_t fEnd;
231
initOffsetEdge232 void init(uint16_t start = 0, uint16_t end = 0) {
233 fIntersection = fOffset.fP0;
234 fTValue = SK_ScalarMin;
235 fIndex = start;
236 fEnd = end;
237 }
238
239 // special intersection check that looks for endpoint intersection
checkIntersectionOffsetEdge240 bool checkIntersection(const OffsetEdge* that,
241 SkPoint* p, SkScalar* s, SkScalar* t) {
242 if (this->fEnd == that->fIndex) {
243 SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
244 if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
245 *p = p1;
246 *s = SK_Scalar1;
247 *t = 0;
248 return true;
249 }
250 }
251
252 return compute_intersection(this->fOffset, that->fOffset, p, s, t);
253 }
254
255 // computes the line intersection and then the "distance" from that to this
256 // this is really a signed squared distance, where negative means that
257 // the intersection lies inside this->fOffset
computeCrossingDistanceOffsetEdge258 SkScalar computeCrossingDistance(const OffsetEdge* that) {
259 const OffsetSegment& s0 = this->fOffset;
260 const OffsetSegment& s1 = that->fOffset;
261 const SkVector& v0 = s0.fV;
262 const SkVector& v1 = s1.fV;
263
264 SkScalar denom = v0.cross(v1);
265 if (SkScalarNearlyZero(denom, kCrossTolerance)) {
266 // segments are parallel
267 return SK_ScalarMax;
268 }
269
270 SkVector w = s1.fP0 - s0.fP0;
271 SkScalar localS = w.cross(v1) / denom;
272 if (localS < 0) {
273 localS = -localS;
274 } else {
275 localS -= SK_Scalar1;
276 }
277
278 localS *= SkScalarAbs(localS);
279 localS *= v0.dot(v0);
280
281 return localS;
282 }
283
284 };
285
remove_node(const OffsetEdge * node,OffsetEdge ** head)286 static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
287 // remove from linked list
288 node->fPrev->fNext = node->fNext;
289 node->fNext->fPrev = node->fPrev;
290 if (node == *head) {
291 *head = (node->fNext == node) ? nullptr : node->fNext;
292 }
293 }
294
295 //////////////////////////////////////////////////////////////////////////////////
296
297 // The objective here is to inset all of the edges by the given distance, and then
298 // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
299 // we should only be making left-hand turns (for cw polygons, we use the winding
300 // parameter to reverse this). We detect this by checking whether the second intersection
301 // on an edge is closer to its tail than the first one.
302 //
303 // We might also have the case that there is no intersection between two neighboring inset edges.
304 // In this case, one edge will lie to the right of the other and should be discarded along with
305 // its previous intersection (if any).
306 //
307 // Note: the assumption is that inputPolygon is convex and has no coincident points.
308 //
SkInsetConvexPolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,SkScalar inset,SkTDArray<SkPoint> * insetPolygon)309 bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
310 SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
311 if (inputPolygonSize < 3) {
312 return false;
313 }
314
315 // restrict this to match other routines
316 // practically we don't want anything bigger than this anyway
317 if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
318 return false;
319 }
320
321 // can't inset by a negative or non-finite amount
322 if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) {
323 return false;
324 }
325
326 // insetting close to zero just returns the original poly
327 if (inset <= SK_ScalarNearlyZero) {
328 for (int i = 0; i < inputPolygonSize; ++i) {
329 *insetPolygon->push() = inputPolygonVerts[i];
330 }
331 return true;
332 }
333
334 // get winding direction
335 int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
336 if (0 == winding) {
337 return false;
338 }
339
340 // set up
341 SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
342 int prev = inputPolygonSize - 1;
343 for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
344 int next = (curr + 1) % inputPolygonSize;
345 if (!inputPolygonVerts[curr].isFinite()) {
346 return false;
347 }
348 // check for convexity just to be sure
349 if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
350 inputPolygonVerts[next])*winding < 0) {
351 return false;
352 }
353 SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
354 SkVector perp = SkVector::Make(-v.fY, v.fX);
355 perp.setLength(inset*winding);
356 edgeData[curr].fPrev = &edgeData[prev];
357 edgeData[curr].fNext = &edgeData[next];
358 edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
359 edgeData[curr].fOffset.fV = v;
360 edgeData[curr].init();
361 }
362
363 OffsetEdge* head = &edgeData[0];
364 OffsetEdge* currEdge = head;
365 OffsetEdge* prevEdge = currEdge->fPrev;
366 int insetVertexCount = inputPolygonSize;
367 unsigned int iterations = 0;
368 unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
369 while (head && prevEdge != currEdge) {
370 ++iterations;
371 // we should check each edge against each other edge at most once
372 if (iterations > maxIterations) {
373 return false;
374 }
375
376 SkScalar s, t;
377 SkPoint intersection;
378 if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
379 &intersection, &s, &t)) {
380 // if new intersection is further back on previous inset from the prior intersection
381 if (s < prevEdge->fTValue) {
382 // no point in considering this one again
383 remove_node(prevEdge, &head);
384 --insetVertexCount;
385 // go back one segment
386 prevEdge = prevEdge->fPrev;
387 // we've already considered this intersection, we're done
388 } else if (currEdge->fTValue > SK_ScalarMin &&
389 SkPointPriv::EqualsWithinTolerance(intersection,
390 currEdge->fIntersection,
391 1.0e-6f)) {
392 break;
393 } else {
394 // add intersection
395 currEdge->fIntersection = intersection;
396 currEdge->fTValue = t;
397
398 // go to next segment
399 prevEdge = currEdge;
400 currEdge = currEdge->fNext;
401 }
402 } else {
403 // if prev to right side of curr
404 int side = winding*compute_side(currEdge->fOffset.fP0,
405 currEdge->fOffset.fV,
406 prevEdge->fOffset.fP0);
407 if (side < 0 &&
408 side == winding*compute_side(currEdge->fOffset.fP0,
409 currEdge->fOffset.fV,
410 prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
411 // no point in considering this one again
412 remove_node(prevEdge, &head);
413 --insetVertexCount;
414 // go back one segment
415 prevEdge = prevEdge->fPrev;
416 } else {
417 // move to next segment
418 remove_node(currEdge, &head);
419 --insetVertexCount;
420 currEdge = currEdge->fNext;
421 }
422 }
423 }
424
425 // store all the valid intersections that aren't nearly coincident
426 // TODO: look at the main algorithm and see if we can detect these better
427 insetPolygon->reset();
428 if (!head) {
429 return false;
430 }
431
432 static constexpr SkScalar kCleanupTolerance = 0.01f;
433 if (insetVertexCount >= 0) {
434 insetPolygon->setReserve(insetVertexCount);
435 }
436 int currIndex = 0;
437 *insetPolygon->push() = head->fIntersection;
438 currEdge = head->fNext;
439 while (currEdge != head) {
440 if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
441 (*insetPolygon)[currIndex],
442 kCleanupTolerance)) {
443 *insetPolygon->push() = currEdge->fIntersection;
444 currIndex++;
445 }
446 currEdge = currEdge->fNext;
447 }
448 // make sure the first and last points aren't coincident
449 if (currIndex >= 1 &&
450 SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
451 kCleanupTolerance)) {
452 insetPolygon->pop();
453 }
454
455 return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count());
456 }
457
458 ///////////////////////////////////////////////////////////////////////////////////////////
459
460 // compute the number of points needed for a circular join when offsetting a reflex vertex
SkComputeRadialSteps(const SkVector & v1,const SkVector & v2,SkScalar offset,SkScalar * rotSin,SkScalar * rotCos,int * n)461 bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
462 SkScalar* rotSin, SkScalar* rotCos, int* n) {
463 const SkScalar kRecipPixelsPerArcSegment = 0.25f;
464
465 SkScalar rCos = v1.dot(v2);
466 if (!SkScalarIsFinite(rCos)) {
467 return false;
468 }
469 SkScalar rSin = v1.cross(v2);
470 if (!SkScalarIsFinite(rSin)) {
471 return false;
472 }
473 SkScalar theta = SkScalarATan2(rSin, rCos);
474
475 SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
476 // limit the number of steps to at most max uint16_t (that's all we can index)
477 // knock one value off the top to account for rounding
478 if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
479 return false;
480 }
481 int steps = SkScalarRoundToInt(floatSteps);
482
483 SkScalar dTheta = steps > 0 ? theta / steps : 0;
484 *rotSin = SkScalarSinCos(dTheta, rotCos);
485 *n = steps;
486 return true;
487 }
488
489 ///////////////////////////////////////////////////////////////////////////////////////////
490
491 // a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
left(const SkPoint & p0,const SkPoint & p1)492 static bool left(const SkPoint& p0, const SkPoint& p1) {
493 return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
494 }
495
496 // a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
right(const SkPoint & p0,const SkPoint & p1)497 static bool right(const SkPoint& p0, const SkPoint& p1) {
498 return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
499 }
500
501 struct Vertex {
LeftVertex502 static bool Left(const Vertex& qv0, const Vertex& qv1) {
503 return left(qv0.fPosition, qv1.fPosition);
504 }
505
506 // packed to fit into 16 bytes (one cache line)
507 SkPoint fPosition;
508 uint16_t fIndex; // index in unsorted polygon
509 uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
510 uint16_t fNextIndex;
511 uint16_t fFlags;
512 };
513
514 enum VertexFlags {
515 kPrevLeft_VertexFlag = 0x1,
516 kNextLeft_VertexFlag = 0x2,
517 };
518
519 struct ActiveEdge {
ActiveEdgeActiveEdge520 ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
ActiveEdgeActiveEdge521 ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
522 : fSegment({ p0, v })
523 , fIndex0(index0)
524 , fIndex1(index1)
525 , fAbove(nullptr)
526 , fBelow(nullptr)
527 , fRed(true) {
528 fChild[0] = nullptr;
529 fChild[1] = nullptr;
530 }
531
532 // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
533 // This is only used to verify the edgelist -- the actual test for insertion/deletion is much
534 // simpler because we can make certain assumptions then.
aboveIfLeftActiveEdge535 bool aboveIfLeft(const ActiveEdge* that) const {
536 const SkPoint& p0 = this->fSegment.fP0;
537 const SkPoint& q0 = that->fSegment.fP0;
538 SkASSERT(p0.fX <= q0.fX);
539 SkVector d = q0 - p0;
540 const SkVector& v = this->fSegment.fV;
541 const SkVector& w = that->fSegment.fV;
542 // The idea here is that if the vector between the origins of the two segments (d)
543 // rotates counterclockwise up to the vector representing the "this" segment (v),
544 // then we know that "this" is above "that". If the result is clockwise we say it's below.
545 if (this->fIndex0 != that->fIndex0) {
546 SkScalar cross = d.cross(v);
547 if (cross > kCrossTolerance) {
548 return true;
549 } else if (cross < -kCrossTolerance) {
550 return false;
551 }
552 } else if (this->fIndex1 == that->fIndex1) {
553 return false;
554 }
555 // At this point either the two origins are nearly equal or the origin of "that"
556 // lies on dv. So then we try the same for the vector from the tail of "this"
557 // to the head of "that". Again, ccw means "this" is above "that".
558 // d = that.P1 - this.P0
559 // = that.fP0 + that.fV - this.fP0
560 // = that.fP0 - this.fP0 + that.fV
561 // = old_d + that.fV
562 d += w;
563 SkScalar cross = d.cross(v);
564 if (cross > kCrossTolerance) {
565 return true;
566 } else if (cross < -kCrossTolerance) {
567 return false;
568 }
569 // If the previous check fails, the two segments are nearly collinear
570 // First check y-coord of first endpoints
571 if (p0.fX < q0.fX) {
572 return (p0.fY >= q0.fY);
573 } else if (p0.fY > q0.fY) {
574 return true;
575 } else if (p0.fY < q0.fY) {
576 return false;
577 }
578 // The first endpoints are the same, so check the other endpoint
579 SkPoint p1 = p0 + v;
580 SkPoint q1 = q0 + w;
581 if (p1.fX < q1.fX) {
582 return (p1.fY >= q1.fY);
583 } else {
584 return (p1.fY > q1.fY);
585 }
586 }
587
588 // same as leftAndAbove(), but generalized
aboveActiveEdge589 bool above(const ActiveEdge* that) const {
590 const SkPoint& p0 = this->fSegment.fP0;
591 const SkPoint& q0 = that->fSegment.fP0;
592 if (right(p0, q0)) {
593 return !that->aboveIfLeft(this);
594 } else {
595 return this->aboveIfLeft(that);
596 }
597 }
598
intersectActiveEdge599 bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
600 // check first to see if these edges are neighbors in the polygon
601 if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
602 this->fIndex0 == index1 || this->fIndex1 == index1) {
603 return false;
604 }
605
606 // We don't need the exact intersection point so we can do a simpler test here.
607 const SkPoint& p0 = this->fSegment.fP0;
608 const SkVector& v = this->fSegment.fV;
609 SkPoint p1 = p0 + v;
610 SkPoint q1 = q0 + w;
611
612 // We assume some x-overlap due to how the edgelist works
613 // This allows us to simplify our test
614 // We need some slop here because storing the vector and recomputing the second endpoint
615 // doesn't necessary give us the original result in floating point.
616 // TODO: Store vector as double? Store endpoint as well?
617 SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
618
619 // if each segment straddles the other (i.e., the endpoints have different sides)
620 // then they intersect
621 bool result;
622 if (p0.fX < q0.fX) {
623 if (q1.fX < p1.fX) {
624 result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
625 } else {
626 result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
627 }
628 } else {
629 if (p1.fX < q1.fX) {
630 result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
631 } else {
632 result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
633 }
634 }
635 return result;
636 }
637
intersectActiveEdge638 bool intersect(const ActiveEdge* edge) {
639 return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
640 }
641
lessThanActiveEdge642 bool lessThan(const ActiveEdge* that) const {
643 SkASSERT(!this->above(this));
644 SkASSERT(!that->above(that));
645 SkASSERT(!(this->above(that) && that->above(this)));
646 return this->above(that);
647 }
648
equalsActiveEdge649 bool equals(uint16_t index0, uint16_t index1) const {
650 return (this->fIndex0 == index0 && this->fIndex1 == index1);
651 }
652
653 OffsetSegment fSegment;
654 uint16_t fIndex0; // indices for previous and next vertex in polygon
655 uint16_t fIndex1;
656 ActiveEdge* fChild[2];
657 ActiveEdge* fAbove;
658 ActiveEdge* fBelow;
659 int32_t fRed;
660 };
661
662 class ActiveEdgeList {
663 public:
ActiveEdgeList(int maxEdges)664 ActiveEdgeList(int maxEdges) {
665 fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
666 fCurrFree = 0;
667 fMaxFree = maxEdges;
668 }
~ActiveEdgeList()669 ~ActiveEdgeList() {
670 fTreeHead.fChild[1] = nullptr;
671 sk_free(fAllocation);
672 }
673
insert(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)674 bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
675 SkVector v = p1 - p0;
676 if (!v.isFinite()) {
677 return false;
678 }
679 // empty tree case -- easy
680 if (!fTreeHead.fChild[1]) {
681 ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
682 SkASSERT(root);
683 if (!root) {
684 return false;
685 }
686 root->fRed = false;
687 return true;
688 }
689
690 // set up helpers
691 ActiveEdge* top = &fTreeHead;
692 ActiveEdge *grandparent = nullptr;
693 ActiveEdge *parent = nullptr;
694 ActiveEdge *curr = top->fChild[1];
695 int dir = 0;
696 int last = 0; // ?
697 // predecessor and successor, for intersection check
698 ActiveEdge* pred = nullptr;
699 ActiveEdge* succ = nullptr;
700
701 // search down the tree
702 while (true) {
703 if (!curr) {
704 // check for intersection with predecessor and successor
705 if ((pred && pred->intersect(p0, v, index0, index1)) ||
706 (succ && succ->intersect(p0, v, index0, index1))) {
707 return false;
708 }
709 // insert new node at bottom
710 parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
711 SkASSERT(curr);
712 if (!curr) {
713 return false;
714 }
715 curr->fAbove = pred;
716 curr->fBelow = succ;
717 if (pred) {
718 pred->fBelow = curr;
719 }
720 if (succ) {
721 succ->fAbove = curr;
722 }
723 if (IsRed(parent)) {
724 int dir2 = (top->fChild[1] == grandparent);
725 if (curr == parent->fChild[last]) {
726 top->fChild[dir2] = SingleRotation(grandparent, !last);
727 } else {
728 top->fChild[dir2] = DoubleRotation(grandparent, !last);
729 }
730 }
731 break;
732 } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
733 // color flip
734 curr->fRed = true;
735 curr->fChild[0]->fRed = false;
736 curr->fChild[1]->fRed = false;
737 if (IsRed(parent)) {
738 int dir2 = (top->fChild[1] == grandparent);
739 if (curr == parent->fChild[last]) {
740 top->fChild[dir2] = SingleRotation(grandparent, !last);
741 } else {
742 top->fChild[dir2] = DoubleRotation(grandparent, !last);
743 }
744 }
745 }
746
747 last = dir;
748 int side;
749 // check to see if segment is above or below
750 if (curr->fIndex0 == index0) {
751 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
752 } else {
753 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
754 }
755 if (0 == side) {
756 return false;
757 }
758 dir = (side < 0);
759
760 if (0 == dir) {
761 succ = curr;
762 } else {
763 pred = curr;
764 }
765
766 // update helpers
767 if (grandparent) {
768 top = grandparent;
769 }
770 grandparent = parent;
771 parent = curr;
772 curr = curr->fChild[dir];
773 }
774
775 // update root and make it black
776 fTreeHead.fChild[1]->fRed = false;
777
778 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
779
780 return true;
781 }
782
783 // replaces edge p0p1 with p1p2
replace(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t index0,uint16_t index1,uint16_t index2)784 bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
785 uint16_t index0, uint16_t index1, uint16_t index2) {
786 if (!fTreeHead.fChild[1]) {
787 return false;
788 }
789
790 SkVector v = p2 - p1;
791 ActiveEdge* curr = &fTreeHead;
792 ActiveEdge* found = nullptr;
793 int dir = 1;
794
795 // search
796 while (curr->fChild[dir] != nullptr) {
797 // update helpers
798 curr = curr->fChild[dir];
799 // save found node
800 if (curr->equals(index0, index1)) {
801 found = curr;
802 break;
803 } else {
804 // check to see if segment is above or below
805 int side;
806 if (curr->fIndex1 == index1) {
807 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
808 } else {
809 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
810 }
811 if (0 == side) {
812 return false;
813 }
814 dir = (side < 0);
815 }
816 }
817
818 if (!found) {
819 return false;
820 }
821
822 // replace if found
823 ActiveEdge* pred = found->fAbove;
824 ActiveEdge* succ = found->fBelow;
825 // check deletion and insert intersection cases
826 if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
827 return false;
828 }
829 if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
830 return false;
831 }
832 found->fSegment.fP0 = p1;
833 found->fSegment.fV = v;
834 found->fIndex0 = index1;
835 found->fIndex1 = index2;
836 // above and below should stay the same
837
838 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
839
840 return true;
841 }
842
remove(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)843 bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
844 if (!fTreeHead.fChild[1]) {
845 return false;
846 }
847
848 ActiveEdge* curr = &fTreeHead;
849 ActiveEdge* parent = nullptr;
850 ActiveEdge* grandparent = nullptr;
851 ActiveEdge* found = nullptr;
852 int dir = 1;
853
854 // search and push a red node down
855 while (curr->fChild[dir] != nullptr) {
856 int last = dir;
857
858 // update helpers
859 grandparent = parent;
860 parent = curr;
861 curr = curr->fChild[dir];
862 // save found node
863 if (curr->equals(index0, index1)) {
864 found = curr;
865 dir = 0;
866 } else {
867 // check to see if segment is above or below
868 int side;
869 if (curr->fIndex1 == index1) {
870 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
871 } else {
872 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
873 }
874 if (0 == side) {
875 return false;
876 }
877 dir = (side < 0);
878 }
879
880 // push the red node down
881 if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
882 if (IsRed(curr->fChild[!dir])) {
883 parent = parent->fChild[last] = SingleRotation(curr, dir);
884 } else {
885 ActiveEdge *s = parent->fChild[!last];
886
887 if (s != NULL) {
888 if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
889 // color flip
890 parent->fRed = false;
891 s->fRed = true;
892 curr->fRed = true;
893 } else {
894 int dir2 = (grandparent->fChild[1] == parent);
895
896 if (IsRed(s->fChild[last])) {
897 grandparent->fChild[dir2] = DoubleRotation(parent, last);
898 } else if (IsRed(s->fChild[!last])) {
899 grandparent->fChild[dir2] = SingleRotation(parent, last);
900 }
901
902 // ensure correct coloring
903 curr->fRed = grandparent->fChild[dir2]->fRed = true;
904 grandparent->fChild[dir2]->fChild[0]->fRed = false;
905 grandparent->fChild[dir2]->fChild[1]->fRed = false;
906 }
907 }
908 }
909 }
910 }
911
912 // replace and remove if found
913 if (found) {
914 ActiveEdge* pred = found->fAbove;
915 ActiveEdge* succ = found->fBelow;
916 if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
917 return false;
918 }
919 if (found != curr) {
920 found->fSegment = curr->fSegment;
921 found->fIndex0 = curr->fIndex0;
922 found->fIndex1 = curr->fIndex1;
923 found->fAbove = curr->fAbove;
924 pred = found->fAbove;
925 // we don't need to set found->fBelow here
926 } else {
927 if (succ) {
928 succ->fAbove = pred;
929 }
930 }
931 if (pred) {
932 pred->fBelow = curr->fBelow;
933 }
934 parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
935
936 // no need to delete
937 curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
938 curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
939 if (fTreeHead.fChild[1]) {
940 fTreeHead.fChild[1]->fRed = false;
941 }
942 }
943
944 // update root and make it black
945 if (fTreeHead.fChild[1]) {
946 fTreeHead.fChild[1]->fRed = false;
947 }
948
949 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
950
951 return true;
952 }
953
954 private:
955 // allocator
allocate(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)956 ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
957 if (fCurrFree >= fMaxFree) {
958 return nullptr;
959 }
960 char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
961 ++fCurrFree;
962 return new(bytes) ActiveEdge(p0, p1, index0, index1);
963 }
964
965 ///////////////////////////////////////////////////////////////////////////////////
966 // Red-black tree methods
967 ///////////////////////////////////////////////////////////////////////////////////
IsRed(const ActiveEdge * node)968 static bool IsRed(const ActiveEdge* node) {
969 return node && node->fRed;
970 }
971
SingleRotation(ActiveEdge * node,int dir)972 static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
973 ActiveEdge* tmp = node->fChild[!dir];
974
975 node->fChild[!dir] = tmp->fChild[dir];
976 tmp->fChild[dir] = node;
977
978 node->fRed = true;
979 tmp->fRed = false;
980
981 return tmp;
982 }
983
DoubleRotation(ActiveEdge * node,int dir)984 static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
985 node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
986
987 return SingleRotation(node, dir);
988 }
989
990 // returns black link count
VerifyTree(const ActiveEdge * tree)991 static int VerifyTree(const ActiveEdge* tree) {
992 if (!tree) {
993 return 1;
994 }
995
996 const ActiveEdge* left = tree->fChild[0];
997 const ActiveEdge* right = tree->fChild[1];
998
999 // no consecutive red links
1000 if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
1001 SkASSERT(false);
1002 return 0;
1003 }
1004
1005 // check secondary links
1006 if (tree->fAbove) {
1007 SkASSERT(tree->fAbove->fBelow == tree);
1008 SkASSERT(tree->fAbove->lessThan(tree));
1009 }
1010 if (tree->fBelow) {
1011 SkASSERT(tree->fBelow->fAbove == tree);
1012 SkASSERT(tree->lessThan(tree->fBelow));
1013 }
1014
1015 // violates binary tree order
1016 if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
1017 SkASSERT(false);
1018 return 0;
1019 }
1020
1021 int leftCount = VerifyTree(left);
1022 int rightCount = VerifyTree(right);
1023
1024 // return black link count
1025 if (leftCount != 0 && rightCount != 0) {
1026 // black height mismatch
1027 if (leftCount != rightCount) {
1028 SkASSERT(false);
1029 return 0;
1030 }
1031 return IsRed(tree) ? leftCount : leftCount + 1;
1032 } else {
1033 return 0;
1034 }
1035 }
1036
1037 ActiveEdge fTreeHead;
1038 char* fAllocation;
1039 int fCurrFree;
1040 int fMaxFree;
1041 };
1042
1043 // Here we implement a sweep line algorithm to determine whether the provided points
1044 // represent a simple polygon, i.e., the polygon is non-self-intersecting.
1045 // We first insert the vertices into a priority queue sorting horizontally from left to right.
1046 // Then as we pop the vertices from the queue we generate events which indicate that an edge
1047 // should be added or removed from an edge list. If any intersections are detected in the edge
1048 // list, then we know the polygon is self-intersecting and hence not simple.
SkIsSimplePolygon(const SkPoint * polygon,int polygonSize)1049 bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
1050 if (polygonSize < 3) {
1051 return false;
1052 }
1053
1054 // need to be able to represent all the vertices in the 16-bit indices
1055 if (polygonSize > std::numeric_limits<uint16_t>::max()) {
1056 return false;
1057 }
1058
1059 // If it's convex, it's simple
1060 if (SkIsConvexPolygon(polygon, polygonSize)) {
1061 return true;
1062 }
1063
1064 SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
1065 for (int i = 0; i < polygonSize; ++i) {
1066 Vertex newVertex;
1067 if (!polygon[i].isFinite()) {
1068 return false;
1069 }
1070 newVertex.fPosition = polygon[i];
1071 newVertex.fIndex = i;
1072 newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
1073 newVertex.fNextIndex = (i + 1) % polygonSize;
1074 newVertex.fFlags = 0;
1075 if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
1076 newVertex.fFlags |= kPrevLeft_VertexFlag;
1077 }
1078 if (left(polygon[newVertex.fNextIndex], polygon[i])) {
1079 newVertex.fFlags |= kNextLeft_VertexFlag;
1080 }
1081 vertexQueue.insert(newVertex);
1082 }
1083
1084 // pop each vertex from the queue and generate events depending on
1085 // where it lies relative to its neighboring edges
1086 ActiveEdgeList sweepLine(polygonSize);
1087 while (vertexQueue.count() > 0) {
1088 const Vertex& v = vertexQueue.peek();
1089
1090 // both to the right -- insert both
1091 if (v.fFlags == 0) {
1092 if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
1093 break;
1094 }
1095 if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
1096 break;
1097 }
1098 // both to the left -- remove both
1099 } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
1100 if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
1101 break;
1102 }
1103 if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
1104 break;
1105 }
1106 // one to left and right -- replace one with another
1107 } else {
1108 if (v.fFlags & kPrevLeft_VertexFlag) {
1109 if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
1110 v.fPrevIndex, v.fIndex, v.fNextIndex)) {
1111 break;
1112 }
1113 } else {
1114 SkASSERT(v.fFlags & kNextLeft_VertexFlag);
1115 if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
1116 v.fNextIndex, v.fIndex, v.fPrevIndex)) {
1117 break;
1118 }
1119 }
1120 }
1121
1122 vertexQueue.pop();
1123 }
1124
1125 return (vertexQueue.count() == 0);
1126 }
1127
1128 ///////////////////////////////////////////////////////////////////////////////////////////
1129
1130 // helper function for SkOffsetSimplePolygon
setup_offset_edge(OffsetEdge * currEdge,const SkPoint & endpoint0,const SkPoint & endpoint1,uint16_t startIndex,uint16_t endIndex)1131 static void setup_offset_edge(OffsetEdge* currEdge,
1132 const SkPoint& endpoint0, const SkPoint& endpoint1,
1133 uint16_t startIndex, uint16_t endIndex) {
1134 currEdge->fOffset.fP0 = endpoint0;
1135 currEdge->fOffset.fV = endpoint1 - endpoint0;
1136 currEdge->init(startIndex, endIndex);
1137 }
1138
is_reflex_vertex(const SkPoint * inputPolygonVerts,int winding,SkScalar offset,uint16_t prevIndex,uint16_t currIndex,uint16_t nextIndex)1139 static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
1140 uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
1141 int side = compute_side(inputPolygonVerts[prevIndex],
1142 inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
1143 inputPolygonVerts[nextIndex]);
1144 // if reflex point, we need to add extra edges
1145 return (side*winding*offset < 0);
1146 }
1147
SkOffsetSimplePolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,SkScalar offset,SkTDArray<SkPoint> * offsetPolygon,SkTDArray<int> * polygonIndices)1148 bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, SkScalar offset,
1149 SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
1150 if (inputPolygonSize < 3) {
1151 return false;
1152 }
1153
1154 // need to be able to represent all the vertices in the 16-bit indices
1155 if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
1156 return false;
1157 }
1158
1159 if (!SkScalarIsFinite(offset)) {
1160 return false;
1161 }
1162
1163 // offsetting close to zero just returns the original poly
1164 if (SkScalarNearlyZero(offset)) {
1165 for (int i = 0; i < inputPolygonSize; ++i) {
1166 *offsetPolygon->push() = inputPolygonVerts[i];
1167 *polygonIndices->push() = i;
1168 }
1169 return true;
1170 }
1171
1172 // get winding direction
1173 int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
1174 if (0 == winding) {
1175 return false;
1176 }
1177
1178 // build normals
1179 SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize);
1180 unsigned int numEdges = 0;
1181 for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1182 currIndex < inputPolygonSize;
1183 prevIndex = currIndex, ++currIndex) {
1184 if (!inputPolygonVerts[currIndex].isFinite()) {
1185 return false;
1186 }
1187 int nextIndex = (currIndex + 1) % inputPolygonSize;
1188 if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
1189 offset, winding, &normals[currIndex])) {
1190 return false;
1191 }
1192 if (currIndex > 0) {
1193 // if reflex point, we need to add extra edges
1194 if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1195 prevIndex, currIndex, nextIndex)) {
1196 SkScalar rotSin, rotCos;
1197 int numSteps;
1198 if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
1199 &rotSin, &rotCos, &numSteps)) {
1200 return false;
1201 }
1202 numEdges += SkTMax(numSteps, 1);
1203 }
1204 }
1205 numEdges++;
1206 }
1207 // finish up the edge counting
1208 if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
1209 SkScalar rotSin, rotCos;
1210 int numSteps;
1211 if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
1212 &rotSin, &rotCos, &numSteps)) {
1213 return false;
1214 }
1215 numEdges += SkTMax(numSteps, 1);
1216 }
1217
1218 // Make sure we don't overflow the max array count.
1219 // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
1220 // and we have a max of 2^16-1 original vertices.
1221 if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
1222 return false;
1223 }
1224
1225 // build initial offset edge list
1226 SkSTArray<64, OffsetEdge> edgeData(numEdges);
1227 OffsetEdge* prevEdge = nullptr;
1228 for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1229 currIndex < inputPolygonSize;
1230 prevIndex = currIndex, ++currIndex) {
1231 int nextIndex = (currIndex + 1) % inputPolygonSize;
1232 // if reflex point, fill in curve
1233 if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1234 prevIndex, currIndex, nextIndex)) {
1235 SkScalar rotSin, rotCos;
1236 int numSteps;
1237 SkVector prevNormal = normals[prevIndex];
1238 if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
1239 &rotSin, &rotCos, &numSteps)) {
1240 return false;
1241 }
1242 auto currEdge = edgeData.push_back_n(SkTMax(numSteps, 1));
1243 for (int i = 0; i < numSteps - 1; ++i) {
1244 SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
1245 prevNormal.fY*rotCos + prevNormal.fX*rotSin);
1246 setup_offset_edge(currEdge,
1247 inputPolygonVerts[currIndex] + prevNormal,
1248 inputPolygonVerts[currIndex] + currNormal,
1249 currIndex, currIndex);
1250 prevNormal = currNormal;
1251 currEdge->fPrev = prevEdge;
1252 if (prevEdge) {
1253 prevEdge->fNext = currEdge;
1254 }
1255 prevEdge = currEdge;
1256 ++currEdge;
1257 }
1258 setup_offset_edge(currEdge,
1259 inputPolygonVerts[currIndex] + prevNormal,
1260 inputPolygonVerts[currIndex] + normals[currIndex],
1261 currIndex, currIndex);
1262 currEdge->fPrev = prevEdge;
1263 if (prevEdge) {
1264 prevEdge->fNext = currEdge;
1265 }
1266 prevEdge = currEdge;
1267 }
1268
1269 // Add the edge
1270 auto currEdge = edgeData.push_back_n(1);
1271 setup_offset_edge(currEdge,
1272 inputPolygonVerts[currIndex] + normals[currIndex],
1273 inputPolygonVerts[nextIndex] + normals[currIndex],
1274 currIndex, nextIndex);
1275 currEdge->fPrev = prevEdge;
1276 if (prevEdge) {
1277 prevEdge->fNext = currEdge;
1278 }
1279 prevEdge = currEdge;
1280 }
1281 // close up the linked list
1282 SkASSERT(prevEdge);
1283 prevEdge->fNext = &edgeData[0];
1284 edgeData[0].fPrev = prevEdge;
1285
1286 // now clip edges
1287 SkASSERT(edgeData.count() == (int)numEdges);
1288 auto head = &edgeData[0];
1289 auto currEdge = head;
1290 unsigned int offsetVertexCount = numEdges;
1291 unsigned long long iterations = 0;
1292 unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
1293 while (head && prevEdge != currEdge && offsetVertexCount > 0) {
1294 ++iterations;
1295 // we should check each edge against each other edge at most once
1296 if (iterations > maxIterations) {
1297 return false;
1298 }
1299
1300 SkScalar s, t;
1301 SkPoint intersection;
1302 if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
1303 // if new intersection is further back on previous inset from the prior intersection
1304 if (s < prevEdge->fTValue) {
1305 // no point in considering this one again
1306 remove_node(prevEdge, &head);
1307 --offsetVertexCount;
1308 // go back one segment
1309 prevEdge = prevEdge->fPrev;
1310 // we've already considered this intersection, we're done
1311 } else if (currEdge->fTValue > SK_ScalarMin &&
1312 SkPointPriv::EqualsWithinTolerance(intersection,
1313 currEdge->fIntersection,
1314 1.0e-6f)) {
1315 break;
1316 } else {
1317 // add intersection
1318 currEdge->fIntersection = intersection;
1319 currEdge->fTValue = t;
1320 currEdge->fIndex = prevEdge->fEnd;
1321
1322 // go to next segment
1323 prevEdge = currEdge;
1324 currEdge = currEdge->fNext;
1325 }
1326 } else {
1327 // If there is no intersection, we want to minimize the distance between
1328 // the point where the segment lines cross and the segments themselves.
1329 OffsetEdge* prevPrevEdge = prevEdge->fPrev;
1330 OffsetEdge* currNextEdge = currEdge->fNext;
1331 SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
1332 SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
1333 // if both lead to direct collision
1334 if (dist0 < 0 && dist1 < 0) {
1335 // check first to see if either represent parts of one contour
1336 SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
1337 bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1338 prevEdge->fOffset.fP0);
1339 p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
1340 bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1341 currNextEdge->fOffset.fP0);
1342
1343 // want to step along contour to find intersections rather than jump to new one
1344 if (currSameContour && !prevSameContour) {
1345 remove_node(currEdge, &head);
1346 currEdge = currNextEdge;
1347 --offsetVertexCount;
1348 continue;
1349 } else if (prevSameContour && !currSameContour) {
1350 remove_node(prevEdge, &head);
1351 prevEdge = prevPrevEdge;
1352 --offsetVertexCount;
1353 continue;
1354 }
1355 }
1356
1357 // otherwise minimize collision distance along segment
1358 if (dist0 < dist1) {
1359 remove_node(prevEdge, &head);
1360 prevEdge = prevPrevEdge;
1361 } else {
1362 remove_node(currEdge, &head);
1363 currEdge = currNextEdge;
1364 }
1365 --offsetVertexCount;
1366 }
1367 }
1368
1369 // store all the valid intersections that aren't nearly coincident
1370 // TODO: look at the main algorithm and see if we can detect these better
1371 offsetPolygon->reset();
1372 if (!head || offsetVertexCount == 0 ||
1373 offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
1374 return false;
1375 }
1376
1377 static constexpr SkScalar kCleanupTolerance = 0.01f;
1378 offsetPolygon->setReserve(offsetVertexCount);
1379 int currIndex = 0;
1380 *offsetPolygon->push() = head->fIntersection;
1381 if (polygonIndices) {
1382 *polygonIndices->push() = head->fIndex;
1383 }
1384 currEdge = head->fNext;
1385 while (currEdge != head) {
1386 if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
1387 (*offsetPolygon)[currIndex],
1388 kCleanupTolerance)) {
1389 *offsetPolygon->push() = currEdge->fIntersection;
1390 if (polygonIndices) {
1391 *polygonIndices->push() = currEdge->fIndex;
1392 }
1393 currIndex++;
1394 }
1395 currEdge = currEdge->fNext;
1396 }
1397 // make sure the first and last points aren't coincident
1398 if (currIndex >= 1 &&
1399 SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
1400 kCleanupTolerance)) {
1401 offsetPolygon->pop();
1402 if (polygonIndices) {
1403 polygonIndices->pop();
1404 }
1405 }
1406
1407 // check winding of offset polygon (it should be same as the original polygon)
1408 SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->count());
1409
1410 return (winding*offsetWinding > 0 &&
1411 SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->count()));
1412 }
1413
1414 //////////////////////////////////////////////////////////////////////////////////////////
1415
1416 struct TriangulationVertex {
1417 SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
1418
1419 enum class VertexType { kConvex, kReflex };
1420
1421 SkPoint fPosition;
1422 VertexType fVertexType;
1423 uint16_t fIndex;
1424 uint16_t fPrevIndex;
1425 uint16_t fNextIndex;
1426 };
1427
compute_triangle_bounds(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkRect * bounds)1428 static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1429 SkRect* bounds) {
1430 Sk4s min, max;
1431 min = max = Sk4s(p0.fX, p0.fY, p0.fX, p0.fY);
1432 Sk4s xy(p1.fX, p1.fY, p2.fX, p2.fY);
1433 min = Sk4s::Min(min, xy);
1434 max = Sk4s::Max(max, xy);
1435 bounds->set(SkTMin(min[0], min[2]), SkTMin(min[1], min[3]),
1436 SkTMax(max[0], max[2]), SkTMax(max[1], max[3]));
1437 }
1438
1439 // test to see if point p is in triangle p0p1p2.
1440 // for now assuming strictly inside -- if on the edge it's outside
point_in_triangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p)1441 static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1442 const SkPoint& p) {
1443 SkVector v0 = p1 - p0;
1444 SkVector v1 = p2 - p1;
1445 SkScalar n = v0.cross(v1);
1446
1447 SkVector w0 = p - p0;
1448 if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
1449 return false;
1450 }
1451
1452 SkVector w1 = p - p1;
1453 if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
1454 return false;
1455 }
1456
1457 SkVector v2 = p0 - p2;
1458 SkVector w2 = p - p2;
1459 if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
1460 return false;
1461 }
1462
1463 return true;
1464 }
1465
1466 // Data structure to track reflex vertices and check whether any are inside a given triangle
1467 class ReflexHash {
1468 public:
init(const SkRect & bounds,int vertexCount)1469 bool init(const SkRect& bounds, int vertexCount) {
1470 fBounds = bounds;
1471 fNumVerts = 0;
1472 SkScalar width = bounds.width();
1473 SkScalar height = bounds.height();
1474 if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) {
1475 return false;
1476 }
1477
1478 // We want vertexCount grid cells, roughly distributed to match the bounds ratio
1479 SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
1480 if (!SkScalarIsFinite(hCount)) {
1481 return false;
1482 }
1483 fHCount = SkTMax(SkTMin(SkScalarRoundToInt(hCount), vertexCount), 1);
1484 fVCount = vertexCount/fHCount;
1485 fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
1486 sk_ieee_float_divide(fVCount - 0.001f, height));
1487 if (!fGridConversion.isFinite()) {
1488 return false;
1489 }
1490
1491 fGrid.setCount(fHCount*fVCount);
1492 for (int i = 0; i < fGrid.count(); ++i) {
1493 fGrid[i].reset();
1494 }
1495
1496 return true;
1497 }
1498
add(TriangulationVertex * v)1499 void add(TriangulationVertex* v) {
1500 int index = hash(v);
1501 fGrid[index].addToTail(v);
1502 ++fNumVerts;
1503 }
1504
remove(TriangulationVertex * v)1505 void remove(TriangulationVertex* v) {
1506 int index = hash(v);
1507 fGrid[index].remove(v);
1508 --fNumVerts;
1509 }
1510
checkTriangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t ignoreIndex0,uint16_t ignoreIndex1) const1511 bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1512 uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
1513 if (!fNumVerts) {
1514 return false;
1515 }
1516
1517 SkRect triBounds;
1518 compute_triangle_bounds(p0, p1, p2, &triBounds);
1519 int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
1520 int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
1521 int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
1522 int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
1523
1524 for (int v = v0; v <= v1; ++v) {
1525 for (int h = h0; h <= h1; ++h) {
1526 int i = v * fHCount + h;
1527 for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
1528 reflexIter != fGrid[i].end(); ++reflexIter) {
1529 TriangulationVertex* reflexVertex = *reflexIter;
1530 if (reflexVertex->fIndex != ignoreIndex0 &&
1531 reflexVertex->fIndex != ignoreIndex1 &&
1532 point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
1533 return true;
1534 }
1535 }
1536
1537 }
1538 }
1539
1540 return false;
1541 }
1542
1543 private:
hash(TriangulationVertex * vert) const1544 int hash(TriangulationVertex* vert) const {
1545 int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
1546 int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
1547 SkASSERT(v*fHCount + h >= 0);
1548 return v*fHCount + h;
1549 }
1550
1551 SkRect fBounds;
1552 int fHCount;
1553 int fVCount;
1554 int fNumVerts;
1555 // converts distance from the origin to a grid location (when cast to int)
1556 SkVector fGridConversion;
1557 SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
1558 };
1559
1560 // Check to see if a reflex vertex has become a convex vertex after clipping an ear
reclassify_vertex(TriangulationVertex * p,const SkPoint * polygonVerts,int winding,ReflexHash * reflexHash,SkTInternalLList<TriangulationVertex> * convexList)1561 static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
1562 int winding, ReflexHash* reflexHash,
1563 SkTInternalLList<TriangulationVertex>* convexList) {
1564 if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
1565 SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
1566 SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
1567 if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1568 p->fVertexType = TriangulationVertex::VertexType::kConvex;
1569 reflexHash->remove(p);
1570 p->fPrev = p->fNext = nullptr;
1571 convexList->addToTail(p);
1572 }
1573 }
1574 }
1575
SkTriangulateSimplePolygon(const SkPoint * polygonVerts,uint16_t * indexMap,int polygonSize,SkTDArray<uint16_t> * triangleIndices)1576 bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
1577 SkTDArray<uint16_t>* triangleIndices) {
1578 if (polygonSize < 3) {
1579 return false;
1580 }
1581 // need to be able to represent all the vertices in the 16-bit indices
1582 if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
1583 return false;
1584 }
1585
1586 // get bounds
1587 SkRect bounds;
1588 if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
1589 return false;
1590 }
1591 // get winding direction
1592 // TODO: we do this for all the polygon routines -- might be better to have the client
1593 // compute it and pass it in
1594 int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
1595 if (0 == winding) {
1596 return false;
1597 }
1598
1599 // Set up vertices
1600 SkAutoSTMalloc<64, TriangulationVertex> triangulationVertices(polygonSize);
1601 int prevIndex = polygonSize - 1;
1602 SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
1603 for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
1604 int nextIndex = (currIndex + 1) % polygonSize;
1605
1606 SkDEBUGCODE(memset(&triangulationVertices[currIndex], 0, sizeof(TriangulationVertex)));
1607 triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
1608 triangulationVertices[currIndex].fIndex = currIndex;
1609 triangulationVertices[currIndex].fPrevIndex = prevIndex;
1610 triangulationVertices[currIndex].fNextIndex = nextIndex;
1611 SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
1612 if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1613 triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
1614 } else {
1615 triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
1616 }
1617
1618 prevIndex = currIndex;
1619 v0 = v1;
1620 }
1621
1622 // Classify initial vertices into a list of convex vertices and a hash of reflex vertices
1623 // TODO: possibly sort the convexList in some way to get better triangles
1624 SkTInternalLList<TriangulationVertex> convexList;
1625 ReflexHash reflexHash;
1626 if (!reflexHash.init(bounds, polygonSize)) {
1627 return false;
1628 }
1629 prevIndex = polygonSize - 1;
1630 for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
1631 TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
1632 if (TriangulationVertex::VertexType::kConvex == currType) {
1633 int nextIndex = (currIndex + 1) % polygonSize;
1634 TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
1635 TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
1636 // We prioritize clipping vertices with neighboring reflex vertices.
1637 // The intent here is that it will cull reflex vertices more quickly.
1638 if (TriangulationVertex::VertexType::kReflex == prevType ||
1639 TriangulationVertex::VertexType::kReflex == nextType) {
1640 convexList.addToHead(&triangulationVertices[currIndex]);
1641 } else {
1642 convexList.addToTail(&triangulationVertices[currIndex]);
1643 }
1644 } else {
1645 // We treat near collinear vertices as reflex
1646 reflexHash.add(&triangulationVertices[currIndex]);
1647 }
1648 }
1649
1650 // The general concept: We are trying to find three neighboring vertices where
1651 // no other vertex lies inside the triangle (an "ear"). If we find one, we clip
1652 // that ear off, and then repeat on the new polygon. Once we get down to three vertices
1653 // we have triangulated the entire polygon.
1654 // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
1655 // noting that only convex vertices can be potential ears, and we only need to check whether
1656 // any reflex vertices lie inside the ear.
1657 triangleIndices->setReserve(triangleIndices->count() + 3 * (polygonSize - 2));
1658 int vertexCount = polygonSize;
1659 while (vertexCount > 3) {
1660 bool success = false;
1661 TriangulationVertex* earVertex = nullptr;
1662 TriangulationVertex* p0 = nullptr;
1663 TriangulationVertex* p2 = nullptr;
1664 // find a convex vertex to clip
1665 for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
1666 convexIter != convexList.end(); ++convexIter) {
1667 earVertex = *convexIter;
1668 SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
1669
1670 p0 = &triangulationVertices[earVertex->fPrevIndex];
1671 p2 = &triangulationVertices[earVertex->fNextIndex];
1672
1673 // see if any reflex vertices are inside the ear
1674 bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
1675 p2->fPosition, p0->fIndex, p2->fIndex);
1676 if (failed) {
1677 continue;
1678 }
1679
1680 // found one we can clip
1681 success = true;
1682 break;
1683 }
1684 // If we can't find any ears to clip, this probably isn't a simple polygon
1685 if (!success) {
1686 return false;
1687 }
1688
1689 // add indices
1690 auto indices = triangleIndices->append(3);
1691 indices[0] = indexMap[p0->fIndex];
1692 indices[1] = indexMap[earVertex->fIndex];
1693 indices[2] = indexMap[p2->fIndex];
1694
1695 // clip the ear
1696 convexList.remove(earVertex);
1697 --vertexCount;
1698
1699 // reclassify reflex verts
1700 p0->fNextIndex = earVertex->fNextIndex;
1701 reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
1702
1703 p2->fPrevIndex = earVertex->fPrevIndex;
1704 reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
1705 }
1706
1707 // output indices
1708 for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
1709 vertexIter != convexList.end(); ++vertexIter) {
1710 TriangulationVertex* vertex = *vertexIter;
1711 *triangleIndices->push() = indexMap[vertex->fIndex];
1712 }
1713
1714 return true;
1715 }
1716
1717 ///////////
1718
crs(SkVector a,SkVector b)1719 static double crs(SkVector a, SkVector b) {
1720 return a.fX * b.fY - a.fY * b.fX;
1721 }
1722
sign(SkScalar v)1723 static int sign(SkScalar v) {
1724 return v < 0 ? -1 : (v > 0);
1725 }
1726
1727 struct SignTracker {
1728 int fSign;
1729 int fSignChanges;
1730
resetSignTracker1731 void reset() {
1732 fSign = 0;
1733 fSignChanges = 0;
1734 }
1735
initSignTracker1736 void init(int s) {
1737 SkASSERT(fSignChanges == 0);
1738 SkASSERT(s == 1 || s == -1 || s == 0);
1739 fSign = s;
1740 fSignChanges = 1;
1741 }
1742
updateSignTracker1743 void update(int s) {
1744 if (s) {
1745 if (fSign != s) {
1746 fSignChanges += 1;
1747 fSign = s;
1748 }
1749 }
1750 }
1751 };
1752
1753 struct ConvexTracker {
1754 SkVector fFirst, fPrev;
1755 SignTracker fDSign, fCSign;
1756 int fVecCounter;
1757 bool fIsConcave;
1758
ConvexTrackerConvexTracker1759 ConvexTracker() { this->reset(); }
1760
resetConvexTracker1761 void reset() {
1762 fPrev = {0, 0};
1763 fDSign.reset();
1764 fCSign.reset();
1765 fVecCounter = 0;
1766 fIsConcave = false;
1767 }
1768
addVecConvexTracker1769 void addVec(SkPoint p1, SkPoint p0) {
1770 this->addVec(p1 - p0);
1771 }
addVecConvexTracker1772 void addVec(SkVector v) {
1773 if (v.fX == 0 && v.fY == 0) {
1774 return;
1775 }
1776
1777 fVecCounter += 1;
1778 if (fVecCounter == 1) {
1779 fFirst = fPrev = v;
1780 fDSign.update(sign(v.fX));
1781 return;
1782 }
1783
1784 SkScalar d = v.fX;
1785 SkScalar c = crs(fPrev, v);
1786 int sign_c;
1787 if (c) {
1788 sign_c = sign(c);
1789 } else {
1790 if (d >= 0) {
1791 sign_c = fCSign.fSign;
1792 } else {
1793 sign_c = -fCSign.fSign;
1794 }
1795 }
1796
1797 fDSign.update(sign(d));
1798 fCSign.update(sign_c);
1799 fPrev = v;
1800
1801 if (fDSign.fSignChanges > 3 || fCSign.fSignChanges > 1) {
1802 fIsConcave = true;
1803 }
1804 }
1805
finalCrossConvexTracker1806 void finalCross() {
1807 this->addVec(fFirst);
1808 }
1809 };
1810
SkIsPolyConvex_experimental(const SkPoint pts[],int count)1811 bool SkIsPolyConvex_experimental(const SkPoint pts[], int count) {
1812 if (count <= 3) {
1813 return true;
1814 }
1815
1816 ConvexTracker tracker;
1817
1818 for (int i = 0; i < count - 1; ++i) {
1819 tracker.addVec(pts[i + 1], pts[i]);
1820 if (tracker.fIsConcave) {
1821 return false;
1822 }
1823 }
1824 tracker.addVec(pts[0], pts[count - 1]);
1825 tracker.finalCross();
1826 return !tracker.fIsConcave;
1827 }
1828
1829